1
|
Gray DA, Wang B, Sidarta M, Cornejo FA, Wijnheijmer J, Rani R, Gamba P, Turgay K, Wenzel M, Strahl H, Hamoen LW. Membrane depolarization kills dormant Bacillus subtilis cells by generating a lethal dose of ROS. Nat Commun 2024; 15:6877. [PMID: 39128925 PMCID: PMC11317493 DOI: 10.1038/s41467-024-51347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
The bactericidal activity of several antibiotics partially relies on the production of reactive oxygen species (ROS), which is generally linked to enhanced respiration and requires the Fenton reaction. Bacterial persister cells, an important cause of recurring infections, are tolerant to these antibiotics because they are in a dormant state. Here, we use Bacillus subtilis cells in stationary phase, as a model system of dormant cells, to show that pharmacological induction of membrane depolarization enhances the antibiotics' bactericidal activity and also leads to ROS production. However, in contrast to previous studies, this results primarily in production of superoxide radicals and does not require the Fenton reaction. Genetic analyzes indicate that Rieske factor QcrA, the iron-sulfur subunit of respiratory complex III, seems to be a primary source of superoxide radicals. Interestingly, the membrane distribution of QcrA changes upon membrane depolarization, suggesting a dissociation of complex III. Thus, our data reveal an alternative mechanism by which antibiotics can cause lethal ROS levels, and may partially explain why membrane-targeting antibiotics are effective in eliminating persisters.
Collapse
Affiliation(s)
- Declan A Gray
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Biwen Wang
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Margareth Sidarta
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Fabián A Cornejo
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany
| | - Jurian Wijnheijmer
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands
| | - Rupa Rani
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Pamela Gamba
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
- Charles River Laboratories, Keele Science Park, Keele, ST5 5SP, UK
| | - Kürşad Turgay
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany
- Leibniz Universität Hannover, Institut für Mikrobiologie, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Michaela Wenzel
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK
| | - Leendert W Hamoen
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Newcastle upon Tyne, NE2 4AX, UK.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Tetz V, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz G. Previously unknown regulatory role of extracellular RNA on bacterial directional migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603110. [PMID: 39026763 PMCID: PMC11257571 DOI: 10.1101/2024.07.11.603110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial directional migration plays a significant role in bacterial adaptation. However, the regulation of this process, particularly in young biofilms, remains unclear. Here, we demonstrated the critical role of extracellular RNA as part of the Universal Receptive System in bacterial directional migration using a multidisciplinary approach, including bacterial culture, biochemistry, and genetics. We found that the destruction or inactivation of extracellular RNA with RNase or RNA-specific antibodies in the presence of the chemoattractant triggered the formation of bacterial "runner cells» in what we call a "panic state" capable of directional migration. These cells quickly migrated even on the surface of 1.5% agar and formed evolved colonies that were transcriptionally and biochemically different from the ancestral cells. We have also shown that cell-free DNA from blood plasma can act as a potent bacterial chemoattractant. Our data revealed a previously unknown role of bacterial extracellular RNA in the regulation of bacterial migration and have shown that its destruction or inhibition triggered the directional migration of developing and mature biofilms towards the chemoattractant.
Collapse
|
3
|
Separation and analysis of Bacillus subtilis respiratory chain complexes. J Bioenerg Biomembr 2022; 54:251-271. [DOI: 10.1007/s10863-022-09951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
|
4
|
Goto T, Ogami S, Yoshimume K, Yumoto I. Differences in Bioenergetic Metabolism of Obligately Alkaliphilic Bacillaceae Under High pH Depend on the Aeration Conditions. Front Microbiol 2022; 13:842785. [PMID: 35401478 PMCID: PMC8992544 DOI: 10.3389/fmicb.2022.842785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Alkaliphilic Bacillaceae appear to produce ATP based on the H+-based chemiosmotic theory. However, the bulk-based chemiosmotic theory cannot explain the ATP production in alkaliphilic bacteria because the H+ concentration required for driving ATP synthesis through the ATPase does not occur under the alkaline conditions. Alkaliphilic bacteria produce ATP in an H+-diluted environment by retaining scarce H+ extruded by the respiratory chain on the outer surface of the membrane and increasing the potential of the H+ for ATP production on the outer surface of the membrane using specific mechanisms of ATP production. Under high-aeration conditions, the high ΔΨ (ca. -170 mV) of the obligate alkaliphilic Evansella clarkii retains H+ at the outer surface of the membrane and increases the intensity of the protonmotive force (Δp) per H+ across the membrane. One of the reasons for the production of high ΔΨ is the Donnan potential, which arises owing to the induction of impermeable negative charges in the cytoplasm. The intensity of the potential is further enhanced in the alkaliphiles compared with neutralophiles because of the higher intracellular pH (ca. pH 8.1). However, the high ΔΨ observed under high-aeration conditions decreased (∼ -140 mV) under low-aeration conditions. E. clarkii produced 2.5–6.3-fold higher membrane bound cytochrome c in the content of the cell extract under low-aeration conditions than under high-aeration conditions. The predominant membrane-bound cytochrome c in the outer surface of the membrane possesses an extra Asn-rich segment between the membrane anchor and the main body of protein. This structure may influence the formation of an H+-bond network that accumulates H+ on the outer surface of the membrane. Following accumulation of the H+-bond network producing cytochrome c, E. clarkii constructs an H+ capacitor to overcome the energy limitation of low aeration at high pH conditions. E. clarkii produces more ATP than other neutralophilic bacteria by enhancing the efficacy per H+ in ATP synthesis. In low H+ environments, E. clarkii utilizes H+ efficiently by taking advantage of its high ΔΨ under high-aeration conditions, whereas under low-aeration conditions E. clarkii uses cytochrome c bound on its outer surface of the membrane as an H+ capacitor.
