1
|
Chen H, Chen S, Tang Y, Ying Y, Wang S, Zhu Y, Wang Y, Ge RS, Duan P. Structure-activity relationship and in silico docking analysis of dicarboximide fungicides on 17β-hydroxysteroid dehydrogenase 1 of human, rat, and pig. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117529. [PMID: 39674025 DOI: 10.1016/j.ecoenv.2024.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Dicarboximide fungicides, including captafol, captan, cyclohexylthiophthalimide, folpet, and procymidone, represent a distinct category of fungicides. 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) catalyzes the conversion of estrone to estradiol in mammals. Yet, the impact of these fungicides on 17β-HSD1 activity remains unknown. In this study, we investigated their inhibition using human placental cytosols, rat and pig ovarian cytosols. Our observations revealed that dicarboximide fungicides significantly inhibited human 17β-HSD1 activity. Among them, captan showed the strongest potency, with its IC50 of 1.28 μM, whereas procymidone had an IC50 of 100.71 μM. However, both rat and pig 17β-HSD1 enzymes were less sensitive to the inhibition of these fungicides compared to the human enzyme, with captan displaying an IC50 of 5.65 μM for the rat enzyme and 7.36 μM for the pig enzyme. Correlation analysis indicated a positive correlation between IC50 values and LogP. Docking analysis revealed that these fungicides bound to cofactor or between the steroid and cofactor binding sites. The dithiothreitol treatment demonstrated that the formation of irreversible bonds between dicarboximide fungicides and the cysteine residues played a key role in the inhibition of 17β-HSD1 activity. In conclusion, dicarboximide fungicides inhibit 17β-HSD1 depending on lipophilicity, species, and cysteine residue interactions.
Collapse
Affiliation(s)
- Huiqian Chen
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Sailing Chen
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiyan Wang
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Wenzhou Medical University, Zhejiang 325000, China.
| | - Ping Duan
- Department of Obstetrics and Gynecology, Oncology Discipline Group, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
2
|
Gong C, Chen S, Tang Y, Chen H, Xie J, Lv Y, Shen Z, Zhu Y, Wang S, Ge RS, Zhao J. Effects of organochlorine pesticides on human and rat 17β-hydroxysteroid dehydrogenase 1 activity: Structure-activity relationship and in silico docking analysis. J Steroid Biochem Mol Biol 2024; 240:106510. [PMID: 38508472 DOI: 10.1016/j.jsbmb.2024.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17β-Hydroxysteroid dehydrogenase 1 (17β-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17β-HSD1 were 21.37, 73.25, 92.80, and 117.69 μM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 μM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 μM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17β-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17β-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17β-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17β-HSD1, as well as their impact on hormone production.
Collapse
Affiliation(s)
- Chaochao Gong
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sailing Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huiqian Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianghuan Xie
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yanning Lv
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhefan Shen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou, Zhejiang 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou, Zhejiang 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, Zhejiang Province 325000, China.
| | - Junzhao Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
3
|
Li YL, Xing TF, Liu JX. Genome-wide association analyses based on whole-genome sequencing of Protosalanx hyalocranius provide insights into sex determination of Salangid fishes. Mol Ecol Resour 2020; 20:1038-1049. [PMID: 32315505 DOI: 10.1111/1755-0998.13172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/28/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Identification of sex determination system and sex-determining genes have important implications in conservation, ecology and evolution. However, much remains to be discovered about the evolution of different sexual determination systems in teleost fishes, of which the mechanisms of sex determination are remarkably variable. In the present study, the whole genomes of 20 males and 20 females of a Salangid fish, Protosalanx hyalocranius, were sequenced and genome wide association analyses were conducted to uncover its sex determination system and putative sex-determining genes. A total of 150 SNPs were significantly associated with sex, which showed high differentiation between sexes (FST ranged from 0.245 to 0.556). Of the 150 sex-associated SNPs, 76 SNPs displayed sex specificity with even coverage of depth and were female heterogametic, which suggested a ZZ/ZW sex determination system. Interestingly, one scaffold containing sex-specific SNPs displayed synteny to the sex chromosome of medaka. Annotations of sex-associated loci suggested that both transcriptional regulators (e.g., FOX genes) and secreted hormones and their receptors might be involved in the sex determination/differentiation of P. hyalocranius. More strikingly, we found a nonsense mutation in one copy of GALNT homology gene of all females, which suggested that "Z dosage" effect might play a vital role in the processes of sex determination/differentiation. These sex-specific loci could be a valuable resource for further research on sex determination of Salangid fishes and the results could contribute to the understanding of sex determination mechanisms and the evolution of sex chromosome in teleost fishes.
Collapse
Affiliation(s)
- Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Crystallographic Studies of Steroid-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:27-45. [PMID: 31098809 DOI: 10.1007/978-3-030-14265-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Steroid molecules have a wide range of function in eukaryotes, including the control and maintenance of membranes, hormonal control of transcription, and intracellular signaling. X-ray crystallography has served as a successful tool for gaining understanding of the structural and mechanistic aspects of these functions by providing snapshots of steroids in complex with various types of proteins. These proteins include nuclear receptors activated by steroid hormones, several families of enzymes involved in steroid synthesis and metabolism, and proteins involved in signaling and trafficking pathways. Proteins found in some bacteria that bind and metabolize steroids have been investigated as well. A survey of the steroid-protein complexes that have been studied using crystallography and the insight learned from them is presented.
Collapse
|
5
|
Heinosalo T, Saarinen N, Poutanen M. Role of hydroxysteroid (17beta) dehydrogenase type 1 in reproductive tissues and hormone-dependent diseases. Mol Cell Endocrinol 2019; 489:9-31. [PMID: 30149044 DOI: 10.1016/j.mce.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Abnormal synthesis and metabolism of sex steroids is involved in the pathogenesis of various human diseases, such as endometriosis and cancers arising from the breast and uterus. Steroid biosynthesis is a multistep enzymatic process proceeding from cholesterol to highly active sex steroids via different intermediates. Human Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) enzyme shows a high capacity to produce the highly active estrogen, estradiol, from a precursor hormone, estrone. However, the enzyme may also play a role in other steps of the steroid biosynthesis pathway. In this article, we have reviewed the literature on HSD17B1, and summarize the role of the enzyme in hormone-dependent diseases in women as evidenced by preclinical studies.
Collapse
Affiliation(s)
- Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland; Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 413 45, Gothenburg, Sweden
| |
Collapse
|
6
|
Li T, Stephen P, Zhu DW, Shi R, Lin SX. Crystal structures of human 17β-hydroxysteroid dehydrogenase type 1 complexed with estrone and NADP + reveal the mechanism of substrate inhibition. FEBS J 2019; 286:2155-2166. [PMID: 30768851 DOI: 10.1111/febs.14784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyses the last step in estrogen activation and is thus involved in estrogen-dependent diseases (EDDs). Unlike other 17β-HSD members, 17β-HSD1 undergoes a significant substrate-induced inhibition that we have previously reported. Here we solved the binary and ternary crystal structures of 17β-HSD1 in complex with estrone (E1) and cofactor analog NADP+ , demonstrating critical enzyme-substrate-cofactor interactions. These complexes revealed a reversely bound E1 in 17β-HSD1 that provides the basis of the substrate inhibition, never demonstrated in estradiol complexes. Structural analysis showed that His221 is the key residue responsible for the reorganization and stabilization of the reversely bound E1, leading to the formation of a dead-end complex, which exists widely in NADP(H)-preferred enzymes for the regulation of their enzymatic activity. Further, a new inhibitor is proposed that may inhibit 17β-HSD1 through the formation of a dead-end complex. This finding indicates a simple mechanism of enzyme regulation in the physiological background and introduces a pioneer inhibitor of 17β-HSD1 based on the dead-end inhibition model for efficiently targeting EDDs. DATABASES: Coordinates and structure factors of 17β-HSD1-E1 and 17β-HSD1-E1-NADP+ have been deposited in the Protein Data Bank with accession code 6MNC and 6MNE respectively. ENZYMES: 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) EC 1.1.1.62.
