1
|
Interaction with TopBP1 Is Required for Human Papillomavirus 16 E2 Plasmid Segregation/Retention Function during Mitosis. J Virol 2022; 96:e0083022. [PMID: 35880889 PMCID: PMC9400484 DOI: 10.1128/jvi.00830-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus 16 (HPV16) E2 is a DNA-binding protein that regulates transcription, replication and potentially, segregation of the HPV16 genome during the viral life cycle. In the segregation model, E2 simultaneously binds to viral and host chromatin, acting as a bridge to ensure that viral genomes reside in daughter nuclei following cell division. The host chromatin receptor for E2 mediating this function is unknown. Recently, we demonstrated that CK2 phosphorylation of E2 on serine 23 (S23) is required for interaction with TopBP1, and that this interaction promotes E2 and TopBP1 recruitment to mitotic chromatin. Here, we demonstrate that in U2OS cells expressing wild-type E2 and a non-TopBP1-binding mutant (S23A, serine 23 mutated to alanine), interaction with TopBP1 is essential for E2 recruitment of plasmids to mitotic chromatin. Using novel quantitative segregation assays, we demonstrate that interaction with TopBP1 is required for E2 plasmid segregation function in U2OS and N/Tert-1 cells. Small interfering RNA (siRNA) knockdown of TopBP1 or CK2 enzyme components disrupts E2 segregation/retention function. The interaction of E2 with TopBP1 promotes increased levels of E2 protein during mitosis in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes (HFK) immortalized by the HPV16 genome. Overall, our results demonstrate that E2 has plasmid segregation activity, and that the E2-TopBP1 interaction is essential for this E2 function. IMPORTANCE HPV16 causes 3% to 4% of all human cancers. It is proposed that during the viral life cycle, the viral genome is actively segregated into daughter nuclei, ensuring viral replication in the subsequent S phase. The E2 protein potentially bridges the viral and host genomes during mitosis to mediate segregation of the circular viral plasmid. Here, we demonstrate that E2 has the ability to mediate plasmid segregation, and that this function is dependent upon interaction with the host protein TopBP1. Additionally, we demonstrate that the E2-TopBP1 interaction promotes enhanced E2 expression during mitosis, which likely promotes the plasmid segregation function of E2. Overall, our results present a mechanism of how HPV16 can segregate its viral genome during an active infection, a critical aspect of the viral life cycle.
Collapse
|
2
|
Prabhakar AT, James CD, Das D, Otoa R, Day M, Burgner J, Fontan CT, Wang X, Glass SH, Wieland A, Donaldson MM, Bristol ML, Li R, Oliver AW, Pearl LH, Smith BO, Morgan IM. CK2 Phosphorylation of Human Papillomavirus 16 E2 on Serine 23 Promotes Interaction with TopBP1 and Is Critical for E2 Interaction with Mitotic Chromatin and the Viral Life Cycle. mBio 2021; 12:e0116321. [PMID: 34544280 PMCID: PMC8546539 DOI: 10.1128/mbio.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
During the human papillomavirus 16 (HPV16) life cycle, the E2 protein interacts with host factors to regulate viral transcription, replication, and genome segregation/retention. Our understanding of host partner proteins and their roles in E2 functions remains incomplete. Here we demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 in vitro and in vivo and that E2 is phosphorylated on this residue during the HPV16 life cycle. We investigated the consequences of mutating serine 23 on E2 functions. E2-S23A (E2 with serine 23 mutated to alanine) activates and represses transcription identically to E2-WT (wild-type E2), and E2-S23A is as efficient as E2-WT in transient replication assays. However, E2-S23A has compromised interaction with mitotic chromatin compared with E2-WT. In E2-WT cells, both E2 and TopBP1 levels increase during mitosis compared with vector control cells. In E2-S23A cells, neither E2 nor TopBP1 levels increase during mitosis. Introduction of the S23A mutation into the HPV16 genome resulted in delayed immortalization of human foreskin keratinocytes (HFK) and higher episomal viral genome copy number in resulting established HFK. Remarkably, S23A cells had a disrupted viral