Collapse
Affiliation(s)
- Toshitaka Goto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shinichi Ogami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kazuaki Yoshimume
- College of Industrial Technology, Nihon University, Narashino, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- *Correspondence: Isao Yumoto,
| |
Collapse
|
5
|
Impedance spectroscopic study of biofilm formation on pencil lead graphite anode in microbial fuel cell. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Hederstedt L. Molecular Biology of Bacillus subtilis Cytochromes anno 2020. BIOCHEMISTRY (MOSCOW) 2021; 86:8-21. [DOI: 10.1134/s0006297921010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Kinetic advantage of forming respiratory supercomplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148193. [PMID: 32201307 DOI: 10.1016/j.bbabio.2020.148193] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
Components of respiratory chains in mitochondria and some aerobic bacteria assemble into larger, multiprotein membrane-bound supercomplexes. Here, we address the functional significance of supercomplexes composed of respiratory-chain complexes III and IV. Complex III catalyzes oxidation of quinol and reduction of water-soluble cytochrome c (cyt c), while complex IV catalyzes oxidation of the reduced cyt c and reduction of dioxygen to water. We focus on two questions: (i) under which conditions does diffusion of cyt c become rate limiting for electron transfer between these two complexes? (ii) is there a kinetic advantage of forming a supercomplex composed of complexes III and IV? To answer these questions, we use a theoretical approach and assume that cyt c diffuses in the water phase while complexes III and IV either diffuse independently in the two dimensions of the membrane or form supercomplexes. The analysis shows that the electron flux between complexes III and IV is determined by the equilibration time of cyt c within the volume of the intermembrane space, rather than the cyt c diffusion time constant. Assuming realistic relative concentrations of membrane-bound components and cyt c and that all components diffuse independently, the data indicate that electron transfer between complexes III and IV can become rate limiting. Hence, there is a kinetic advantage of bringing complexes III and IV together in the membrane to form supercomplexes.
Collapse
|
9
|
Gong H, Li J, Xu A, Tang Y, Ji W, Gao R, Wang S, Yu L, Tian C, Li J, Yen HY, Man Lam S, Shui G, Yang X, Sun Y, Li X, Jia M, Yang C, Jiang B, Lou Z, Robinson CV, Wong LL, Guddat LW, Sun F, Wang Q, Rao Z. An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science 2018; 362:science.aat8923. [PMID: 30361386 DOI: 10.1126/science.aat8923] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/10/2018] [Indexed: 11/02/2022]
Abstract
We report a 3.5-angstrom-resolution cryo-electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
Collapse
Affiliation(s)
- Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
| | - Ao Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
| | - Wenxin Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ruogu Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuhui Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
| | - Lu Yu
- High Magnetic Field Laboratory, CAS, Hefei 230031, China
| | - Changlin Tian
- High Magnetic Field Laboratory, CAS, Hefei 230031, China.,Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Jingwen Li
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK
| | - Hsin-Yung Yen
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK.,OMass Technologies, Begbroke Science Park, Woodstock Rd, Yarnton, Kidlington OX5 1PF, UK
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
| | - Yuna Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Minze Jia
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK
| | - Luet-Lok Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Quan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China. .,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China.,Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Matsuno T, Goto T, Ogami S, Morimoto H, Yamazaki K, Inoue N, Matsuyama H, Yoshimune K, Yumoto I. Formation of Proton Motive Force Under Low-Aeration Alkaline Conditions in Alkaliphilic Bacteria. Front Microbiol 2018; 9:2331. [PMID: 30333809 PMCID: PMC6176047 DOI: 10.3389/fmicb.2018.02331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022] Open
Abstract