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Preyesh Stephen
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Dao-Wei Zhu
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, IBIS et PROTEO, Université Laval, Pavillon Charles-Eugène Marchand, Québec, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| |
Collapse
|
7
|
Li T, Maltais R, Poirier D, Lin SX. Combined Biophysical Chemistry Reveals a New Covalent Inhibitor with a Low-Reactivity Alkyl Halide. J Phys Chem Lett 2018; 9:5275-5280. [PMID: 30148957 DOI: 10.1021/acs.jpclett.8b02225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays a pivotal role in the progression of estrogen-related diseases because of its involvement in the biosynthesis of estradiol (E2), constituting a valuable therapeutic target for endocrine treatment. In the present study, we successfully cocrystallized the enzyme with the reversible inhibitor 2-methoxy-16β-( m-carbamoylbenzyl)-E2 (2-MeO-CC-156) as well as the enzyme with the irreversible inhibitor 3-(2-bromoethyl)-16β-( m-carbamoylbenzyl)-17β-hydroxy-1,3,5(10)-estratriene (PBRM). The structures of ternary complexes of 17β-HSD1-2-MeO-CC-156-NADP+ and 17β-HSD1-PBRM-NADP+ comparatively show the formation of a covalent bond between His221 and the bromoethyl side chain of the inhibitor in the PBRM structure. A dynamic process including beneficial molecular interactions that favor the specific binding of a low-reactivity inhibitor and subsequent N-alkylation event through the participation of His221 in the enzyme catalytic site clearly demonstrates the covalent bond formation. This finding opens the door to a new design of alkyl halide-based specific covalent inhibitors as potential therapeutic agents for different enzymes, contributing to the development of highly efficient inhibitors.
Collapse
Affiliation(s)
- Tang Li
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| | - René Maltais
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
| | - Donald Poirier
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| | - Sheng-Xiang Lin
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| |
Collapse
|
8
|
Han H, Thériault JF, Chen G, Lin SX. Substrate inhibition of 17β-HSD1 in living cells and regulation of 17β-HSD7 by 17β-HSD1 knockdown. J Steroid Biochem Mol Biol 2017; 172:36-45. [PMID: 28554725 DOI: 10.1016/j.jsbmb.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
This study addresses first the role of human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) in breast cancer (BC) cells. The enzyme has a high estrone-activating activity that is subject to strong substrate inhibition as shown by enzyme kinetics at the molecular level. We used BC cells to verify this phenomenon in living cells: estrone concentration increase did reduce the reaction with 0.025 to 4μM substrate. Moreover, 5α-dihydrotestosterone (DHT) demonstrated some inhibition of estrogen activation at both the molecular and cellular levels. The presence of DHT did not change the tendency toward substrate inhibition for estrone conversion, but shifted the inhibition toward higher substrate concentrations. Moreover, a binding study demonstrated that both DHT and dehydroepiandrosterone (DHEA) can be bound to the enzyme, thereby supporting the multi-specificity of 17β-HSD1. We then followed the concentrations of estradiol and performed q-RT-PCR measurements of reductive 17β-HSDs after 17β-HSD1 inhibition. The estradiol decrease by the 17β-HSD1 inhibition was demonstrated lending support to this observation. Knockdown and inhibition of 17β-HSD1 produced reduction in estradiol levels and the down-regulation of another reductive enzyme 17β-HSD7, thus "amplifying" the reduction of estradiol by the 17β-HSD1 modulation itself. The critical positioning of 17β-HSD7 in sex-hormone-regulation as well as the mutual regulation of steroid enzymes via estradiol in BC, are clearly demonstrated. Our study demonstrates that fundamental enzymological mechanisms are relevant in living cells. Moreover, further enzyme study in cells is merited to advance biological and medical research. We also demonstrated the central role of 17β-HSD7 in sex-hormone conversion and regulation, supporting it as a novel target for estrogen-dependent (ER+) BC.
Collapse
Affiliation(s)
- Hui Han
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jean-François Thériault
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada
| | - Guang Chen
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada.
| |
Collapse
|
9
|
Fryszkowska A, Peterson J, Davies NL, Dewar C, Evans G, Bycroft M, Triggs N, Fleming T, Gorantla SSC, Hoge G, Quirmbach M, Timmanna U, Reddy Poreddy S, Kumar Reddy DN, Dahanukar V, Holt-Tiffin KE. Development of a Chemoenzymatic Process for Dehydroepiandrosterone Acetate Synthesis. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Fryszkowska
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | - Justine Peterson
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | - Nichola L. Davies
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | - Colin Dewar
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | - George Evans
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | - Matthew Bycroft
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | - Neil Triggs
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | - Toni Fleming
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | | | - Garrett Hoge
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| | - Michael Quirmbach
- Dr. Reddy’s Laboratories SA Elisabethenanlage, 11CH-4051 Basel, Switzerland
| | - Upadhya Timmanna
- Custom
Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Bollaram
Road, Miyapur, Hyderabad 500049, India
| | - Srinivas Reddy Poreddy
- Custom
Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Bollaram
Road, Miyapur, Hyderabad 500049, India
| | - D. Naresh Kumar Reddy
- Custom
Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Bollaram
Road, Miyapur, Hyderabad 500049, India
| | - Vilas Dahanukar
- Custom
Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Bollaram
Road, Miyapur, Hyderabad 500049, India
| | - Karen E. Holt-Tiffin
- Chirotech
Technology Centre, Dr. Reddy’s Laboratories EU Ltd., 410 Cambridge
Science Park, Cambridge CB4 0PE, United Kingdom
| |
Collapse
|
10
|
Herman BE, Szabó J, Bacsa I, Wölfling J, Schneider G, Bálint M, Hetényi C, Mernyák E, Szécsi M. Comparative investigation of the in vitro inhibitory potencies of 13-epimeric estrones and D-secoestrones towards 17β-hydroxysteroid dehydrogenase type 1. J Enzyme Inhib Med Chem 2016; 31:61-69. [PMID: 27424610 DOI: 10.1080/14756366.2016.1204610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The inhibitory effects of 13-epimeric estrones, D-secooxime and D-secoalcohol estrone compounds on human placental 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated. The transformation of estrone to 17β-estradiol was studied by an in vitro radiosubstrate incubation method. 13α-Estrone inhibited the enzyme activity effectively with an IC50 value of 1.2 μM, which indicates that enzyme affinity is similar to that of the natural estrone substrate. The 13β derivatives and the compounds bearing a 3-hydroxy group generally exerted stronger inhibition than the 13α and 3-ether counterparts. The 3-hydroxy-13β-D-secoalcohol and the 3-hydroxy-13α-D-secooxime displayed an outstanding cofactor dependence, i.e. more efficient inhibition in the presence of NADH than NADPH. The 3-hydroxy-13β-D-secooxime has an IC50 value of 0.070 μM and is one of the most effective 17β-HSD1 inhibitors reported to date in the literature.
