1
|
Kennelly C, Prindle A. Substrate identification of putative NCS1 and NCS2 nucleobase transporters in Pseudomonas aeruginosa. mBio 2024; 15:e0243424. [PMID: 39475230 PMCID: PMC11633122 DOI: 10.1128/mbio.02434-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can salvage nucleobases from the environment to conserve nutrients that would otherwise be spent on de novo nucleotide biosynthesis. However, little is known regarding the substrate specificity of the 13 putative nucleobase transporters in P. aeruginosa. Here, using a combination of genetic and chemical approaches, we report substrate identifications for 10 putative nucleobase transporters in P. aeruginosa. Specifically, we individually expressed each transporter in a genetic background lacking all 13 putative nucleobase transporters and quantified growth on a panel of 10 nucleobases as sole nitrogen sources. We confirmed these expression-based substrate identifications using targeted genetic knockouts. In a complementary approach, we utilized four toxic nucleobase antimetabolites to characterize antimicrobial activity in these same strains. We identified the sole allantoin transporter as well as transporters for guanine, xanthine, uric acid, cytosine, thymine, uracil, and dihydrouracil. Furthermore, we associated at least five nucleobase transporters with hypoxanthine, which has been recently reported to be an antibiofilm cue in P. aeruginosa. These results provide an initial characterization of the putative nucleobase transporters in P. aeruginosa, significantly advancing our understanding of nucleobase transport in this clinically relevant organism. IMPORTANCE Pseudomonas aeruginosa is a frequently multidrug-resistant opportunistic pathogen and one of the most common causes of healthcare-acquired infections. While nucleobases are known to support growth in nutrient-limited conditions, recent work showed that adenine and hypoxanthine can also decrease P. aeruginosa biofilm formation by disrupting c-di-GMP metabolism. Thus, nucleobase transport may be relevant to multiple aspects of P. aeruginosa biology and pathogenesis. However, there is currently little known about the transport of nucleobases in P. aeruginosa. Our work reports initial substrate identifications for 10 putative nucleobase transporters in P. aeruginosa, providing new tools to address previously difficult-to-test hypotheses relating to nucleobase transport in this organism.
Collapse
Affiliation(s)
- Corey Kennelly
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Chicago, Illinois, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Chicago, Illinois, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Kennelly C, Tran P, Prindle A. Environmental purines decrease Pseudomonas aeruginosa biofilm formation by disrupting c-di-GMP metabolism. Cell Rep 2024; 43:114154. [PMID: 38669142 PMCID: PMC11197132 DOI: 10.1016/j.celrep.2024.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Cyclic di-guanosine monophosphate (c-di-GMP) is a bacterial second messenger that governs the lifestyle switch between planktonic and biofilm states. While substantial investigation has focused on the proteins that produce and degrade c-di-GMP, less attention has been paid to the potential for metabolic control of c-di-GMP signaling. Here, we show that micromolar levels of specific environmental purines unexpectedly decrease c-di-GMP and biofilm formation in Pseudomonas aeruginosa. Using a fluorescent genetic reporter, we show that adenosine and inosine decrease c-di-GMP even when competing purines are present. We confirm genetically that purine salvage is required for c-di-GMP decrease. Furthermore, we find that (p)ppGpp prevents xanthosine and guanosine from producing an opposing c-di-GMP increase, reinforcing a salvage hierarchy that favors c-di-GMP decrease even at the expense of growth. We propose that purines can act as a cue for bacteria to shift their lifestyle away from the recalcitrant biofilm state via upstream metabolic control of c-di-GMP signaling.