In Mitchell’s chemiosmotic theory, a proton (H+) motive force across the membrane (Δp), generated by the respiratory chain, drives F1Fo-ATPase for ATP production in various organisms. The bulk-base chemiosmotic theory cannot account for ATP production in alkaliphilic bacteria. However, alkaliphiles thrive in environments with a H+ concentrations that are one-thousandth (ca. pH 10) the concentration required by neutralophiles. This situation is similar to the production of electricity by hydroelectric turbines under conditions of very limited water. Alkaliphiles manage their metabolism via various strategies involving the cell wall structure, solute transport systems and molecular mechanisms on the outer surface membrane. Our experimental results indicate that efficient ATP production in alkaliphilic Bacillus spp. is attributable to a high membrane electrical potential (ΔΨ) generated for an attractive force for H+ on the outer surface membrane. In addition, the enhanced F1Fo-ATPase driving force per H+ is derived from the high ΔΨ. However, it is difficult to explain the reasons for high ΔΨ formation based on the respiratory rate. The Donnan effect (which is observed when charged particles that are unable to pass through a semipermeable membrane create an uneven electrical charge) likely contributes to the formation of the high ΔΨ because the intracellular negative ion capacities of alkaliphiles are much higher than those of neutralophiles. There are several variations in the adaptation to alkaline environments by bacteria. However, it could be difficult to utilize high ΔΨ in the low aeration condition due to the low activity of respiration. To explain the efficient ATP production occurring in H+-less and air-limited environments in alkaliphilic bacteria, we propose a cytochrome c-associated “H+ capacitor mechanism” as an alkaline adaptation strategy. As an outer surface protein, cytochrome c-550 from Bacillusclarkii possesses an extra Asn-rich segment between the region anchored to the membrane and the main body of the cytochrome c. This structure may contribute to the formation of the proton-binding network to transfer H+ at the outer surface membrane in obligate alkaliphiles. The H+ capacitor mechanism is further enhanced under low-aeration conditions in both alkaliphilic Bacillus spp. and the Gram-negative alkaliphile Pseudomonas alcaliphila.
Collapse
Affiliation(s)
- Toshihide Matsuno
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Sabae, Japan
| | - Toshitaka Goto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shinichi Ogami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hajime Morimoto
- Department of Chemistry and Biology, National Institute of Technology, Fukui College, Sabae, Japan.,Department of Bioscience and Technology, School of Biological Sciences and Engineering, Tokai University, Sapporo, Japan
| | - Koji Yamazaki
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | - Hidetoshi Matsuyama
- Department of Bioscience and Technology, School of Biological Sciences and Engineering, Tokai University, Sapporo, Japan
| | - Kazuaki Yoshimune
- College of Industrial Technology, Nihon University, Narashino, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Cardiolipin deficiency causes a dissociation of the b 6 c:caa 3 megacomplex in B. subtilis membranes. J Bioenerg Biomembr 2016; 48:451-67. [PMID: 27503613 DOI: 10.1007/s10863-016-9671-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
The associations among respiratory complexes in energy-transducing membranes have been established. In fact, it is known that the Gram-negative bacteria Paracoccus denitrificans and Escherichia coli have respiratory supercomplexes in their membranes. These supercomplexes are important for channeling substrates between enzymes in a metabolic pathway, and the assembly of these supercomplexes depends on the protein subunits and membrane lipids, mainly cardiolipin, which is present in both the mitochondrial inner membrane and bacterial membranes. The Gram-positive bacterium Bacillus subtilis has a branched respiratory chain, in which some complexes generate proton motive force whereas others constitute an escape valve of excess reducing power. Some peculiarities of this respiratory chain are the following: a type II NADH dehydrogenase, a unique b 6 c complex that has a b 6 type cytochrome with a covalently bound heme, and a c-type heme attached to the third subunit, which is similar to subunit IV of the photosynthetic b 6 f complex. Cytochrome c oxygen reductase (caa 3 ) contains a c-type cytochrome on subunit I. We previously showed that the b 6 c and the caa 3 complexes form a supercomplex. Both the b 6 c and the caa 3 together with the quinol oxygen reductase aa 3 generate the proton motive force in B. subtilis. In order to seek proof that this supercomplex is important for bacterial growth in aerobic conditions we compared the b 6 c: caa 3 supercomplex from wild type membranes with membranes from two mutants lacking cardiolipin. Both mutant complexes were found to have similar activity and heme content as the wild type. Clear native electrophoresis showed that mutants lacking cardiolipin had b 6 c:caa 3 supercomplexes of lower mass or even individual complexes after membrane solubilization with digitonin. The use of dodecyl maltoside revealed a more evident difference between wild-type and mutant supercomplexes. Here we provide evidence showing that cardiolipin plays a role in the stability of the b 6 c:caa 3 supercomplex in B. subtilis.