Collapse
Affiliation(s)
| | - Johanna Szabó
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Ildikó Bacsa
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - János Wölfling
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Gyula Schneider
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mónika Bálint
- c Department of Biochemistry , Eötvös Loránd University , Budapest , Hungary , and
| | - Csaba Hetényi
- d MTA-ELTE Molecular Biophysics Research Group, Hungarian Academy of Sciences , Budapest , Hungary
| | - Erzsébet Mernyák
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mihály Szécsi
- a 1st Department of Medicine, University of Szeged , Szeged , Hungary
| |
Collapse
|
11
|
Engeli RT, Rhouma BB, Sager CP, Tsachaki M, Birk J, Fakhfakh F, Keskes L, Belguith N, Odermatt A. Biochemical analyses and molecular modeling explain the functional loss of 17β-hydroxysteroid dehydrogenase 3 mutant G133R in three Tunisian patients with 46, XY Disorders of Sex Development. J Steroid Biochem Mol Biol 2016; 155:147-54. [PMID: 26545797 DOI: 10.1016/j.jsbmb.2015.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/21/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]
Abstract
Mutations in the HSD17B3 gene resulting in 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency cause 46, XY Disorders of Sex Development (46, XY DSD). Approximately 40 different mutations in HSD17B3 have been reported; only few mutant enzymes have been mechanistically investigated. Here, we report novel compound heterozygous mutations in HSD17B3, composed of the nonsense mutation C206X and the missense mutation G133R, in three Tunisian patients from two non-consanguineous families. Mutants C206X and G133R were constructed by site-directed mutagenesis and expressed in HEK-293 cells. The truncated C206X enzyme, lacking part of the substrate binding pocket, was moderately expressed and completely lost its enzymatic activity. Wild-type 17β-HSD3 and mutant G133R showed comparable expression levels and intracellular localization. The conversion of Δ4-androstene-3,17-dione (androstenedione) to testosterone was almost completely abolished for mutant G133R compared with wild-type 17β-HSD3. To obtain further mechanistic insight, G133 was mutated to alanine, phenylalanine and glutamine. G133Q and G133F were almost completely inactive, whereas G133A displayed about 70% of wild-type activity. Sequence analysis revealed that G133 on 17β-HSD3 is located in a motif highly conserved in 17β-HSDs and other short-chain dehydrogenase/reductase (SDR) enzymes. A homology model of 17β-HSD3 predicted that arginine or any other bulky residue at position 133 causes steric hindrance of cofactor NADPH binding, whereas substrate binding seems to be unaffected. The results indicate an essential role of G133 in the arrangement of the cofactor binding pocket, thus explaining the loss-of-function of 17β-HSD3 mutant G133R in the patients investigated.
Collapse
Affiliation(s)
- Roger T Engeli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland
| | - Bochra Ben Rhouma
- Human Molecular Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Christoph P Sager
- Molecular Modeling, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland
| | - Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland
| | - Faiza Fakhfakh
- Human Molecular Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Leila Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Neila Belguith
- Human Molecular Genetics Laboratory, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Department of Medical Genetics, HediChaker Hospital, Sfax, Tunisia.
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Quantifying bond distortions in transient enzyme species by a combination of density functional theory calculations and time-resolved infrared difference spectroscopy. Implications for the mechanism of dephosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1036-43. [PMID: 25986318 DOI: 10.1016/j.bbabio.2015.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 12/26/2022]
Abstract
The sarcoplasmic Ca(2+)-ATPase (SERCA1a) forms two phosphoenzyme intermediates during Ca(2+) pumping. The second intermediate E2P hydrolyzes rapidly, which is essential for the rapid removal of Ca(2+) from the cytosol of muscle cells. The present work studies whether a weakening of the scissile PO bond in the E2P ground state facilitates dephosphorylation. To this end, the experimentally known vibrational spectrum of the E2P phosphate group was calculated with density functional theory (DFT) using structural models at two levels of structural complexity: (i) Models of acetyl phosphate in simple environments and (ii) ~150 atom models of the catalytic site. It was found that the enzyme environment distorts the structure of the phosphate group: one of the terminal PO bonds is shorter in the catalytic site indicating weaker interactions than in water. However, the bond that bridges phosphate and Asp351 is unaffected. This indicates that the scissile PO bond is not weakened by the enzyme environment of E2P. A second finding was that the catalytic site of the E2P state in aqueous solution appears to adopt a structure as in the crystals with BeF3(-), where the ATPase is in a non-reactive conformation. The reactant state of the dephosphorylation reaction differs from the E2P ground state: Glu183 faces Asp351 and positions the attacking water molecule. This state has a 0.04Å longer, and thus weaker, bridging PO bond. The reactant state is not detected in our experiments, indicating that its energy is at least 1kcal/mol higher than that of the E2P ground state.
Collapse
|
13
|
Cysteine-10 on 17 β -Hydroxysteroid Dehydrogenase 1 Has Stabilizing Interactions in the Cofactor Binding Region and Renders Sensitivity to Sulfhydryl Modifying Chemicals. Int J Cell Biol 2013; 2013:769536. [PMID: 24348564 PMCID: PMC3855964 DOI: 10.1155/2013/769536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/15/2013] [Indexed: 11/29/2022] Open
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the conversion of estrone to the potent estrogen estradiol. 17β-HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers. For the development of novel inhibitors, an improved understanding of the structure-function relationships is essential. In the present study, we examined the role of a cysteine residue, Cys10, in the Rossmann-fold NADPH binding region, for 17β-HSD1 function and tested the sensitivity towards sulfhydryl modifying chemicals. 3D structure modeling revealed important interactions of Cys10 with residues involved in the stabilization of amino acids of the NADPH binding pocket. Analysis of enzyme activity revealed that 17β-HSD1 was irreversibly inhibited by the sulfhydryl modifying agents N-ethylmaleimide (NEM) and dithiocarbamates. Preincubation with increasing concentrations of NADPH protected 17β-HSD1 from inhibition by these chemicals. Cys10Ser mutant 17β-HSD1 was partially protected from inhibition by NEM and dithiocarbamates, emphasizing the importance of Cys10 in the cofactor binding region. Substitution of Cys10 with serine resulted in a decreased protein half-life, without significantly altering kinetic properties. Despite the fact that Cys10 on 17β-HSD1 seems to have limited potential as a target for new enzyme inhibitors, the present study provides new insight into the structure-function relationships of this enzyme.
Collapse
|
14
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
15
|
Spadaro A, Negri M, Marchais-Oberwinkler S, Bey E, Frotscher M. Hydroxybenzothiazoles as new nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1). PLoS One 2012; 7:e29252. [PMID: 22242164 PMCID: PMC3252304 DOI: 10.1371/journal.pone.0029252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/23/2011] [Indexed: 01/25/2023] Open
Abstract
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC₅₀-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.