Collapse
Affiliation(s)
- Corey Kennelly
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Peter Tran
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
3
|
Lyu Z, Villanueva P, O’Malley L, Murphy P, Augenstreich J, Briken V, Singh A, Ling J. Genome-wide screening reveals metabolic regulation of stop-codon readthrough by cyclic AMP. Nucleic Acids Res 2023; 51:9905-9919. [PMID: 37670559 PMCID: PMC10570021 DOI: 10.1093/nar/gkad725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Translational fidelity is critical for microbial fitness, survival and stress responses. Much remains unknown about the genetic and environmental control of translational fidelity and its single-cell heterogeneity. In this study, we used a high-throughput fluorescence-based assay to screen a knock-out library of Escherichia coli and identified over 20 genes critical for stop-codon readthrough. Most of these identified genes were not previously known to affect translational fidelity. Intriguingly, we show that several genes controlling metabolism, including cyaA and crp, enhance stop-codon readthrough. CyaA catalyzes the synthesis of cyclic adenosine monophosphate (cAMP). Combining RNA sequencing, metabolomics and biochemical analyses, we show that deleting cyaA impairs amino acid catabolism and production of ATP, thus repressing the transcription of rRNAs and tRNAs to decrease readthrough. Single-cell analyses further show that cAMP is a major driver of heterogeneity in stop-codon readthrough and rRNA expression. Our results highlight that carbon metabolism is tightly coupled with stop-codon readthrough.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Patricia Villanueva
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Liam O’Malley
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Parker Murphy
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering and Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Wan L, Zhu Y, Chen G, Luo G, Zhang W, Mu W. Efficient Production of 2'-Fucosyllactose from l-Fucose via Self-Assembling Multienzyme Complexes in Engineered Escherichia coli. ACS Synth Biol 2021; 10:2488-2498. [PMID: 34415729 DOI: 10.1021/acssynbio.1c00102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2'-Fucosyllactose (2'-FL) has been widely used as a nutritional additive in infant formula due to its multifarious nutraceutical and pharmaceutical functions in neonate health. As such, it is essential to develop an efficient and extensive microbial fermentation platform to cater to the needs of the 2'-FL market. In this study, a spatial synthetic biology strategy was employed to promote 2'-FL biosynthesis in recombinant Escherichia coli. First, the salvage pathway for 2'-FL production from l-fucose and lactose was constructed by introducing a bifunctional enzyme l-fucokinase/GDP-l-fucose pyrophosphorylase (Fkp) derived from Bacteroides fragilis and an α-1,2-fucosyltransferase (FutC) derived from Helicobacter pylori into engineered E. coli BL21(DE3). Next, the endogenous genes involved in the degradation and shunting of the substrate and key intermediate were inactivated to improve the availability of precursors for 2'-FL biosynthesis. Moreover, to further improve the yield and titer of 2'-FL, a short peptide pair (RIAD-RIDD) was used to form self-assembling multienzyme complexes in vivo. The spatial localization of peptides and stoichiometry of enzyme assemblies were subsequently optimized to further improve 2'-FL production. Finally, cofactor regeneration was also considered to alleviate the potential cofactor deficiency and redox flux imbalance in the biocatalysis process. Fed-batch fermentation of the final WLS20 strain accumulated 30.5 g/L extracellular 2'-FL with the yield and productivity of 0.661 mol/mol fucose and 0.48 g/L/h, respectively. This research has demonstrated that the application of spatial synthetic biology and metabolic engineering strategies can dramatically enlarge the titer and yield of 2'-FL biosynthesis in engineered E. coli.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Geng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Wang B, Grant RA, Laub MT. ppGpp Coordinates Nucleotide and Amino-Acid Synthesis in E. coli During Starvation. Mol Cell 2020; 80:29-42.e10. [PMID: 32857952 DOI: 10.1016/j.molcel.2020.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.
Collapse
Affiliation(s)
- Boyuan Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Expression and purification of the 5'-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl Microbiol Biotechnol 2020; 104:2957-2972. [PMID: 32040605 PMCID: PMC7062661 DOI: 10.1007/s00253-020-10428-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 11/05/2022]
Abstract
5’-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their corresponding nucleosides plus phosphate. In the present study, to search for new genes encoding 5′-nucleotidases specific for purine nucleotides in industrially important Bacillus species, “shotgun” cloning and the direct selection of recombinant clones grown in purine nucleosides at inhibitory concentrations were performed in the Escherichia coli GS72 strain, which is sensitive to these compounds. As a result, orthologous yitU genes from Bacillus subtilis and Bacillus amyloliquefaciens, whose products belong to the ubiquitous haloacid dehalogenase superfamily (HADSF), were selected and found to have a high sequence similarity of 87%. B. subtilis YitU was produced in E. coli as an N-terminal hexahistidine-tagged protein, purified and biochemically characterized as a soluble 5′-nucleotidase with broad substrate specificity with respect to various deoxyribo- and ribonucleoside monophosphates: dAMP, GMP, dGMP, CMP, AMP, XMP, IMP and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (AICAR-P). However, the preferred substrate for recombinant YitU was shown to be flavin mononucleotide (FMN). B. subtilis and B. amyloliquefaciens yitU overexpression increased riboflavin (RF) and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) accumulation and can be applied to breed highly performing RF- and AICAR-producing strains.