life cycle in organotypic raft cultures, with a loss of E2 expression and a failure of viral replication. Overall, our results demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 and that this interaction is critical for the viral life cycle. IMPORTANCE Human papillomaviruses are causative agents in around 5% of all cancers, with no specific antiviral therapeutics available for treating infections or resultant cancers. In this report, we demonstrate that phosphorylation of HPV16 E2 by CK2 promotes formation of a complex with the cellular protein TopBP1 in vitro and in vivo. This complex results in stabilization of E2 during mitosis. We demonstrate that CK2 phosphorylates E2 on serine 23 in vivo and that CK2 inhibitors disrupt the E2-TopBP1 complex. Mutation of E2 serine 23 to alanine disrupts the HPV16 life cycle, hindering immortalization and disrupting the viral life cycle, demonstrating a critical function for this residue.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Dipon Das
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Raymonde Otoa
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Burgner
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Christian T. Fontan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Sarah H. Glass
- VCU School of Dentistry, Department of Oral Diagnostic Sciences, Richmond, Virginia, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary M. Donaldson
- School of Veterinary Medicine, University of Glasgow, Bearsden, United Kingdom
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Renfeng Li
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Anthony W. Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Laurence H. Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Brian O. Smith
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
3
|
Human Papillomavirus 16 (HPV16) E2 Repression of TWIST1 Transcription Is a Potential Mediator of HPV16 Cancer Outcomes. mSphere 2020; 5:5/6/e00981-20. [PMID: 33298572 PMCID: PMC7729257 DOI: 10.1128/msphere.00981-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known. Human papillomaviruses (HPVs) are causative agents in around 5% of all cancers, including cervical and oropharyngeal. A feature of HPV cancers is their better clinical outcome compared with non-HPV anatomical counterparts. In turn, the presence of E2 predicts a better clinical outcome in HPV-positive cancers; the reason(s) for the better outcome of E2-positive patients is not fully understood. Previously, we demonstrated that HPV16 E2 regulates host gene transcription that is relevant to the HPV16 life cycle in N/Tert-1 cells. One of the genes repressed by E2 and the entire HPV16 genome in N/Tert-1 cells is TWIST1. Here, we demonstrate that TWIST1 RNA levels are reduced in HPV-positive versus HPV-negative head and neck cancer and that E2 and HPV16 downregulate both TWIST1 RNA and protein in our N/Tert-1 model; E6/E7 cannot repress TWIST1. E2 represses the TWIST1 promoter in transient assays and is localized to the TWIST1 promoter; E2 also induces repressive epigenetic changes on the TWIST1 promoter. TWIST1 is a master transcriptional regulator of the epithelial to mesenchymal transition (EMT), and a high level of TWIST1 is a prognostic marker indicative of poor cancer outcomes. We demonstrate that TWIST1 target genes are also downregulated in E2-positive N/Tert-1 cells and that E2 promotes a failure in wound healing, a phenotype of low TWIST1 levels. We propose that the presence of E2 in HPV-positive tumors leads to TWIST1 repression and that this plays a role in the better clinical response of E2-positive HPV tumors. IMPORTANCE HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known. Here, we demonstrate that E2 represses expression of the TWIST1 gene; an elevated level of this gene is a marker of poor prognosis for a variety of cancers. We demonstrate that E2 directly binds to the TWIST1 promoter and actively represses transcription. TWIST1 is a master regulator promoting EMT, and here, we demonstrate that the presence of E2 reduces the ability of N/Tert-1 cells to wound heal. Overall, we propose that the E2 repression of TWIST1 may contribute to the better clinical outcome of E2-positive HPV16-positive tumors.