Collapse
|
12
|
Cytochrome c551 and the cytochrome c maturation pathway affect virulence gene expression in Bacillus cereus ATCC 14579. J Bacteriol 2014; 197:626-35. [PMID: 25422307 DOI: 10.1128/jb.02125-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Loss of the cytochrome c maturation system in Bacillus cereus results in increased transcription of the major enterotoxin genes nhe, hbl, and cytK and the virulence regulator plcR. Increased virulence factor production occurs at 37°C under aerobic conditions, similar to previous findings in Bacillus anthracis. Unlike B. anthracis, much of the increased virulence gene expression can be attributed to loss of only c551, one of the two small c-type cytochromes. Additional virulence factor expression occurs with loss of resBC, encoding cytochrome c maturation proteins, independently of the presence of the c-type cytochrome genes. Hemolytic activity of strains missing either cccB or resBC is increased relative to that in the parental strain, while sporulation efficiency is unaffected in the mutants. Increased virulence gene expression in the ΔcccB and ΔresBC mutants occurs only in the presence of an intact plcR gene, indicating that this process is PlcR dependent. These findings suggest a new mode of regulation of B. cereus virulence and reveal intriguing similarities and differences in virulence regulation between B. cereus and B. anthracis.
Collapse
|
13
|
Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc Natl Acad Sci U S A 2014; 111:E1409-18. [PMID: 24706874 DOI: 10.1073/pnas.1319900111] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions.
Collapse
|
14
|
The bc:caa3 supercomplexes from the Gram positive bacterium Bacillus subtilis respiratory chain: A megacomplex organization? Arch Biochem Biophys 2013; 537:153-60. [DOI: 10.1016/j.abb.2013.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
|
15
|
Heylen K, Keltjens J. Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in Bacillus. Front Microbiol 2012; 3:371. [PMID: 23087684 PMCID: PMC3475470 DOI: 10.3389/fmicb.2012.00371] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/28/2012] [Indexed: 11/13/2022] Open
Abstract
The genomes of two phenotypically denitrifying type strains of the genus Bacillus were sequenced and the pathways for dissimilatory nitrate reduction were reconstructed. Results suggest that denitrification proceeds in the periplasmic space and in an analogous fashion as in Gram-negative organisms, yet with the participation of proteins that tend to be membrane-bound or membrane-associated. A considerable degree of functional redundancy was observed with marked differences between B. azotoformans LMG 9581(T) and B. bataviensis LMG 21833(T). In addition to the already characterized menaquinol/cyt c-dependent nitric oxide reductase (Suharti et al., 2001, 2004) of which the encoding genes could be identified now, evidence for another novel nitric oxide reductase (NOR) was found. Also, our analyses confirm earlier findings on branched electron transfer with both menaquinol and cytochrome c as reductants. Quite unexpectedly, both bacilli have the disposal of two parallel pathways for nitrite reduction enabling a life style as a denitrifier and as an ammonifying bacterium.
Collapse
Affiliation(s)
- Kim Heylen
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, University of Ghent Gent, Belgium
| | | |
Collapse
|
16
|
García Montes de Oca LYJ, Chagolla-López A, González de la Vara L, Cabellos-Avelar T, Gómez-Lojero C, Gutiérrez Cirlos EB. The composition of the Bacillus subtilis aerobic respiratory chain supercomplexes. J Bioenerg Biomembr 2012; 44:473-86. [DOI: 10.1007/s10863-012-9454-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022]
|
17
|
Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S, Fackelmayer OJ, Smith TA, Earl J, Elbourne LDH, Hassan K, Paulsen IT, Kolstø AB, Tourasse NJ, Ehrlich GD, Boissy R, Ivey DM, Li G, Xue Y, Ma Y, Hu FZ, Krulwich TA. Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 2011; 13:3289-309. [PMID: 21951522 DOI: 10.1111/j.1462-2920.2011.02591.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacillus pseudofirmus OF4 is an extreme but facultative alkaliphile that grows non-fermentatively in a pH range from 7.5 to above 11.4 and can withstand large sudden increases in external pH. It is a model organism for studies of bioenergetics at high pH, at which energy demands are higher than at neutral pH because both cytoplasmic pH homeostasis and ATP synthesis require more energy. The alkaliphile also tolerates a cytoplasmic pH > 9.0 at external pH values at which the pH homeostasis capacity is exceeded, and manages other stresses that are exacerbated at alkaline pH, e.g. sodium, oxidative and cell wall stresses. The genome of B. pseudofirmus OF4 includes two plasmids that are lost from some mutants without viability loss. The plasmids may provide a reservoir of mobile elements that promote adaptive chromosomal rearrangements under particular environmental conditions. The genome also reveals a more acidic pI profile for proteins exposed on the outer surface than found in neutralophiles. A large array of transporters and regulatory genes are predicted to protect the alkaliphile from its overlapping stresses. In addition, unanticipated metabolic versatility was observed, which could ensure requisite energy for alkaliphily under diverse conditions.