Collapse
|
7
|
Yang L, Ru Y, Cai X, Yin Z, Liu X, Xiao Y, Zhang H, Zheng X, Wang P, Zhang Z. MoImd4 mediates crosstalk between MoPdeH-cAMP signalling and purine metabolism to govern growth and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2019; 20:500-518. [PMID: 30426699 PMCID: PMC6422694 DOI: 10.1111/mpp.12770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we identified MoImd4 as an inosine-5'-monophosphate dehydrogenase (IMPDH) homologue that interacts with MoPdeH. Targeted deletion of MoIMD4 resulted in reduced de novo purine biosynthesis and growth, as well as attenuated pathogenicity, which were suppressed by exogenous xanthosine monophosphate (XMP). Treatment with mycophenolic acid (MPA), which specifically inhibits MoImd4 activity, resulted in reduced growth and virulence attenuation. Intriguingly, further analysis showed that MoImd4 promotes the phosphodiesterase activity of MoPdeH, thereby decreasing intracellular cAMP levels, and MoPdeH also promotes the IMPDH activity of MoImd4. Our studies revealed the presence of a novel crosstalk between cAMP regulation and purine biosynthesis in M. oryzae, and indicated that such a link is also important in the pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Lina Yang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yanyan Ru
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xingjia Cai
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yuhan Xiao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
8
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
9
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
10
|
Zhai Y, Han D, Pan Y, Wang S, Fang J, Wang P, Liu XW. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering. Enzyme Microb Technol 2014; 69:38-45. [PMID: 25640723 DOI: 10.1016/j.enzmictec.2014.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023]
Abstract
Guanosine 5'-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5'-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue.
Collapse
Affiliation(s)
- Yafei Zhai
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Donglei Han
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Ying Pan
- The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Shuaishuai Wang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China; The State Key Laboratory of Microbial Technology and School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Peng Wang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xian-wei Liu
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250100, People's Republic of China.
| |
Collapse
|
11
|
Purine metabolite and energy charge analysis of Trypanosoma brucei cells in different growth phases using an optimized ion-pair RP-HPLC/UV for the quantification of adenine and guanine pools. Exp Parasitol 2014; 141:28-38. [PMID: 24657574 DOI: 10.1016/j.exppara.2014.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/12/2014] [Accepted: 03/04/2014] [Indexed: 11/21/2022]
Abstract
Human African Trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei. Although trypanosomes are well-studied model organisms, only little is known about their adenine and guanine nucleotide pools. Besides being building blocks of RNA and DNA, these nucleotides are also important modulators of diverse biochemical cellular processes. Adenine nucleotides also play an important role in the regulation of metabolic energy. The energetic state of cells is evaluated by the energy charge which gives information about how much energy is available in form of high energy phosphate bonds of adenine nucleotides. A sensitive and reproducible ion-pair RP-HPLC/UV method was developed and optimized, allowing the quantification of guanine and adenine nucleosides/nucleotides in T. brucei. With this method, the purine levels and their respective ratios were investigated in trypanosomes during logarithmic, stationary and senescent growth phases. Results of this study showed that all adenine and guanine purines under investigation were in the low mM range. The energy charge was found to decrease from logarithmic to static and to senescent phase whereas AMP/ATP, ADP/ATP and GDP/GTP ratios increased in the same order. In addition, the AMP/ATP ratio varied as the square of the ADP/ATP ratio, indicating AMP to be the key energy sensor molecule in trypanosomes.
Collapse
|
12
|
XIE YP, TIAN J, GAO P, XU GUOW, FEI X, WANG Y. Determination of Nucleosides in Escherichia coli by Rapid Resolution Liquid Chromatography–Tandem Quadrupole Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013; 41:36-41. [DOI: 10.1016/s1872-2040(13)60622-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lee WH, Shin SY, Kim MD, Han NS, Seo JH. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli. Appl Microbiol Biotechnol 2011; 93:2327-34. [PMID: 22159740 DOI: 10.1007/s00253-011-3776-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/09/2011] [Accepted: 11/21/2011] [Indexed: 12/01/2022]
Abstract
Guanosine 5'-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5'-diphosphate (GDP)-L-fucose. In this study, improvement of GDP-L-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-L-fucose. The effects of overexpression of inosine 5'-monophosphate (IMP) dehydrogenase, guanosine 5'-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine-inosine kinase (Gsk) on GDP-L-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-L-fucose production. Maximum GDP-L-fucose concentration of 305.5 ± 5.3 mg l(-1) was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes. Such an enhancement of GDP-L-fucose production could be due to the increase in the intracellular level of GMP.