Collapse
|
4
|
Arians N, Nicolay NH, Brons S, Koerber SA, Jaschke C, Vercruysse M, Daffinger S, Rühle A, Debus J, Lindel K. Carbon-ion irradiation overcomes HPV-integration/E2 gene-disruption induced radioresistance of cervical keratinocytes. JOURNAL OF RADIATION RESEARCH 2019; 60:564-572. [PMID: 31322705 PMCID: PMC6805985 DOI: 10.1093/jrr/rrz048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/02/2019] [Indexed: 06/10/2023]
Abstract
To date, only few data exist on mechanisms underlying the human papillomavirus (HPV)-associated irradiation response. It has been suggested, that the viral E2 gene plays an important role in that context. The aim of the current study is to compare the effect of photon- and carbon-ion (12C)-radiation therapy (RT) on cells with different HPV and E2 gene status. We hypothesized that 12C-RT might overcome the radioresistance of E2 gene-disrupted cells. We analyzed four different cell lines that differed in HPV status or E2 gene status. Cells were irradiated with either photons or 12C. Clonogenic survival, cell cycle and expression of Rb and p53 were analyzed. Radiosensitivity seemed to be dependent on E2 gene status and type of RT. 12C-RT led to lower surviving fractions, indicating higher radiosensitivity even in cells with disrupted E2 gene. The observed relative biological effectiveness (RBE) of 12C-RT for C33a/Caski and W12/S12 was 1.3/4 and 2.7/2.5, respectively. Cell cycle regulation after both photon- and 12C-RT was dependent on HPV status and on E2 gene status. Furthermore, the effect of RT on expression of p53 and Rb seemed to be dependent on E2 gene status and type of RT. We showed that 12C-RT overcomes HPV-integration induced radioresistance. The effect of RT on cell cycle regulation as well as on expression of p53 and Rb seemed to be dependent on HPV status, E2 gene status and type of RT. Differences in Rb expression and cell cycle regulation may play a role for enhanced radiosensitivity to 12C-RT of cells with disrupted E2 gene.
Collapse
Affiliation(s)
- Nathalie Arians
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Nils Henrik Nicolay
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Department of Radiation Oncology, Freiburg University Medical Center, Robert-Koch-Straße 3, Freiburg im Breisgau, Germany
| | - Stephan Brons
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Stefan Alexander Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Christine Jaschke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Marco Vercruysse
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Sigrid Daffinger
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
- German Cancer Consortium (DKTK), partner site Heidelberg, Germany
| | - Katja Lindel
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg, Germany
- Department of Radiation Oncology, Municipal Hospital Karlsruhe gGmbH, Moltkestraße 90, Karlsruhe, Germany
| |
Collapse
|
5
|
Failure to interact with Brd4 alters the ability of HPV16 E2 to regulate host genome expression and cellular movement. Virus Res 2015; 211:1-8. [PMID: 26365679 DOI: 10.1016/j.virusres.2015.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022]
Abstract
The E2 protein of the carcinogen human papillomavirus 16 (HPV16) regulates replication and transcription of the viral genome in association with viral and cellular proteins. Our previous work demonstrated that E2 can regulate transcription from the host genome. E2 can activate transcription from adjacent promoters when located upstream using E2 DNA binding sequences and this activation is dependent upon the cellular protein Brd4; this report demonstrates that a Brd4 binding E2 mutant alters host genome expression differently from wild type E2. Of particular note is that highly down regulated genes are mostly not affected by failure to interact with Brd4 suggesting that the E2-Brd4 interaction is more responsible for the transcriptional activation of host genes rather than repression. Therefore failure to interact efficiently with Brd4, or altered levels of Brd4, would alter the ability of E2 to regulate the host genome and could contribute to determining the outcome of infection.
Collapse
|
6
|
Siddiqa A, Léon KC, James CD, Bhatti MF, Roberts S, Parish JL. The human papillomavirus type 16 L1 protein directly interacts with E2 and enhances E2-dependent replication and transcription activation. J Gen Virol 2015; 96:2274-2285. [PMID: 25911730 PMCID: PMC4681068 DOI: 10.1099/vir.0.000162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human papillomavirus (HPV) E2 protein is a multifunctional protein essential for the control of virus gene expression, genome replication and persistence. E2 is expressed throughout the differentiation-dependent virus life cycle and is functionally regulated by association with multiple viral and cellular proteins. Here, we show for the first time to our knowledge that HPV16 E2 directly associates with the major capsid protein L1, independently of other viral or cellular proteins. We have mapped the L1 binding region within E2 and show that the α-2 helices within the E2 DNA-binding domain mediate L1 interaction. Using cell-based assays, we show that co-expression of L1 and E2 results in enhanced transcription and virus origin-dependent DNA replication. Upon co-expression in keratinocytes, L1 reduces nucleolar association of E2 protein, and when co-expressed with E1 and E2, L1 is partially recruited to viral replication factories. Furthermore, co-distribution of E2 and L1 was detected in the nuclei of upper suprabasal cells in stratified epithelia of HPV16 genome-containing primary human keratinocytes. Taken together, our findings suggest that the interaction between E2 and L1 is important for the regulation of E2 function during the late events of the HPV life cycle.