Collapse
Affiliation(s)
- Benjamin Janto
- Allegheny General Hospital, Allegheny-Singer Research Institute, Center for Genomic Sciences and Department of Microbiology and Immunology, Drexel University College of Medicine, Allegheny Campus, Pittsburgh, PA 15212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Physiological function of soluble cytochrome c-552 from alkaliphilic Pseudomonas alcaliphila AL15-21(T). J Bioenerg Biomembr 2011; 43:473-81. [PMID: 21766198 DOI: 10.1007/s10863-011-9376-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
It has been found that the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) produces a larger amount of soluble c-type cytochromes at pH 10.0 under air-limited condition than at pH 7.0 under high aeration. Cytochrome c-552 was confirmed as the major c-type cytochrome among three soluble c-type cytochromes in the strain. To understand the physiological function of cytochrome c-552, a P. alcaliphila AL15-21(T) cytochrome c-552 gene deletion mutant without a marker gene was constructed by electrotransformation adjusted in this study for the strain. The maximum specific growth rate and maximum cell turbidity of cells grown at pHs 7.0 and 10.0 under the high-aeration condition did not differ significantly between the wild-type and cytochrome c-552 deletion mutant strains. In the mutant grown at pH 10.0 under low-aeration condition, marked decreases in the maximum specific growth rate (40%) and maximum cell turbidity (25%) compared with the wild type were observed. On the other hand, the oxygen consumption rates of cell suspensions of the mutant obtained by the growth at pH 10 under low-aeration condition were slightly higher than that of the wild type. Considering the high electron-retaining ability of cytochrome c-552, the above observations could be accounted for by cytochrome c-552 acting as an electron sink in the periplasmic space. This may facilitate terminal oxidation in the respiratory system at high pH under air-limited conditions.
Collapse
|
19
|
Abstract
Regulated expression of the genes for anthrax toxin proteins is essential for the virulence of the pathogenic bacterium Bacillus anthracis. Induction of toxin gene expression depends on several factors, including temperature, bicarbonate levels, and metabolic state of the cell. To identify factors that regulate toxin expression, transposon mutagenesis was performed under non-inducing conditions and mutants were isolated that untimely expressed high levels of toxin. A number of these mutations clustered in the haem biosynthetic and cytochrome c maturation pathways. Genetic analysis revealed that two haem-dependent, small c-type cytochromes, CccA and CccB, located on the extracellular surface of the cytoplasmic membrane, regulate toxin gene expression by affecting the expression of the master virulence regulator AtxA. Deregulated AtxA expression in early exponential phase resulted in increased expression of toxin genes in response to loss of the CccA-CccB signalling pathway. This is the first function identified for these two small c-type cytochromes of Bacillus species. Extension of the transposon screen identified a previously uncharacterized protein, BAS3568, highly conserved across many bacterial and archeal species, as involved in cytochrome c activity and virulence regulation. These findings are significant not only to virulence regulation in B. anthracis, but also to analysis of virulence regulation in many pathogenic bacteria and to the study of cytochrome c activity in Gram-positive bacteria.