Collapse
Affiliation(s)
- Won-Heong Lee
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
14
|
Pimkin M, Pimkina J, Markham GD. A regulatory role of the Bateman domain of IMP dehydrogenase in adenylate nucleotide biosynthesis. J Biol Chem 2009; 284:7960-9. [PMID: 19153081 DOI: 10.1074/jbc.m808541200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bateman domain (CBS subdomain) of IMP dehydrogenase (IMPDH), a rate-limiting enzyme of the de novo GMP biosynthesis, is evolutionarily conserved but has no established function. Deletion of the Bateman domain has no effect on the in vitro IMPDH activity. We report that in vivo deletion of the Bateman domain of IMPDH in Escherichia coli (guaB(DeltaCBS)) sensitizes the bacterium to growth arrest by adenosine and inosine. These nucleosides exert their growth inhibitory effect via a dramatic increase in the intracellular adenylate nucleotide pool, which results in the enhanced allosteric inhibition of PRPP synthetase and consequently a PRPP deficit. The ensuing starvation for pyrimidine nucleotides culminates in growth arrest. Thus, deletion of the Bateman domain of IMPDH derepresses the synthesis of AMP from IMP. The growth inhibitory effect of inosine can be rescued by second-site suppressor mutations in the genes responsible for the conversion of inosine to AMP (gsk, purA, and purB) as well as by the prsA1 allele, which encodes a PRPP synthetase that is insensitive to allosteric inhibition by adenylate nucleotides. Importantly, the guaB(DeltaCBS) phenotype can be complemented in trans by a mutant guaB allele, which encodes a catalytically disabled IMPDH(C305A) protein containing an intact Bateman domain. We conclude that the Bateman domain of IMPDH is a negative trans-regulator of adenylate nucleotide synthesis, and that this role is independent of the catalytic function of IMPDH in the de novo GMP biosynthesis.
Collapse
Affiliation(s)
- Maxim Pimkin
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
15
|
Pimkin M, Markham GD. The CBS subdomain of inosine 5'-monophosphate dehydrogenase regulates purine nucleotide turnover. Mol Microbiol 2008; 68:342-59. [PMID: 18312263 DOI: 10.1111/j.1365-2958.2008.06153.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyses the rate-limiting step in guanine nucleotide biosynthesis. IMPDH has an evolutionary conserved CBS subdomain of unknown function. The subdomain can be deleted without impairing the in vitro IMPDH catalytic activity and is the site for mutations associated with human retinitis pigmentosa. A guanine-prototrophic Escherichia coli strain, MP101, was constructed with the subdomain sequence deleted from the chromosomal gene for IMPDH. The ATP content was substantially elevated in MP101 whereas the GTP content was slighty reduced. The activities of IMPDH, adenylosuccinate synthetase and GMP reductase were two to threefold lower in MP101 crude extracts compared with the BW25113 wild-type strain. Guanine induced a threefold reduction in the MP101 ATP pool and a fourfold increase in the GTP pool within 10 min of addition to growing cells; this response does not result from the reduced IMPDH activity or starvation for guanylates. In vivo kinetic analysis using 14-C tracers and 33-P pulse-chasing revealed mutation-associated changes in purine nucleotide fluxes and turnover rates. We conclude that the CBS subdomain of IMPDH may coordinate the activities of the enzymes of purine nucleotide metabolism and is essential for maintaining the normal ATP and GTP pool sizes in E. coli.
Collapse
Affiliation(s)
- Maxim Pimkin
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
16
|
Lethal accumulation of guanylic nucleotides in Saccharomyces cerevisiae HPT1-deregulated mutants. Genetics 2008; 178:815-24. [PMID: 18245832 DOI: 10.1534/genetics.107.083295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Guanylic nucleotide biosynthesis is a conserved and highly regulated process. Drugs reducing GMP synthesis affect the immunological response and mutations enabling guanylic-derivative recycling lead to severe mental retardation. While the effects of decreased GMP synthesis have been well documented, the consequences of GMP overproduction in eukaryotes are poorly understood. In this work, we selected and characterized several mutations making yeast hypoxanthine-guanine phosphoribosyltransferase insensitive to feedback inhibition by GMP. In these mutants, accumulation of guanylic nucleotides can be triggered by addition of extracellular guanine. We show that such an accumulation is highly toxic for yeast cells and results in arrest of proliferation and massive cell death. This growth defect could be partially suppressed by overexpression of Rfx1p, a transcriptional repressor of the DNA damage response pathway. Importantly, neither guanylic nucleotide toxicity nor its suppression by Rfx1p was associated with an alteration of forward mutation frequency.