Collapse
Affiliation(s)
- Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | | | | | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
16
|
Marchais-Oberwinkler S, Henn C, Möller G, Klein T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, Xu K, Frotscher M, Hartmann RW, Adamski J. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol 2011; 125:66-82. [PMID: 21193039 DOI: 10.1016/j.jsbmb.2010.12.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/03/2010] [Accepted: 12/20/2010] [Indexed: 01/18/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are oxidoreductases, which play a key role in estrogen and androgen steroid metabolism by catalyzing final steps of the steroid biosynthesis. Up to now, 14 different subtypes have been identified in mammals, which catalyze NAD(P)H or NAD(P)(+) dependent reductions/oxidations at the 17-position of the steroid. Depending on their reductive or oxidative activities, they modulate the intracellular concentration of inactive and active steroids. As the genomic mechanism of steroid action involves binding to a steroid nuclear receptor, 17β-HSDs act like pre-receptor molecular switches. 17β-HSDs are thus key enzymes implicated in the different functions of the reproductive tissues in both males and females. The crucial role of estrogens and androgens in the genesis and development of hormone dependent diseases is well recognized. Considering the pivotal role of 17β-HSDs in steroid hormone modulation and their substrate specificity, these proteins are promising therapeutic targets for diseases like breast cancer, endometriosis, osteoporosis, and prostate cancer. The selective inhibition of the concerned enzymes might provide an effective treatment and a good alternative to the existing endocrine therapies. Herein, we give an overview of functional and structural aspects for the different 17β-HSDs. We focus on steroidal and non-steroidal inhibitors recently published for each subtype and report on existing animal models for the different 17β-HSDs and the respective diseases. Article from the Special issue on Targeted Inhibitors.
Collapse
|
17
|
Marchais-Oberwinkler S, Wetzel M, Ziegler E, Kruchten P, Werth R, Henn C, Hartmann RW, Frotscher M. New Drug-Like Hydroxyphenylnaphthol Steroidomimetics As Potent and Selective 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors for the Treatment of Estrogen-Dependent Diseases. J Med Chem 2010; 54:534-47. [DOI: 10.1021/jm1009082] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Marie Wetzel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Erika Ziegler
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Patricia Kruchten
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Ruth Werth
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus C2 3, D-66123 Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| |
Collapse
|
18
|
Negri M, Recanatini M, Hartmann RW. Insights in 17beta-HSD1 enzyme kinetics and ligand binding by dynamic motion investigation. PLoS One 2010; 5:e12026. [PMID: 20706575 PMCID: PMC2919385 DOI: 10.1371/journal.pone.0012026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/06/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Bisubstrate enzymes, such as 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), exist in solution as an ensemble of conformations. 17beta-HSD1 catalyzes the last step of the biosynthesis of estradiol and, thus, it is a potentially attractive target for breast cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the conformational transitions of its catalytic cycle, a structural analysis of all available crystal structures was performed and representative conformations were assigned to each step of the putative kinetic mechanism. To cover most of the conformational space, all-atom molecular dynamic simulations were performed using the four crystallographic structures best describing apoform, opened, occluded and closed state of 17beta-HSD1 as starting structures. With three of them, binary and ternary complexes were built with NADPH and NADPH-estrone, respectively, while two were investigated as apoform. Free energy calculations were performed in order to judge more accurately which of the MD complexes describes a specific kinetic step. CONCLUSIONS/SIGNIFICANCE Remarkably, the analysis of the eight long range trajectories resulting from this multi-trajectory/-complex approach revealed an essential role played by the backbone and side chain motions, especially of the betaF alphaG'-loop, in cofactor and substrate binding. Thus, a selected-fit mechanism is suggested for 17beta-HSD1, where ligand-binding induced concerted motions of the FG-segment and the C-terminal part guide the enzyme along its preferred catalytic pathway. Overall, we could assign different enzyme conformations to the five steps of the random bi-bi kinetic cycle of 17beta-HSD1 and we could postulate a preferred pathway for it. This study lays the basis for more-targeted biochemical studies on 17beta-HSD1, as well as for the design of specific inhibitors of this enzyme. Moreover, it provides a useful guideline for other enzymes, also characterized by a rigid core and a flexible region directing their catalysis.
Collapse
Affiliation(s)
- Matthias Negri
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Maurizio Recanatini
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| |
Collapse
|
19
|
Lilienkampf A, Karkola S, Alho-Richmond S, Koskimies P, Johansson N, Huhtinen K, Vihko K, Wähälä K. Synthesis and Biological Evaluation of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Inhibitors Based on a Thieno[2,3-d]pyrimidin-4(3H)-one Core. J Med Chem 2009; 52:6660-71. [DOI: 10.1021/jm900928k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annamaria Lilienkampf
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Sari Alho-Richmond
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Pasi Koskimies
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Nina Johansson
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kaisa Huhtinen
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kimmo Vihko
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kristiina Wähälä
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
20
|
Samson M, Labrie F, Luu-The V. Specific estradiol biosynthetic pathway in choriocarcinoma (JEG-3) cell line. J Steroid Biochem Mol Biol 2009; 116:154-9. [PMID: 19465125 DOI: 10.1016/j.jsbmb.2009.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/04/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
Estradiol (E2) plays a crucial role in all reproduction processes. In the placenta, it is well recognized that E2 is synthesized from fetal dehydroepiandrosterone sulfate (DHEAS). However, there is some controversy about the biosynthetic pathway involved, some authors suggest that E2 is produced by aromatization of testosterone (T), while others suggest that E2 is produced by the conversion of estrone (E1) into E2 by type 1 17beta-HSD, subsequent to the aromatization of 4-androstenedione (4-dione) into E1. In the present report, using the precursor [(14)C]DHEA, inhibitors of steroidogenic enzymes (chemical inhibitors and siRNA) and a choriocarcinoma (JEG-3) cell line that expresses all the enzymes necessary to transform DHEA into E2, we could determine the sequential steps and the specific steroidogenic enzymes involved in the transformation of DHEA into E2. Quantification of mRNA expression levels using real-time PCR, strongly suggests that type 1 3beta-hydroxysteroid dehydrogenase (3beta-HSD1), aromatase and type 1 17beta-HSD (17beta-HSD1) that are highly expressed in JEG-3 cells are the enzymes responsible for the transformation of DHEA into E2. Analysis of the intermediates produced in the absence and presence of 3beta-HSD, aromatase and 17beta-HSD1 inhibitors permits to determine the following sequential steps: DHEA is transformed into 4-dione by 3beta-HSD1, then 4-dione is aromatized into E1 by aromatase and E1 is finally transformed into E2 by 17beta-HSD1. Our data are clearly in favor of the pathway in which the step of aromatization precedes the step of reduction by 17beta-HSD.