Collapse
Affiliation(s)
- Adam C. Wilson
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, Division of Cellular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - James A. Hoch
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, Division of Cellular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Marta Perego
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, Division of Cellular Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
20
|
Ogami S, Hijikata S, Tsukahara T, Mie Y, Matsuno T, Morita N, Hara I, Yamazaki K, Inoue N, Yokota A, Hoshino T, Yoshimune K, Yumoto I. A novel membrane-anchored cytochrome c-550 of alkaliphilic Bacillus clarkii K24-1U: expression, molecular features and properties of redox potential. Extremophiles 2009; 13:491-504. [PMID: 19266156 DOI: 10.1007/s00792-009-0234-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
A membrane-anchored cytochrome c-550, which is highly expressed in obligately alkaliphilic Bacillus clarkii K24-1U, was purified and characterized. The protein contained a conspicuous sequence of Gly(22)-Asn(34), in comparison with the other Bacillus small cytochromes c. Analytical data indicated that the original and lipase-treated intermediate forms of cytochrome c-550 bind to fatty acids of C(15), C(16) and C(17) chain lengths and C(15) chain length, respectively, and it was considered that these fatty acids are bound to glycerol-Cys(18). Since there was a possibility that the presence of a diacylglycerol anchor contributed to the formation of dimeric states of this protein (20 and 17 kDa in SDS-PAGE), a C18M (Cys(18) --> Met)-cytochrome c-550 was constructed. The molecular mass of the C18M-cytochrome c-550 was determined as 15 and 10 kDa in SDS-PAGE and 23 kDa in blue native PAGE. The C18M-cytochrome c-550 bound with or without Triton X-100 formed a tetramer as the original cytochrome c-550 bound with Triton X-100, as determined by gel filtration. The midpoint redox potential of cytochrome c-550 as determined by redox titration was +83 mV, while that determined by cyclic voltammetric measurement was +7 mV. The above results indicate that cytochrome c-550 is a novel cytochrome c.
Collapse
Affiliation(s)
- Shinichi Ogami
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em. Trends Microbiol 2009; 17:13-21. [PMID: 19059780 DOI: 10.1016/j.tim.2008.10.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/22/2008] [Accepted: 10/28/2008] [Indexed: 11/24/2022]
Abstract
Gram-positive bacterial lipoproteins are a functionally diverse and important class of peripheral membrane proteins. Recent advances in molecular biology and the availability of whole genome sequence data have overturned many long-held assumptions about the export and processing of these proteins, most notably the recent discovery that not all lipoproteins are exported as unfolded substrates through the general secretion pathway. Here, we review recent discoveries concerning the export and processing of these proteins, their role in virulence in Gram-positive bacteria and their potential as vaccine candidates or targets for new antimicrobials.
Collapse
Affiliation(s)
- Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | | | | | | |
Collapse
|
22
|
The active-site cysteinyls and hydrophobic cavity residues of ResA are important for cytochrome c maturation in Bacillus subtilis. J Bacteriol 2008; 190:4697-705. [PMID: 18456809 DOI: 10.1128/jb.00145-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ResA is an extracytoplasmic membrane-bound thiol-disulfide oxidoreductase required for cytochrome c maturation in Bacillus subtilis. Previous biochemical and structural studies have revealed that the active-site cysteinyls cycle between oxidized and reduced states with a low reduction potential and that, upon reduction, a hydrophobic cavity forms close to the active site. Here we report in vivo studies of ResA-deficient B. subtilis complemented with a series of ResA variants. Using a range of methods to analyze the cellular cytochrome c content, we demonstrated (i) that the N-terminal transmembrane segment of ResA serves principally to anchor the protein to the cytoplasmic membrane but also plays a role in mediating the activity of the protein; (ii) that the active-site cysteines are important for cytochrome c maturation activity; (iii) that Pro141, which forms part of the hydrophobic cavity and which adopts a cis conformation, plays an important role in protein stability; (iv) that Glu80, which lies at the base of the hydrophobic cavity, is important for cytochrome c maturation activity; and, finally, (v) that Pro141 and Glu80 ResA mutant variants promote selective maturation of low levels of one c-type cytochrome, subunit II of the cytochrome c oxidase caa(3), indicating that this apocytochrome is distinct from the other three endogenous c-type cytochromes of B. subtilis.
Collapse
|
23
|
Zoppellaro G, Teschner T, Harbitz E, Schünemann V, Karlsen S, Arciero DM, Ciurli S, Trautwein AX, Hooper AB, Andersson KK. Low-temperature EPR and Mössbauer spectroscopy of two cytochromes with His-Met axial coordination exhibiting HALS signals. Chemphyschem 2007; 7:1258-67. [PMID: 16688708 DOI: 10.1002/cphc.200500693] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
C-type cytochromes with histidine-methionine (His-Met) iron coordination play important roles in electron-transfer reactions and in enzymes. Low-temperature electron paramagnetic resonance (EPR) spectra of low-spin ferric cytochromes c can be divided into two groups, depending on the spread of g values: the normal rhombic ones with small g anisotropy and g(max) below 3.2, and those featuring large g anisotropy with g(max) between 3.3 and 3.8, also denoted as highly axial low spin (HALS) species. Herein we present the detailed magnetic properties of cytochrome c(553) from Bacillus pasteurii (g(max) 3.36) and cytochrome c(552) from Nitrosomonas europaea (g(max) 3.34) over the pH range 6.2 to 8.2. Besides being structurally very similar, cytochrome c(553) shows the presence of a minor rhombic species at pH 6.2 (6 %), whereas cytochrome c(552) has about 25 % rhombic species over pH 7.5. The detailed Mössbauer analysis of cytochrome c(552) confirms the presence of these two low-spin ferric species (HALS and rhombic) together with an 8 % ferrous form with parameters comparable to the horse cytochrome c. Both EPR and Mössbauer data of axial cytochromes c with His-Met iron coordination are consistent with an electronic (d(xy))(2) (d(xz))(2) (d(yz))(1) ground state, which is typical for Type I model hemes.