Collapse
|
17
|
A new function for the Bacillus PbuE purine base efflux pump: efflux of purine nucleosides. Res Microbiol 2007; 158:659-65. [PMID: 17935948 DOI: 10.1016/j.resmic.2007.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/09/2007] [Accepted: 08/14/2007] [Indexed: 11/21/2022]
Abstract
The pbuE (ydhL) gene from Bacillus subtilis is known to encode the purine base efflux pump, and its expression is controlled by an adenine-dependent riboswitch. We cloned the pbuE gene from Bacillus amyloliquefaciens and examined gene expression by its own cis-acting regulatory elements in Escherichia coli. Regulation of pbuE expression, previously found in B. subtilis, was retained in this heterologous expression: it was induced by adenine and activated by a mutation in the 5' untranslated region, which disrupted transcription termination. This observation supports the model that the adenine-dependent riboswitch directly regulates pbuE expression, without requiring additional factors. Overexpression of the PbuE pump conferred upon the E. coli strain resistance to higher concentrations of inosine, adenosine and guanosine, and increased exogenous inosine accumulation by E. coli cells deficient in purine nucleoside phosphorylase. Overexpression of the PbuE pump also enhanced hypoxanthine excretion by the E. coli hypoxanthine-producing strain and inosine excretion both by the E. coli and B. amyloliquefaciens nucleoside-producing strains. Thus, for the first time, we obtained direct evidence for the involvement of PbuE in efflux of not only purine bases, but also purine ribonucleosides. A possible new role for the pump in cell physiology is discussed.
Collapse
|
18
|
Gronskiy SV, Zakataeva NP, Vitushkina MV, Ptitsyn LR, Altman IB, Novikova AE, Livshits VA. The yicM (nepI) gene of Escherichia coli encodes a major facilitator superfamily protein involved in efflux of purine ribonucleosides. FEMS Microbiol Lett 2005; 250:39-47. [PMID: 16040204 DOI: 10.1016/j.femsle.2005.06.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 06/15/2005] [Accepted: 06/21/2005] [Indexed: 11/22/2022] Open
Abstract
The yicM gene of Escherichia coli was found by selection for resistance to 6-mercaptopurine. Translation and transcription initiation sites of yicM were determined. Overexpression of yicM increased resistance of sensitive cells to inosine and guanosine, decreased E. coli growth rate in medium containing these ribonucleosides as the sole carbon source, led to inosine accumulation by the E. coli strain deficient in purine nucleoside phosphorylase and enhanced the rate of inosine excretion by an inosine-producing strain. These results suggest that yicM encodes a purine ribonucleoside exporter and we have accordingly renamed it nepI (for 'nucleoside efflux permease-inosine').
Collapse
Affiliation(s)
- Sergey V Gronskiy
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny Proezd, b.1, Moscow 117545, Russia
| | | | | | | | | | | | | |
Collapse
|
19
|
Hunt C, Gillani N, Farone A, Rezaei M, Kline PC. Kinetic isotope effects of nucleoside hydrolase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:140-9. [PMID: 16027052 DOI: 10.1016/j.bbapap.2005.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/01/2005] [Accepted: 06/02/2005] [Indexed: 11/25/2022]
Abstract
rihC is one of a group of three ribonucleoside hydrolases found in Escherichia coli (E. coli). The enzyme catalyzes the hydrolysis of selected nucleosides to ribose and the corresponding base. A family of Vmax/Km kinetic isotope effects using uridine labeled with stable isotopes, such as 2H, 13C, and 15N, were determined by liquid chromatography/mass spectrometry (LC/MS). The kinetic isotope effects were 1.012+/-0.006, 1.027+/-0.005, 1.134+/-0.007, 1.122+/-0.008, and 1.002+/-0.004 for [1'-13C], [1-15N], [1'-2H], [2'-2H], and [5'-2H2] uridine, respectively. A transition state based upon a bond-energy bond-order vibrational analysis (BEBOVIB) of the observed kinetic isotope effects is proposed. The main features of this transition state are activation of the heterocyclic base by protonation of/or hydrogen bonding to O2, an extensively broken C-N glycosidic bond, formation of an oxocarbenium ion in the ribose ring, C3'-exo ribose ring conformation, and almost no bond formation to the attacking nucleophile. The proposed transition state for the prokaryotic E. coli nucleoside hydrolase is compared to that of a similar enzyme isolated from Crithidia fasciculata (C. fasciculata).