Collapse
Affiliation(s)
- Abida Siddiqa
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.,Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan
| | - Karen Campos Léon
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire D James
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Kashmir Highway, Islamabad 44000, Pakistan
| | - Sally Roberts
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Joanna L Parish
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
King LE, Dornan ES, Donaldson MM, Morgan IM. Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein-protein interaction. Virology 2011; 414:26-33. [PMID: 21458836 DOI: 10.1016/j.virol.2011.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/13/2010] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Human papillomavirus 16 E1 and E2 interact with cellular factors to replicate the viral genome. E2 forms homodimers and binds to 12 bp palindromic sequences adjacent to the viral origin and recruits E1 to the origin. E1 forms a di-hexameric helicase complex that replicates the viral genome. This manuscript demonstrates that E1 stabilises the E2 protein, increasing the half life in both C33a and 293 T cells respectively. This stabilisation requires a direct protein--protein interaction. In addition, the E1 protein enhances E2 transcription function in a manner that suggests the E1 protein itself can contribute to transcriptional regulation not simply by E2 stabilisation but by direct stimulation of transcription. This activation of E2 transcription is again dependent upon an interaction with E1. Overall the results suggest that in the viral life cycle, co-expression of E1 with E2 can increase E2 stability and enhance E2 function.
Collapse
Affiliation(s)
- Lauren E King
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | | | | | | |
Collapse
|
8
|
Arendt ML, Nasir L, Morgan IM. The human and canine TERT promoters function equivalently in human and canine cells. Vet Comp Oncol 2010; 8:310-6. [PMID: 21062413 DOI: 10.1111/j.1476-5829.2010.00227.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Telomerase targeted cancer gene therapy is being exploited for treatment of human cancer. The high incidence and many comparative aspects of human and canine cancer and the compliance and dedication of dog owners to treat cancer makes the canine pet population a good clinical model for investigating and developing new cancer therapeutics. Here, we report that the human telomerase promoter operates in canine cells, suggesting that human telomerase promoter-driven cancer therapy can be used to treat cancer in canines. Therefore, the canine pet population can act as a clinical model for new drug development based on telomerase therapeutics.
Collapse
Affiliation(s)
- M L Arendt
- Institute of Comparative Medicine, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
9
|
Arendt ML, Nasir L, Morgan IM. A novel two-step transcriptional activation system for gene therapy directed toward epithelial cells. Mol Cancer Ther 2010; 8:3244-54. [PMID: 19952120 DOI: 10.1158/1535-7163.mct-09-0543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The two-step transcriptional activation (TSTA) mechanism in gene therapy amplifies cell type-specific promoter activity, allowing for increased levels of gene expression in target tissues. In this system, the specific promoter drives expression of a strong transcriptional activator that binds to DNA target sequences located upstream from a second promoter controlling the expression of the therapeutic gene. The majority of previous studies have exploited a fusion between the DNA binding domain of the yeast transcriptional activator Gal4 fused to the VP16 activation domain of herpes simplex virus 1 as the transcriptional activator. In this report, an alternative to this system is described based on a fusion protein containing the DNA binding domain of the bovine papillomavirus 1 transcriptional activator E2 fused to VP16 that induces target gene expression following binding to a minimal bovine papillomavirus 4 promoter containing upstream E2 binding sites and only 3 bp of promoter sequence upstream from the TATA box. VP16-E2 is superior to Gal4-VP16 as the transcriptional activator in a TSTA system driven by either of the two potentially cancer-specific promoters telomerase RNA and telomerase reverse transcriptase in several cell lines. Results also suggest that this new system has an advantage in epithelial cells and is therefore ideal for potential targeting of carcinomas. By incorporating the TRAIL gene as a transgene in the VP16-E2 TSTA system, selective killing of telomerase-positive cells occurs. We propose that our new system should be considered in future TSTA, particularly when targeting epithelial-derived cells.