Collapse
Affiliation(s)
- Mélanie Samson
- Oncology and Molecular Endocrinology Research Center, CHUL Research Center, CHUQ, and Laval University Medical Center, 2705 Laurier Boulevard, Quebec, QC, Canada
| | | | | |
Collapse
|
21
|
Moeller G, Adamski J. Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2009; 301:7-19. [PMID: 19027824 DOI: 10.1016/j.mce.2008.10.040] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are important enzymes in steroid metabolism. Long known members of the protein family seemed to be well characterised concerning their role in the regulation of the biological potency of steroid hormones, but today more and more evidence points to pivotal contributions of these enzymes in a variety of other metabolic pathways. Therefore, studies on 17beta-HSDs develop towards metabolomic survey. Latest research results give new insights into the complex metabolic interconnectivity of the 17beta-HSDs. In this paper metabolic activities of 17beta-HSDs will be compared, their interplay with endogenous substrates summarised, and interlacing pathways depicted. Strategies on deciphering the physiological role of 17beta-HSDs and the genetic predisposition for associated diseases will be presented.
Collapse
Affiliation(s)
- Gabriele Moeller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany.
| | | |
Collapse
|
22
|
Aka JA, Mazumdar M, Lin SX. Reductive 17beta-hydroxysteroid dehydrogenases in the sulfatase pathway: critical in the cell proliferation of breast cancer. Mol Cell Endocrinol 2009; 301:183-90. [PMID: 19038308 DOI: 10.1016/j.mce.2008.10.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/30/2023]
Abstract
Estradiol, the most potent estrogen, plays critical roles in tumor cell proliferation and breast cancer development. It can be synthesized via the aromatase pathway or the sulfatase pathway, and the later has been demonstrated to be more significant. Reductive 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the last step in estrogen activation and are thus critical in breast cancer development. 17beta-HSD Type 1 (17beta-HSD1) is of great importance since it efficiently synthesizes the most potent estrogen estradiol, as well as other estrogens as 5-androstene-3beta,17beta-diol and 5alpha-androstane-3beta,17beta-diol, and inactivates the most active androgen dihydrotestosterone (DHT), all contributing to the stimulation and development of breast cancers. Rational inhibitor design based on the new structure information has been developed, yielding interesting compounds and lead chemicals. This was demonstrated by a hybrid inhibitor that interacts with both the substrate and cofactor binding sites and a recently designed inhibitor 3-(3',17'beta-dihydroxyestra-1',3',5'(10')-trien-16'beta-methyl) benzamide which has been crystallized in complex with 17beta-HSD1. Both inhibitors demonstrate nM level K(i)in vitro. New non-steroidal inhibitors have been designed and reported very recently. The Type 7 17beta-HSD, expressed in several tissues including breast and ovary, can also contribute to estrogen synthesis and DHT inactivation in breast cancer cells. The enzyme role in steroid metabolism and cancer cell proliferation needs to be compared to that in cholesterogenesis. Breast cancer cell lines provide an excellent platform for such study. T47D, MCF-7 and MDA-MB-231-luc cells have been used to create xenografts in nude mice as animal models, now with the possibility of bioluminescent imaging to provide rapid, non-invasive, and quantitative analysis of tumor biomass and metastasis. Here we review the roles of the sulfatase and aromatase pathways and the contribution of the reductive 17beta-HSDs for hormone metabolism in breast cancer.
Collapse
Affiliation(s)
- Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, CHUL Research Center (CHUQ) and Laval University, Quebec, Canada G1V 4G2
| | | | | |
Collapse
|
23
|
Karkola S, Alho-Richmond S, Wahala K. Pharmacophore modelling of 17beta-HSD1 enzyme based on active inhibitors and enzyme structure. Mol Cell Endocrinol 2009; 301:225-8. [PMID: 18822344 DOI: 10.1016/j.mce.2008.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 08/20/2008] [Accepted: 08/25/2008] [Indexed: 11/29/2022]
Abstract
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme regulates the conversion of estrone (E1) to the biologically active estradiol (E2). Due to its role as a key enzyme in female hormone production, it has emerged as an attractive drug target for inhibitor development in relation to hormone-dependent breast cancer. Herein, we report four pharmacophore models of 17beta-HSD1 based on a crystal structure, a relaxed crystal structure, a library of 17beta-HSD1 inhibitors and on a docked complex of 17betaHSD1 enzyme and a potent inhibitor. The models were used in screening two databases, which produced novel compounds to be used as leads in our drug design project. The results were validated by docking the compounds to the active site of the 17beta-HSD1 enzyme. With the help of our 3D-QSAR model, these results will be used to develop new inhibitors of 17beta-HSD1 as drug candidates.
Collapse
Affiliation(s)
- Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, PO Box 55, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
24
|
Bey E, Marchais-Oberwinkler S, Werth R, Negri M, Al-Soud YA, Kruchten P, Oster A, Frotscher M, Birk B, Hartmann RW. Design, synthesis, biological evaluation and pharmacokinetics of bis(hydroxyphenyl) substituted azoles, thiophenes, benzenes, and aza-benzenes as potent and selective nonsteroidal inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1). J Med Chem 2008; 51:6725-39. [PMID: 18855374 DOI: 10.1021/jm8006917] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17beta-Estradiol (E2), the most potent female sex hormone, stimulates the growth of mammary tumors and endometriosis via activation of the estrogen receptor alpha (ERalpha). 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which is responsible for the catalytic reduction of the weakly active estrogen estrone (E1) into E2, is therefore discussed as a novel drug target. Recently, we have discovered a 2,5-bis(hydroxyphenyl) oxazole to be a potent inhibitor of 17beta-HSD1. In this paper, further structural optimizations were performed: 39 bis(hydroxyphenyl) azoles, thiophenes, benzenes, and aza-benzenes were synthesized and their biological properties were evaluated. The most promising compounds of this study show enhanced IC 50 values in the low nanomolar range, a high selectivity toward 17beta-HSD2, a low binding affinity to ERalpha, a good metabolic stability in rat liver microsomes, and a reasonable pharmacokinetic profile after peroral application. Calculation of the molecular electrostatic potentials revealed a correlation between 17beta-HSD1 inhibition and the electron density distribution.
Collapse
Affiliation(s)
- Emmanuel Bey
- Pharmaceutical and Medicinal Chemistry, Saarland University, PO Box 15 11 50, D-66041, Saarbrucken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Karkola S, Lilienkampf A, Wähälä K. A 3D QSAR model of 17beta-HSD1 inhibitors based on a thieno[2,3-d]pyrimidin-4(3H)-one core applying molecular dynamics simulations and ligand-protein docking. ChemMedChem 2008; 3:461-72. [PMID: 18224704 DOI: 10.1002/cmdc.200700271] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme plays a crucial role in female hormonal regulation by catalysing the NADPH-dependent reduction of the less potent estrone E1 into the biologically active estradiol E2. Because 17beta-HSD1 is a key enzyme in E2 biosynthesis, it has emerged as an attractive drug target for inhibitor development. Herein we report the plausible binding modes and a 3D QSAR model of 17beta-HSD1 inhibitors based on a (di)cycloalkenothieno[2,3-d]pyrimidin-4(3H)-one core. Two generated enzyme complexes with potent inhibitors were subjected to molecular dynamics simulation to mimic the dynamic process of inhibitor binding. A set of 17beta-HSD1 inhibitors based on the thieno[2,3-d]pyrimidin-4(3H)-one core were docked into the resulting active site, and a CoMFA model employing the most extensive training set to date was generated. The model was validated with an external test set. Active site residues involved in inhibitor binding and CoMFA fields for steric and electrostatic interactions were identified. The model will be used to guide structural modifications of 17beta-HSD1 inhibitors based on a thieno[2,3-d]pyrimidin-4(3H)-one core in order to improve the biological activity as well as in the design of novel 17beta-HSD1 inhibitors.