Collapse
Affiliation(s)
- Cindy Hunt
- Department of Chemistry, Middle Tennessee State University, Box 68, Murfreesboro, TN 37132, USA
| | | | | | | | | |
Collapse
|
20
|
Castellanos M, Wilson DB, Shuler ML. A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc Natl Acad Sci U S A 2004; 101:6681-6. [PMID: 15090651 PMCID: PMC404105 DOI: 10.1073/pnas.0400962101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Indexed: 12/27/2022] Open
Abstract
A more complete understanding of the relationship of cell physiology to genomic structure is desirable. Because of the intrinsic complexity of biological organisms, only the simplest cells will allow complete definition of all components and their interactions. The theoretical and experimental construction of a minimal cell has been suggested as a tool to develop such an understanding. Our ultimate goal is to convert a "coarse-grain" lumped parameter computer model of Escherichia coli into a genetically and chemically detailed model of a "minimal cell." The base E. coli model has been converted into a generalized model of a heterotrophic bacterium. This coarse-grain minimal cell model is functionally complete, with growth rate, composition, division, and changes in cell morphology as natural outputs from dynamic simulations where only the initial composition of the cell and of the medium are specified. A coarse-grain model uses pseudochemical species (or modules) that are aggregates of distinct chemical species that share similar chemistry and metabolic dynamics. This model provides a framework in which these modules can be "delumped" into chemical and genetic descriptions while maintaining connectivity to all other functional elements. Here we demonstrate that a detailed description of nucleotide precursors transport and metabolism is successfully integrated into the whole-cell model. This nucleotide submodel requires fewer (12) genes than other theoretical predictions in minimal cells. The demonstration of modularity suggests the possibility of developing modules in parallel and recombining them into a fully functional chemically and genetically detailed model of a prokaryote cell.
Collapse
Affiliation(s)
- M. Castellanos
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| | - D. B. Wilson
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| | - M. L. Shuler
- School of Chemical and Biomolecular Engineering and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-5201
| |
Collapse
|
21
|
Fisher DI, Safrany ST, Strike P, McLennan AG, Cartwright JL. Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate. J Biol Chem 2002; 277:47313-7. [PMID: 12370170 DOI: 10.1074/jbc.m209795200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A total of 17 Nudix hydrolases were tested for their ability to hydrolyze 5-phosphoribosyl 1-pyrophosphate (PRPP). All 11 enzymes that were active toward dinucleoside polyphosphates with 4 or more phosphate groups as substrates were also able to hydrolyze PRPP, whereas the 6 that could not and that have coenzyme A, NDP-sugars, or pyridine nucleotides as preferred substrates did not degrade PRPP. The products of hydrolysis were ribose 1,5-bisphosphate and P(i). Active PRPP pyrophosphatases included the diphosphoinositol polyphosphate phosphohydrolase (DIPP) subfamily of Nudix hydrolases, which also degrade the non-nucleotide diphosphoinositol polyphosphates. K(m) and k(cat) values for PRPP hydrolysis for the Deinococcus radiodurans DR2356 (di)nucleoside polyphosphate hydrolase, the human diadenosine tetraphosphate hydrolase, and human DIPP-1 (diadenosine hexaphosphate and diphosphoinositol polyphosphate hydrolase) were 1 mm and 1.5 s(-1), 0.13 mm and 0.057 s(-1), and 0.38 mm and 1.0 s(-1), respectively. Active site mutants of the Caenorhabditis elegans diadenosine tetraphosphate hydrolase had no activity, confirming that the same active site is responsible for nucleotide and PRPP hydrolysis. Comparison of the specificity constants for nucleotide, diphosphoinositol polyphosphate, and PRPP hydrolysis suggests that PRPP is a significant substrate for the D. radiodurans DR2356 enzyme and for the DIPP subfamily. In the latter case, generation of the glycolytic activator ribose 1,5-bisphosphate may be a new function for these enzymes.