Collapse
Affiliation(s)
- Maja L Arendt
- Institute of Comparative Medicine, Division of Pathological Sciences, University of Glasgow Faculty of Veterinary Medicine, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | | | | |
Collapse
|
10
|
Haugen TH, Lace MJ, Ishiji T, Sameshima A, Anson JR, Turek LP. Cellular factors are required to activate bovine papillomavirus-1 early gene transcription and to establish viral plasmid persistence but are not required for cellular transformation. Virology 2009; 389:82-90. [PMID: 19410271 DOI: 10.1016/j.virol.2009.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/27/2009] [Accepted: 04/06/2009] [Indexed: 11/17/2022]
Abstract
Transcription from the major upstream early gene promoter, P89, of bovine papillomavirus (BPV)-1 is detectable in transfected cells lacking viral gene products yet also responds to viral E2 proteins. In contrast to human papillomaviruses (HPVs), the BPV upstream regulatory region (URR) functions as a transcriptional enhancer in epithelial cells and fibroblasts of bovine, murine or human origin. Mutations of Sp1 and/or two novel transcriptional enhancer factor (TEF)-1 sites within the 5' URR of the intact BPV-1 genome dramatically reduced P89-initiated mRNA levels, leading to decreased BPV-1 plasmid amplification and inefficient formation of transformed cell foci. However, cell lines transformed with wt or mutant BPV-1 genomes contained similar levels of unintegrated BPV-1 DNA, P89 mRNA and E2-dependent transactivation. We conclude that cellular factors necessary for activating viral early gene transcription, establishment of viral plasmid replication and cell immortalization are not required during the maintenance phase of BPV-1 infection.
Collapse
Affiliation(s)
- Thomas H Haugen
- Veterans Affairs Medical Center, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Brown C, Kowalczyk AM, Taylor ER, Morgan IM, Gaston K. P53 represses human papillomavirus type 16 DNA replication via the viral E2 protein. Virol J 2008; 5:5. [PMID: 18190682 PMCID: PMC2249571 DOI: 10.1186/1743-422x-5-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 01/11/2008] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Human papillomavirus (HPV) DNA replication can be inhibited by the cellular tumour suppressor protein p53. However, the mechanism through which p53 inhibits viral replication and the role that this might play in the HPV life cycle are not known. The papillomavirus E2 protein is required for efficient HPV DNA replication and also regulates viral gene expression. E2 represses transcription of the HPV E6 and E7 oncogenes and can thereby modulate indirectly host cell proliferation and survival. In addition, the E2 protein from HPV 16 has been shown to bind p53 and to be capable of inducing apoptosis independently of E6 and E7. RESULTS Here we use a panel of E2 mutants to confirm that mutations which block the induction of apoptosis via this E6/E7-independent pathway, have little or no effect on the induction of apoptosis by the E6/E7-dependent pathway. Although these mutations in E2 do not affect the ability of the protein to mediate HPV DNA replication, they do abrogate the repressive effects of p53 on the transcriptional activity of E2 and prevent the inhibition of E2-dependent HPV DNA replication by p53. CONCLUSION These data suggest that p53 down-regulates HPV 16 DNA replication via the E2 protein.
Collapse
Affiliation(s)
- Craig Brown
- Department of Biochemistry, School of Medical School, University of Bristol, Bristol, UK
| | - Anna M Kowalczyk
- Department of Biochemistry, School of Medical School, University of Bristol, Bristol, UK
| | - Ewan R Taylor
- Institute of Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Iain M Morgan
- Institute of Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kevin Gaston
- Department of Biochemistry, School of Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Lindel K, de Villiers EM, Burri P, Studer U, Altermatt HJ, Greiner RH, Gruber G. Impact of viral E2-gene status on outcome after radiotherapy for patients with human papillomavirus 16-positive cancer of the uterine cervix. Int J Radiat Oncol Biol Phys 2006; 65:760-5. [PMID: 16682151 DOI: 10.1016/j.ijrobp.2006.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 11/20/2022]
Abstract
PURPOSE Integration of high-risk papillomavirus DNA has been considered an important step in oncogenic progression to cervical carcinoma. Disruption of the human papillomavirus (HPV) genome within the E2 gene is frequently a consequence. This study investigated the influence of episomal viral DNA on outcome in patients with advanced cervical cancer treated with primary radiotherapy. METHODS AND MATERIALS Paraffin-embedded biopsies of 82 women with locally advanced cervical cancer could be analyzed for HPV infection by multiplex polymerase chain reaction (PCR) by use of SPF1/2 primers. E2-gene intactness of HPV-16-positive samples was analyzed in 3 separate amplification reactions by use of the E2A, E2B, E2C primers. Statistical analyses (Kaplan-Meier method; log-rank test) were performed for overall survival (OS), disease-free survival (DFS), local progression-free survival (LPFS), and distant metastases-free survival (DMFS). RESULTS Sixty-one (75%) of 82 carcinomas were HPV positive, 44 of them for HPV-16 (72%). Seventeen of the 44 HPV-16-positive tumors (39%) had an intact E2 gene. Patients with a HPV-16-positive tumor and an intact E2 gene showed a trend for a better DFS (58% vs. 38%, p = 0.06) compared with those with a disrupted E2 gene. A nonsignificant difference occurred regarding OS (87% vs. 66%, p = 0.16) and DMFS (57% vs. 48%, p = 0.15). CONCLUSION E2-gene status may be a promising new target, but more studies are required to elucidate the effect of the viral E2 gene on outcome after radiotherapy in HPV-positive tumors.