Collapse
Affiliation(s)
- Giorgio Zoppellaro
- Department of Molecular Biosciences, University of Oslo, Box 1041 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I. Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 2005; 100:365-79. [PMID: 16310725 DOI: 10.1263/jbb.100.365] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 07/05/2005] [Indexed: 11/17/2022]
Abstract
Although a bioenergetic parameter is unfavorable for production of ATP (DeltapH<0), the growth rate and yield of alkaliphilic Bacillus strains are higher than those of neutralophilic Bacillus subtilis. This finding suggests that alkaliphiles possess a unique energy-producing machinery taking advantage of the alkaline environment. Expected bioenergetic parameters for the production of ATP (DeltapH and DeltaPsi) do not reflect the actual parameters for energy production. Certain strains of alkaliphilic Bacillus spp. possess large amounts of cytochrome c when grown at a high pH. The growth rate and yield are higher at pH 10 than at pH 7 in facultative alkaliphiles. These findings suggest that a large amount of cytochrome c at high pHs (e.g., pH 10) may be advantageous for sustaining growth. To date, isolated cytochromes c of alkaliphiles have a very low midpoint redox potential (less than +100 mV) compared with those of neutralophiles (approximately +220 mV). On the other hand, the redox potential of the electron acceptor from cytochrome c, that is, cytochrome c oxidase, seems to be normal (redox potential of cytochrome a=+250 mV). This large difference in midpoint redox potential between cytochrome c and cytochrome a concomitant with the configuration (e.g., a larger negative ion capacity at the inner surface membrane than at the outer surface for the attraction of H+ to the intracellular membrane and a large amount of cyrochrome c) supporting H+-coupled electron transfer of cytochrome c may have an important meaning in the adaptation of alkaliphiles at high pHs. This respiratory system includes a more rapid and efficient H+ and e- flow across the membrane in alkaliphiles than in neutralophiles.
Collapse
Affiliation(s)
- Toshitaka Goto
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Erlendsson LS, Hederstedt L. Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J Bacteriol 2002; 184:1423-9. [PMID: 11844773 PMCID: PMC134848 DOI: 10.1128/jb.184.5.1423-1429.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytochromes of the c type in the gram-positive bacterium Bacillus subtilis are all membrane anchored, with their heme domains exposed on the outer side of the cytoplasmic membrane. They are distinguished from other cytochromes by having heme covalently attached by two thioether bonds. The cysteinyls in the heme-binding site (CXXCH) in apocytochrome c must be reduced in order for the covalent attachment of the heme to occur. It has been proposed that CcdA, a membrane protein, transfers reducing equivalents from thioredoxin in the cytoplasm to proteins on the outer side of the cytoplasmic membrane. Strains deficient in the CcdA protein are defective in cytochrome c and spore synthesis. We have discovered that mutations in the bdbC and bdbD genes can suppress the defects caused by lack of CcdA. BdbC and BdbD are thiol-disulfide oxidoreductases. Our experimental findings indicate that these B. subtilis proteins functionally correspond to the well-characterized Escherichia coli DsbB and DsbA proteins, which catalyze the formation of disulfide bonds in proteins in the periplasmic space.