Collapse
Affiliation(s)
- Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55, 00014 Helsinki, Finland
| | | | | |
Collapse
|
26
|
Marchais-Oberwinkler S, Kruchten P, Frotscher M, Ziegler E, Neugebauer A, Bhoga U, Bey E, Müller-Vieira U, Messinger J, Thole H, Hartmann RW. Substituted 6-Phenyl-2-naphthols. Potent and Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1): Design, Synthesis, Biological Evaluation, and Pharmacokinetics. J Med Chem 2008; 51:4685-98. [DOI: 10.1021/jm800367k] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sandrine Marchais-Oberwinkler
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Patricia Kruchten
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Martin Frotscher
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Erika Ziegler
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Alexander Neugebauer
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Umadevi Bhoga
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Emmanuel Bey
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Ursula Müller-Vieira
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Josef Messinger
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Hubert Thole
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Rolf W. Hartmann
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| |
Collapse
|
27
|
Schuster D, Nashev LG, Kirchmair J, Laggner C, Wolber G, Langer T, Odermatt A. Discovery of Nonsteroidal 17β-Hydroxysteroid Dehydrogenase 1 Inhibitors by Pharmacophore-Based Screening of Virtual Compound Libraries. J Med Chem 2008; 51:4188-99. [DOI: 10.1021/jm800054h] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Schuster
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Lyubomir G. Nashev
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Johannes Kirchmair
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Christian Laggner
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Gerhard Wolber
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Thierry Langer
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Alex Odermatt
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| |
Collapse
|
28
|
Bey E, Marchais-Oberwinkler S, Kruchten P, Frotscher M, Werth R, Oster A, Algül O, Neugebauer A, Hartmann RW. Design, synthesis and biological evaluation of bis(hydroxyphenyl) azoles as potent and selective non-steroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. Bioorg Med Chem 2008; 16:6423-35. [DOI: 10.1016/j.bmc.2008.04.073] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/15/2022]
|
29
|
Frotscher M, Ziegler E, Marchais-Oberwinkler S, Kruchten P, Neugebauer A, Fetzer L, Scherer C, Müller-Vieira U, Messinger J, Thole H, Hartmann RW. Design, Synthesis, and Biological Evaluation of (Hydroxyphenyl)naphthalene and -quinoline Derivatives: Potent and Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) for the Treatment of Estrogen-Dependent Diseases. J Med Chem 2008; 51:2158-69. [DOI: 10.1021/jm701447v] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Frotscher
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Erika Ziegler
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Sandrine Marchais-Oberwinkler
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Patricia Kruchten
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Alexander Neugebauer
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Ludivine Fetzer
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Christiane Scherer
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Ursula Müller-Vieira
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Josef Messinger
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Hubert Thole
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Rolf W. Hartmann
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| |
Collapse
|
30
|
Kristan K, Stojan J, Adamski J, Lanisnik Rizner T. Rational design of novel mutants of fungal 17β-hydroxysteroid dehydrogenase. J Biotechnol 2007; 129:123-30. [PMID: 17196285 DOI: 10.1016/j.jbiotec.2006.11.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 07/26/2006] [Accepted: 08/03/2006] [Indexed: 11/29/2022]
Abstract
Reduction of 17-ketosteroids is a biocatalytic process of economic significance for the production of steroid drugs. This reaction can be catalyzed by different microbial 17beta-hydroxysteroid dehydrogenases (17beta-HSD), like the 17beta-HSD activity of Saccharomyces cerevisiae, Pichia faranosa and Mycobacterium sp., and by purified 3beta,17beta-HSD from Pseudomonas testosteroni. In addition to the bacterial 3beta,17beta-HSD the 17beta-HSD of the filamentous fungus Cochliobolus lunatus is the only microbial 17beta-HSD that has been expressed as a recombinant protein and fully characterized. On the basis of its modeled 3D structure, we selected several positions for the replacement of amino acids by site-directed mutagenesis to change substrate specificity, alter coenzyme requirements, and improve overall catalytic activity. Replacement of Val161 and Tyr212 in the substrate-binding region by Gly and Ala, respectively, increased the initial rates for the conversion of androstenedione to testosterone. Replacement of Tyr49 within the coenzyme binding site by Asp changed the coenzyme specificity of the enzyme. This latter mutant can convert the steroids not only in the presence of NADP(+) and NADPH, but also in the presence of NADH and NAD(+). The replacement of His164, located in the non-flexible part of the 'lid' covering the active center resulted in a conformation of the enzyme that possessed a higher catalytic activity.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
31
|
Qiu W, Zhou M, Mazumdar M, Azzi A, Ghanmi D, Luu-The V, Labrie F, Lin SX. Structure-based inhibitor design for an enzyme that binds different steroids: a potent inhibitor for human type 5 17beta-hydroxysteroid dehydrogenase. J Biol Chem 2006; 282:8368-79. [PMID: 17166832 DOI: 10.1074/jbc.m606784200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human type 5 17beta-hydroxysteroid dehydrogenase plays a crucial role in local androgen formation in prostate tissue. Several chemicals were synthesized and tested for their ability to inhibit this enzyme, and a series of estradiol derivatives bearing a lactone on the D-ring were found to inhibit its activity efficiently. The crystal structure of the type 5 enzyme in complex with NADP and such a novel inhibitor, EM1404, was determined to a resolution of 1.30 A. Significantly more hydrogen bonding and hydrophobic interactions were defined between EM1404 and the enzyme than in the substrate ternary complex. The lactone ring of EM1404 accounts for important interactions with the enzyme, whereas the amide group at the opposite end of the inhibitor contributes to the stability of three protein loops involved in the construction of the substrate binding site. EM1404 has a strong competitive inhibition, with a Ki of 6.9+/-1.4 nM, demonstrating 40 times higher affinity than that of the best inhibitor previously reported. This is observed despite the fact that the inhibitor occupies only part of the binding cavity. Attempts to soak the inhibitor into crystals of the binary complex with NADP were unsuccessful, yielding a structure with a polyethylene glycol fragment occupying the substrate binding site. The relative crystal packing is discussed. Combined studies of small molecule inhibitor synthesis, x-ray crystallography, enzyme inhibition, and molecular modeling make it possible to analyze the plasticity of the substrate binding site of the enzyme, which is essential for developing more potent and specific inhibitors for hormone-dependent cancer therapy.