Collapse
Affiliation(s)
- Katja Lindel
- Department of Radiation Oncology and Radiotherapy, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Okoye A, Cordano P, Taylor ER, Morgan IM, Everett R, Campo MS. Human papillomavirus 16 L2 inhibits the transcriptional activation function, but not the DNA replication function, of HPV-16 E2. Virus Res 2005; 108:1-14. [PMID: 15681049 DOI: 10.1016/j.virusres.2004.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
In this study we analysed the outcome of the interaction between HPV-16 L2 and E2 on the transactivation and DNA replication functions of E2. When E2 was expressed on its own, it transactivated a number of E2-responsive promoters but co-expression of L2 led to the down-regulation of the transcription transactivation activity of the E2 protein. This repression is not mediated by an increased degradation of the E2 protein. In contrast, the expression of L2 had no effect on the ability of E2 to activate DNA replication in association with the viral replication factor E1. Deletion mutagenesis identified L2 domains responsible for binding to E2 (first 50 N-terminus amino acid residues) and down-regulating its transactivation function (residues 301-400). The results demonstrate that L2 selectively inhibits the transcriptional activation property of E2 and that there is a direct interaction between the two proteins, although this is not sufficient to mediate the transcriptional repression. The consequences of the L2-E2 interaction for the viral life cycle are discussed.
Collapse
Affiliation(s)
- A Okoye
- Division of Pathological Sciences, Institute of Comparative Medicine, Glasgow University, Garscube Estate, Glasgow G61 1QH, Scotland, UK
| | | | | | | | | | | |
Collapse
|
14
|
Taylor ER, Dornan ES, Boner W, Connolly JA, McNair S, Kannouche P, Lehmann AR, Morgan IM. The Fidelity of HPV16 E1/E2-mediated DNA Replication. J Biol Chem 2003; 278:52223-30. [PMID: 14559922 DOI: 10.1074/jbc.m308779200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human papillomaviruses (HPV) are causative agents in a variety of human diseases; for example over 99% of cervical carcinomas contain HPV DNA sequences. Often in cervical carcinoma the HPV genome is integrated into the host genome resulting in unregulated expression of the viral transforming proteins E6 and E7. Therefore viral integration is a step toward HPV-induced carcinogenesis. Integration of the HPV genome could occur following double-strand DNA breaks that could arise during viral DNA replication. We investigated the fidelity of HPV 16 E1- and E2-mediated DNA replication of non-damaged and UVC-damaged templates in a variety of cell lines with different genetic backgrounds; C33a (derived from an HPV-negative cervical carcinoma), XP30RO (deficient in the by-pass polymerase eta (poleta)), XP30eta (expressing a restored wild-type poleta), XP12RO (nucleotide excision repair defective), and MRC5 (derived from a 14-week-old human fetus). The results demonstrate that the fidelity of E1- and E2-mediated DNA replication is reflective of the genetic background in which the assays are carried out. For example, restoring poleta to the XP30 cell line results in a 3-fold drop in the number of mutants obtained following replication of a UVC-damaged template. A relatively high percentage of the mutant-replicated molecules arise as a result of genetic rearrangement. This is the first time such studies have been carried out with an HPV replication system, and the results are discussed in the context of the HPV life cycle and what is known about HPV genomes in human cancers.