Collapse
Affiliation(s)
- David I Fisher
- Cell Regulation and Signalling Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Petersen C, Møller LB. The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. Substrate specificity, gene expression, and regulation. J Biol Chem 2001; 276:884-94. [PMID: 11027694 DOI: 10.1074/jbc.m008300200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyrimidine-requiring cdd mutants of Escherichia coli deficient in cytidine deaminase utilize cytidine as a pyrimidine source by an alternative pathway. This has been presumed to involve phosphorylation of cytidine to CMP by cytidine/uridine kinase and subsequent hydrolysis of CMP to cytosine and ribose 5-phosphate by a putative CMP hydrolase. Here we show that cytidine, in cdd strains, is converted directly to cytosine and ribose by a ribonucleoside hydrolase encoded by the previously uncharacterized gene ybeK, which we have renamed rihA. The RihA enzyme is homologous to the products of two unlinked genes, yeiK and yaaF, which have been renamed rihB and rihC, respectively. The RihB enzyme was shown to be a pyrimidine-specific ribonucleoside hydrolase like RihA, whereas RihC hydrolyzed both pyrimidine and purine ribonucleosides. The physiological function of the ribonucleoside hydrolases in wild-type E. coli strains is enigmatic, as their activities are paralleled by the phosphorolytic activities of the nucleoside phosphorylases, and a triple mutant lacking all three hydrolytic activities grew normally. Furthermore, enzyme assays and lacZ gene fusion analysis indicated that rihB was essentially silent unless activated by mutation, whereas rihA and rihC were poorly expressed in glucose medium due to catabolite repression.
Collapse
Affiliation(s)
- C Petersen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK1307 Copenhagen K, Denmark.
| | | |
Collapse
|
23
|
Petersen C, Møller LB. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 2000; 261:289-98. [PMID: 11167016 DOI: 10.1016/s0378-1119(00)00509-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have isolated and characterized a copper sensitive Escherichia coli mutant that is deficient in the copper transporting P-type ATPase encoded by the copA gene (previously ybaR). Measurements of uptake and efflux of 64Cu by wild-type and mutant cells implicated the CopA protein in copper efflux from the cytoplasm, and further demonstrated that cell-associated copper in intact E. coli cells is distributed between two kinetically distinguishable pools, the ratio of which was dramatically disturbed by the copA mutation. Using a copA-lacZ gene fusion the copA promoter was found to be specifically induced by copper, and this induction was shown to be dependent on a MerR-like transcriptional activator encoded by a previously uncharacterized gene, copR (previously ybbI). In the copA deficient background the copA-lacZ fusion was super induced to very high levels even in the absence of copper addition to the medium, and this induction was dependent on CopR. These results indicated that the cytoplasmic copper concentration was dramatically increased in the copA mutant, in agreement with the 64Cu uptake experiments. Moreover, they implied, that the copper concentration in wild type cells is determined primarily by the CopA efflux pump, while copper is taken up by an essentially constitutive mechanism.
Collapse
Affiliation(s)
- C Petersen
- Institute of Molecular Biology, University of Copenhagen, Department of Biological Chemistry, Sølvgade 83H, DK1307 K, Copenhagen, Denmark.
| | | |
Collapse
|
24
|
Petersen C, Møller LB. Invariance of the nucleoside triphosphate pools of Escherichia coli with growth rate. J Biol Chem 2000; 275:3931-5. [PMID: 10660546 DOI: 10.1074/jbc.275.6.3931] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP and GTP pools of Escherichia coli have recently been reported to increase approximately 10-fold with increasing growth rates in the range from 0.4 to 1.4 generations/hour (Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L., and Gourse, R. L. (1997) Science 278, 2092-2097). Moreover, it was proposed that this variation of the nucleotide pools, particularly the ATP pool, might be responsible for the well known growth rate-dependent regulation of rRNA synthesis in E. coli. To test this hypothesis we have measured the nucleoside triphosphate pools as a function of growth rate for several E. coli strains. We found that the size of all four RNA precursor pools are essentially invariant with growth rate, in the range from 0.5 to 2.3 generations/hour. Nevertheless we observed the expected growth rate-dependent increase of RNA accumulation in these strains. In light of these results, it seems unlikely that nucleotide pool variations should be responsible for the growth rate-dependent regulation of rRNA synthesis.
Collapse
Affiliation(s)
- C Petersen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K, Denmark
| | | |
Collapse
|