Collapse
Affiliation(s)
- Wei Qiu
- Canadian Institutes of Health Research Group in Molecular Endocrinology, Laval University Medical Center, Centre Hospitalier de Universités de Québec and Laval University, Quebec G1V 4G2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Maurice T, Grégoire C, Espallergues J. Neuro(active)steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 2006; 84:581-97. [PMID: 16945406 DOI: 10.1016/j.pbb.2006.07.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 06/30/2006] [Accepted: 07/07/2006] [Indexed: 01/05/2023]
Abstract
Steroids from peripheral sources or synthesized in the brain, i.e. neurosteroids, exert rapid modulations of neurotransmitter responses through specific interactions with membrane receptors, mainly the gamma-aminobutyric acid type A (GABA(A)) receptor and N-methyl-d-aspartate (NMDA) type of glutamate receptor. Progesterone and 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) act as inhibitory steroids while pregnenolone sulfate or dehydroepiandrosterone sulfate act as excitatory steroids. Some steroids also interact with an atypical protein, the sigma(1) (sigma(1)) receptor. This receptor has been cloned in several species and is centrally expressed in neurons and oligodendrocytes. Activation of the sigma(1) receptor modulates cellular Ca(2+) mobilization, particularly from endoplasmic reticulum pools, and contributes to the formation of lipid droplets, translocating towards the plasma membrane and contributing to the recomposition of lipid microdomains. The present review details the evidences showing that the sigma(1) receptor is a target for neurosteroids in physiological conditions. Analysis of the sigma(1) protein sequence confirmed homologies with the ERG2/emopamil binding protein family but also with the steroidogenic enzymes isopentenyl diphosphate isomerase and 17beta-estradiol dehydrogenase. Biochemical and physiological arguments for an interaction of neuro(active)steroids with the sigma(1) receptor are analyzed and the impact on physiopathological outcomes in neuroprotection is illustrated.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U. 710, Montpellier, F-34095 France University of Montpellier II, Montpellier, F-34095 France c EPHE, Paris, F-75007 France.
| | | | | |
Collapse
|
33
|
Jin Y, Penning TM. Molecular docking simulations of steroid substrates into human cytosolic hydroxysteroid dehydrogenases (AKR1C1 and AKR1C2): insights into positional and stereochemical preferences. Steroids 2006; 71:380-91. [PMID: 16455123 DOI: 10.1016/j.steroids.2005.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/02/2005] [Accepted: 12/14/2005] [Indexed: 11/15/2022]
Abstract
AKR1C1 and AKR1C2 are human cytosolic hydroxysteroid dehydrogenases, which play pivotal roles in the metabolism and action of natural and synthetic steroid hormones. The two enzymes are highly homologous, and have distinct positional and stereochemical preferences with various substrates. We performed molecular docking simulations of three steroid substrates, including an androgen (5alpha-dihydrotestosterone, DHT), a progestin (progesterone, PRO), and a synthetic hormone ([7alpha,17alpha]-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-yn-3-one or tibolone, TIB), into the active sites of the two enzymes. For each substrate and enzyme pair, the activity inferred by the "productive" docking models (in which the spatial arrangement of the steroid and the cofactor would permit a reaction) matched the experimentally observed positional and stereochemical outcome. These productive conformations were energetically and statistically favored except for TIB and PRO with AKR1C2, where experimentally strong substrate inhibition and low activity were observed, respectively. Results showed that (i) a 3-ketosteroid (DHT) and a 20-ketosteroid (PRO) were reduced by AKR1C1 since the carbonyl groups could occupy the same position by "backwards" binding of steroids; (ii) 3alpha-reduced (DHT) and 3beta-reduced (TIB) products were formed by AKR1C2 since the angular methyl groups of the steroids were inverted by "upside-down" binding of steroids; and (iii) the 3beta- and 3alpha-reduction of DHT by AKR1C1 and AKR1C2, respectively occurred since the steroids employed a "swinging" motion to present opposite faces to the cofactor. Favorable nonproductive modes were observed with all substrates in both enzymes in which the steroid was bound at a "near-entry" position and/or an "in-middle" position, which may influence the reaction coordinate.
Collapse
Affiliation(s)
- Yi Jin
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6084, USA
| | | |
Collapse
|
34
|
Lin SX, Shi R, Qiu W, Azzi A, Zhu DW, Dabbagh HA, Zhou M. Structural basis of the multispecificity demonstrated by 17beta-hydroxysteroid dehydrogenase types 1 and 5. Mol Cell Endocrinol 2006; 248:38-46. [PMID: 16480815 DOI: 10.1016/j.mce.2005.11.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17Beta-hydroxysteroid dehydrogenases/ketosteroid reductases (17beta-HSDs/KSRs) catalyze the last step of sex steroid synthesis or the first step of their degradation, and are thus critical for many physiological processes. The multispecificity demonstrated by 17beta-HSDs is important for steroid metabolism in gonadal and peripheral tissues, and is a consequence of the architecture of their binding and catalytic sites. Structurally, most of the family members are short chain dehydrogenase-reductases (SDRs) except the type 5 enzyme, which is an aldo-keto reductase (AKR). 17Beta-HSD type 1, a representative of the SDR family, has been studied extensively since the 1950s. However, its structure was not determined until the 1990s. It has always been considered as estrogen specific, in accord with the narrow binding tunnel that has been structurally determined and has been found to be complementary to estrogens. A recent study revealed that, in spite of the enzyme's narrow binding tunnel, the pseudo-symmetry of C19 steroids leads to its alternative binding, resulting in the multispecificity of the enzyme. Expressed in ovary, breast and placenta, the enzyme catalyzes the formation of another estrogen A-diol from DHEA in addition to the biosynthesis of estradiol; it also inactivates the most active androgen DHT by both 17beta-hydroxysteroid oxidation and 3-ketosteroid reduction. Type 5 17beta-HSD (AKR1C3) differs significantly from the type 1 enzyme by possessing a spacious and flexible steroid-binding site. This is estimated to be about 960 or 470 A3 in ternary complex with testosterone or 4-dione, respectively, whereas the binding site volume of 17beta-HSD1 is only about 340 A3. This characteristic of the 17beta-HSD5 binding site permits the docking of various steroids in different orientations, which encompasses a wider range of activities from 20alpha-, 17beta- and 3alpha-HSD/KSR to prostaglandin 11-ketoreductase. The in vitro activities of the enzyme are significantly lower than the type 1 enzyme. In the ternary complex with testosterone, the steroid C3-C17 position is quasi-reversed as compared to the complex with 4-dione. The multi-specificity contributes significantly to steroid metabolism in peripheral tissues, due to the high levels of 17beta-HSD5 mRNA in both breast and prostate tissues.
Collapse
Affiliation(s)
- S-X Lin
- Molecular Endocrinology Research Center at Laval University Hospital Research Center (CHUL, CHUQ), Laval University, Qué., Canada G1V 4G2.
| | | | | | | | | | | | | |
Collapse
|
35
|
Alho-Richmond S, Lilienkampf A, Wähälä K. Active site analysis of 17beta-hydroxysteroid dehydrogenase type 1 enzyme complexes with SPROUT. Mol Cell Endocrinol 2006; 248:208-13. [PMID: 16412556 DOI: 10.1016/j.mce.2005.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens, especially estradiol, have been shown to stimulate the proliferation of hormone-dependent types of breast cancer cells. 17Beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme catalyses the synthesis of the active female estrogen, estradiol and is thus an attractive target for structure-based ligand design for the prevention and control of breast tumour growth. In this study, the active site of 17beta-HSD1 has been reviewed, and three crystal structure complexes (estradiol/NADP+, equilin/NADP+, dehydroepiandrosterone) of 17beta-HSD1 have been selected to be analysed for de novo ligand design. The boundary surface, hydrophobic interactions and hydrogen bonding sites in the ligand binding domain for each ligand complex were analysed to create a comprehensive image of the active site.