Collapse
Affiliation(s)
- Ewan R Taylor
- Institute of Comparative Medicine, Department of Veterinary Pathology, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Beniston RG, Campo MS. Quercetin elevates p27(Kip1) and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1. Oncogene 2003; 22:5504-14. [PMID: 12934110 DOI: 10.1038/sj.onc.1206848] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous work with primary bovine fibroblasts demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 and G2/M, in correlation with p53 activation. The expression of bovine papillomavirus type 4 (BPV-4) E7 overcame this arrest and lead to the development of tumorigenic cells lines (Beniston et al., 2001). Given the possible link between papillomavirus infection, bracken fern in the diet and cancer of the upper gastrointestinal (GI) tract in humans, we investigated whether a similar situation would occur in human cells transformed by human papillomavirus type 16 (HPV-16) oncoproteins. Quercetin arrested primary human foreskin keratinocytes in G1. Arrest was linked to an elevation of the cyclin-dependent kinase inhibitor (cdki) p27(Kip1). Expression of the HPV16 E6 and E7 oncoproteins in transformed cells failed to abrogate cell cycle arrest. G1 arrest in the transformed cells was also linked to an increase of p27(Kip1) with a concomitant reduction of cyclin E-associated kinase activity. This elevation of p27(Kip1) was due not only to increased protein half-life, but also to increased mRNA transcription.
Collapse
Affiliation(s)
- Richard Garry Beniston
- Institute of Comparative Medicine, Glasgow University Veterinary School, Garscube Estate, Glasgow G61 1QH, Scotland, UK
| | | |
Collapse
|
16
|
Taylor ER, Boner W, Dornan ES, Corr EM, Morgan IM. UVB irradiation reduces the half-life and transactivation potential of the human papillomavirus 16 E2 protein. Oncogene 2003; 22:4469-77. [PMID: 12881703 DOI: 10.1038/sj.onc.1206746] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human papillomaviruses (HPV) are causative agents of human cancers including those of the cervix and also of the head and neck; HPV16 is the most commonly found type in these diseases. The viral E2 protein regulates transcription from the viral genome by interacting with DNA-binding sequences in the HPV transcriptional control region; it also regulates replication by interacting with and recruiting the HPV replication factor E1 to the viral origin. Therefore, E2 is essential for the viral life cycle. The E2 protein interacts with several proteins involved in the cellular response to DNA damage including p53, TopBP1, and PARP. We therefore set out to establish whether DNA-damaging agents can regulate E2 activity. Here we show that UVB irradiation downregulates transcriptional activity of both HPV16 and HPV8 E2, while hydroxyurea and etoposide do not. This downregulation of E2 activity is independent of p53 function as it occurs in p53 wild type and null cell types as well as in the presence of functional HPV16 E6 that degrades p53. Using stable cell lines expressing E2 we show that this downregulation of E2 function by UVB is due to a reduction of the E2 protein half-life. The identification of the pathway(s) through which UVB downregulates E2 transcriptional activity and protein levels will present a novel target for the treatment of HPV-related diseases.
Collapse
Affiliation(s)
- Ewan R Taylor
- Department of Veterinary Pathology, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, Scotland, UK
| | | | | | | | | |
Collapse
|
17
|
Boner W, Morgan IM. Novel cellular interacting partners of the human papillomavirus 16 transcription/replication factor E2. Virus Res 2002; 90:113-8. [PMID: 12457967 DOI: 10.1016/s0168-1702(02)00145-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human papillomaviruses (HPVs) are causative agents in a number of human diseases. HPV can be divided into two groups: low risk that cause diseases such as genital warts, and high risk that cause ano-genital cancers. Of the high-risk group, HPV16 is the most commonly found in cervical cancer. All HPV encode an E2 protein and this protein regulates transcription from, and replication of, the viral genome making it essential for the viral life cycle. In order to function E2 must interact with cellular proteins; identification of these cellular partners will provide targets for disruption of the viral life cycle and will also provide insights into the processes of transcription and replication. To identify the cellular interacting partners for HPV16 E2, we carried out a yeast two-hybrid screen with the amino-terminus of E2 that is essential for mediating transcription and replication. Here we describe how this screen was carried out and detail the interacting partners that were identified; these include the proteins TopBP1, RACK1, POMP, p27(BBP), ODC antizyme, and Delta-adaptin. Several of these partners have characteristics that make them ideal candidates for mediating E2 function.