Collapse
Affiliation(s)
- Lýdur S Erlendsson
- Department of Microbiology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
| | | |
Collapse
|
26
|
Sone N, Nagata K, Kojima H, Tajima J, Kodera Y, Kanamaru T, Noguchi S, Sakamoto J. A novel hydrophobic diheme c-type cytochrome. Purification from Corynebacterium glutamicum and analysis of the QcrCBA operon encoding three subunit proteins of a putative cytochrome reductase complex. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:279-90. [PMID: 11115640 DOI: 10.1016/s0005-2728(00)00205-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electrophoresis of a Corynebacterium glutamicum membrane preparation in the presence of sodium dodecyl sulfate, followed by staining for peroxidase activity (heme staining), showed only one band at about 28 kDa. This 28 kDa protein was purified from C. glutamicum membranes by chromatography in the presence of decylglucoside using DEAE-Toyopearl and hydroxylapatite columns, as the sole c-type cytochrome in the bacterium. The cytochrome showed an alpha band at 551 nm, and its E(m, 7) was about 210 mV. A QcrCAB operon encoding the subunits of a putative quinol cytochrome c reductase was found 3'-downstream of ctaE encoding subunit III of cytochrome aa(3) in the C. glutamicum genome. The deduced amino acid sequence of qcrC, composed of 283 amino acid residues, contained two heme C-binding motifs and was in agreement with partial peptide sequences obtained from the 28 kDa protein after V8 protease digestion. We propose to name this protein cytochrome cc. The presence of cytochrome cc is a common feature of high G+C content Gram-positive bacteria, since we could confirm this protein by electrophoresis; homologous QcrCAB operons are also known in Mycobacterium and Streptomyces. QcrA and qcrB of C. glutamicum encode the Rieske Fe-S protein and cytochrome b, respectively, although these proteins were not co-purified with cytochrome cc. The phylogenetic tree of cytochromes b and b(6) show that C. glutamicum cytochrome b, along with those of other bacteria in the high G+C group, is rather different from the Bacillus counterparts, but highly similar to the Deinococci and Thermus cytochromes. This indicates that there is a fourth group of bacteria in addition to the three clades: proteobacterial cytochrome b, cyanobacterial b(6) and green sulfur-low G+C Gram-positive bacteria.
Collapse
Affiliation(s)
- N Sone
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Iizuka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 2000; 182:4458-65. [PMID: 10913079 PMCID: PMC94617 DOI: 10.1128/jb.182.16.4458-4465.2000] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism.
Collapse
Affiliation(s)
- R W Ye
- Experimental Station E328/148B, DuPont Central Research and Development, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Cytochromes of c-type contain covalently bound haem and in bacteria are located on the periplasmic side of the cytoplasmic membrane. More than eight different gene products have been identified as being specifically required for the synthesis of cytochromes c in Gram-negative bacteria. Corresponding genes are not found in the genome sequences of Gram-positive bacteria. Using two random mutagenesis approaches, we have searched for cytochrome c biogenesis genes in the Gram-positive bacterium Bacillus subtilis. Three genes, resB, resC and ccdA, were identified. CcdA has been found previously and is required for a late step in cytochrome c synthesis and also plays a role in spore synthesis. No function has previously been assigned for ResB and ResC but these predicted membrane proteins show sequence similarity to proteins required for cytochrome c synthesis in chloroplasts. Attempts to inactivate resB and resC in B. subtilis have indicated that these genes are essential for growth. We demonstrate that various nonsense mutations in resB or resC can block synthesis of cytochromes c with no effect on other types of cytochromes and little effect on sporulation and growth. The results strongly support the recent proposal that Gram-positive bacteria, cyanobacteria, epsilon-proteobacteria, and chloroplasts have a similar type of machinery for cytochrome c synthesis (System II), which is very different from those of most Gram-negative bacteria (System I) and mitochondria (System III).
Collapse
Affiliation(s)
- N E Le Brun
- Department of Microbiology, Lund University, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
29
|
Schiött T, Hederstedt L. Efficient spore synthesis in Bacillus subtilis depends on the CcdA protein. J Bacteriol 2000; 182:2845-54. [PMID: 10781554 PMCID: PMC101994 DOI: 10.1128/jb.182.10.2845-2854.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CcdA is known to be required for the synthesis of c-type cytochromes in Bacillus subtilis, but the exact function of this membrane protein is not known. We show that CcdA also plays a role in spore synthesis. The expression of ccdA and the two downstream genes yneI and yneJ was analyzed. There is a promoter for each gene, but there is only one transcription terminator, located after the yneJ gene. The promoter for ccdA was found to be weak and was active mainly during the transition from exponential growth to stationary phase. The promoters for yneI and yneJ were both active in the exponential growth phase. The levels of the CcdA and YneJ proteins in the membrane were consistent with the observed promoter activities. The ccdA promoter activity was independent of whether the ccdA-yneI-yneJ gene products were absent or overproduced in the cell. It is shown that the four known cytochromes c in B. subtilis and the YneI and YneJ proteins are not required for sporulation. The combined data from analysis of sporulation-specific sigma factor activity, resistance properties of spores, and spore morphology indicate that CcdA deficiency affects stage V in sporulation. We conclude that CcdA, YneI, and YneJ are functionally unrelated proteins and that the role of CcdA in cytochrome c and spore synthesis probably relates to sulfhydryl redox chemistry on the outer surface of the cytoplasmic membrane.
Collapse
Affiliation(s)
- T Schiött
- Department of Microbiology, Lund University, Lund, Sweden
| | | |
Collapse
|