Collapse
Affiliation(s)
- Winifred Boner
- Department of Veterinary Pathology, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Bearsden Road, G61 1QH, Glasgow, UK
| | | |
Collapse
|
18
|
Boner W, Taylor ER, Tsirimonaki E, Yamane K, Campo MS, Morgan IM. A Functional interaction between the human papillomavirus 16 transcription/replication factor E2 and the DNA damage response protein TopBP1. J Biol Chem 2002; 277:22297-303. [PMID: 11934899 DOI: 10.1074/jbc.m202163200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human papillomavirus (HPV) transcription/replication factor E2 is essential for the life cycle of HPVs. E2 protein binds to DNA target sequences in the viral long control regions to regulate transcription of the viral genome. It also enhances viral DNA replication by interacting with the viral replication factor E1 and recruiting it to the origin of replication and may also play a more direct role in replication. The cellular proteins with which E2 interacts to carry out these functions are largely unknown. To identify these proteins a yeast two-hybrid screen was carried out with the transcription/replication domain of HPV16 E2. This screen identified several candidate interacting partners for E2 including TopBP1 (topoisomerase II beta-binding protein 1). TopBP1 has eight BRCA1 carboxyl-terminal domains that are found in proteins regulating the DNA damage response, transcription, and replication. Here we demonstrate that HPV16 E2 and TopBP1 interact in vitro and in vivo and that TopBP1 can enhance the ability of E2 to activate transcription and replication. This is the first time that TopBP1 has been shown to function as a transcriptional coactivator and that E2 interacts with TopBP1. Removal of the amino-terminal domain of TopBP1 abolishes coactivation of transcription and replication. This interaction may have functional consequences upon the viral life cycle.
Collapse
Affiliation(s)
- Winifred Boner
- Institute of Comparative Medicine, Department of Veterinary Pathology, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, Scotland
| | | | | | | | | | | |
Collapse
|
19
|
Vance KW, Campo MS, Morgan IM. A novel silencer element in the bovine papillomavirus type 4 promoter represses the transcriptional response to papillomavirus E2 protein. J Virol 2001; 75:2829-38. [PMID: 11222708 PMCID: PMC115909 DOI: 10.1128/jvi.75.6.2829-2838.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The long control regions (LCRs) of mucosal epitheliotropic papillomaviruses have similar organizations: a promoter region, an enhancer region, and a highly conserved distribution of E2 DNA binding sites (C. Desaintes and C. Demeret, Semin. Cancer Biol. 7:339--347, 1996). The enhancer of these viruses is epithelial cell specific, as it fails to activate transcription from heterologous promoters in nonepithelial cell types (B. Gloss, H. U. Bernard, K. Seedorf, and G. Klock, EMBO J. 6:3735--3743, 1987). Using the bovine papillomavirus type 4 (BPV-4) LCR and a bovine primary cell system, we have shown previously that a level of epithelial specificity resides in a papillomavirus promoter region. The BPV-4 promoter shows an enhanced response to transcriptional activators in epithelial cells compared with that of fibroblasts (K. W. Vance, M. S. Campo, and I. M. Morgan, J. Biol. Chem. 274:27839--27844, 1999). A chimeric lcr/tk promoter suggests that the upstream BPV-4 promoter region determines the cell-type-selective response of this promoter in fibroblasts and keratinocytes. Promoter deletion analysis identified two novel repressor elements that are, at least in part, responsible for mediating the differential response of this promoter to upstream activators in fibroblasts and keratinocytes. One of these elements, promoter repressor element 2 (PRE-2), is conserved in position and sequence in the related mucosal epitheliotropic papillomaviruses, BPV-3 and BPV-6. PRE-2 functions in cis to repress the basal activity of the simian virus 40 promoter and binds a specific protein complex. We identify the exact nucleotides necessary for binding and correlate loss of binding with loss of transcriptional repression. We also incorporate these mutations into the BPV-4 promoter and demonstrate an enhanced response of the mutated promoter to E2 in fibroblasts. The DNA binding protein in the detected complex is shown to have a molecular mass of approximately 50 kDa. The PRE-2 binding protein represents a novel transcriptional repressor and regulator of papillomavirus transcription.
Collapse
Affiliation(s)
- K W Vance
- Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, Scotland
| | | | | |
Collapse
|