Collapse
Affiliation(s)
- Sari Alho-Richmond
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55, FIN 00014, Finland
| | | | | |
Collapse
|
36
|
Abstract
17Beta-hydroxysteroid dehydrogenases (17beta-HSDs) belong to the family of short chain dehydrogenases/reductases (SDRs) and aldoketo-reductases (AKRs). Some of the enzymes were discovered and named due to their enzymatic activity on steroid substrates or according to their sequence homology to other 17beta-HSDs. During characterisation of these enzymes it turned out that their substrate specificity is broader than first expected and key functions of some 17beta-HSDs in vivo are probably not in steroid metabolism but in basic metabolic pathways. The issue of such multifunctionality is the topic of this review.
Collapse
Affiliation(s)
- Gabriele Moeller
- GSF-National Research Center of Environment and Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany.
| | | |
Collapse
|
37
|
Smith HJ, Nicholls PJ, Simons C, Lain RL. Inhibitors of steroidogenesis as agents for the treatment of hormone-dependent cancers. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.5.789] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Hayashi Y, Kobayashi M, Sakaguchi K, Iwata N, Kobayashi M, Kikuchi Y, Takahashi Y. Protein classification using comparative molecular interaction profile analysis system. J Bioinform Comput Biol 2004; 2:497-510. [PMID: 15359423 DOI: 10.1142/s0219720004000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 02/16/2004] [Accepted: 02/25/2004] [Indexed: 11/18/2022]
Abstract
We recently introduced a new molecular description factor, interaction profile Factor (IPF) that is useful for evaluating molecular interactions. IPF is a data set of interaction energies calculated by the Comparative Molecular Interaction Profile Analysis system (CoMIPA). CoMIPA utilizes AutoDock 3.0 docking program, and the system has shown to be a powerful tool in clustering the interacting properties between small molecules and proteins. In this report, we describe the application of CoMIPA for protein clustering. A sample set of 15 proteins that share less than 20% homology and have no common functional motifs in primary structure were chosen. Using CoMIPA, we were able to cluster proteins that bound to the same small molecule. Other structural homology-based clustering programs such as PSI-BLAST or PFAM were unable to achieve the same classification. The results are striking because it is difficult to find any common features in the active sites of these proteins that share the same ligand. CoMIPA adds new dimensions for protein classification and has the potential to be a helpful tool in predicting and analyzing molecular interactions.
Collapse
Affiliation(s)
- Yoshiharu Hayashi
- KLIMERS (K-laboratories for Intelligent Medical Remote Services, Enkaku Iryou-laboratories), Co., Ltd. 2266-22 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Couture JF, Legrand P, Cantin L, Labrie F, Luu-The V, Breton R. Loop relaxation, a mechanism that explains the reduced specificity of rabbit 20alpha-hydroxysteroid dehydrogenase, a member of the aldo-keto reductase superfamily. J Mol Biol 2004; 339:89-102. [PMID: 15123423 DOI: 10.1016/j.jmb.2004.03.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/27/2004] [Accepted: 03/04/2004] [Indexed: 11/28/2022]
Abstract
The aldo-keto reductase rabbit 20alpha-hydroxysteroid dehydrogenase (rb20alpha-HSD; AKR1C5) is less selective than other HSDs, since it exerts its activity both on androgens (C19 steroids) and progestins (C21 steroids). In order to identify the molecular determinants responsible for this reduced selectivity, binary (NADPH) and ternary (NADP(+)/testosterone) complex structures were solved to 1.32A and 2.08A resolution, respectively. Inspection of the cofactor-binding cavity led to the identification of a new interaction between side-chains of residues His222 and Lys270, which cover the central phosphate chain of the cofactor, reminiscent of the "safety-belt" found in other aldo-keto reductases. Testosterone is stabilized by a phenol/benzene tunnel composed of side-chains of numerous residues, among which Phe54, which forces the steroid to take up an orientation markedly contrasting with that found in HSD ternary complexes reported. Combining structural, site-directed mutagenesis, kinetic and fluorescence titration studies, we found that the selectivity of rb20alpha-HSD is mediated by (i) the relaxation of loop B (residues 223-230), partly controlled by the nature of residue 230, (ii) the nature of the residue found at position 54, and (iii) the residues found in the C-terminal tail of the protein especially the side-chain of the amino acid 306.
Collapse
Affiliation(s)
- Jean-François Couture
- Oncology and Molecular Endocrinology Research Center, Laval University Medical Center (CHUL) and Laval University, Ste-Foy, Quebec, Canada G1V 4G2
| | | | | | | | | | | |
Collapse
|
40
|
Laurine E, Lafitte D, Grégoire C, Sérée E, Loret E, Douillard S, Michel B, Briand C, Verdier JM. Specific binding of dehydroepiandrosterone to the N terminus of the microtubule-associated protein MAP2. J Biol Chem 2003; 278:29979-86. [PMID: 12775713 DOI: 10.1074/jbc.m303242200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of neurosteroids is mediated through their membrane or nuclear receptors. However, no dehydroepiandrosterone (DHEA)-specific receptors have been evidenced so far in the brain. In this paper, we showed by isothermal titration calorimetry that the DHEA specifically binds to the dendritic brain microtubule-associated protein MAP2C with an association constant of 2.7 x 10(7) m-1 and at a molar ratio of 1:1. By partial tryptic digestions and mass spectrometry analysis, we found that the binding involved the N-terminal region of MAP2C. Interestingly, MAP2C displays homologies with 17 beta-hydroxysteroid dehydrogenase 1, an enzyme required for estrogen synthesis. Based on these sequence homologies and on the x-ray structure of the DHEA-binding pocket of 17 beta-hydroxysteroid dehydrogenase 1, we modeled the complex of DHEA with MAP2C. The binding of DHEA to MAP2C involved specific hydrogen bonds that orient the steroid into the pocket. This work suggests that DHEA can directly influence brain plasticity via MAP2C binding. It opens interesting ways for understanding the role of DHEA in the brain.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Amino Acid Sequence
- Binding Sites
- Blotting, Western
- Brain/metabolism
- Calorimetry
- Cell Nucleus/metabolism
- Chromatography, High Pressure Liquid
- Chromatography, Ion Exchange
- Circular Dichroism
- Crystallography, X-Ray
- Cytoskeleton/metabolism
- DNA/metabolism
- Dehydroepiandrosterone/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Humans
- Hydrogen Bonding
- Hydrogen-Ion Concentration
- Mass Spectrometry
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/metabolism
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemistry
- Protein Binding
- Protein Isoforms
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Trypsin/pharmacology
- Tubulin/chemistry
Collapse
Affiliation(s)
- Emmanuelle Laurine
- Ecole Pratique des Hautes Etudes, Université Montpellier II, Place Eugène Bataillon, CC94, 34095 Montpellier cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nahoum V, Gangloff A, Shi R, Lin SX. How estrogen-specific proteins discriminate estrogens from androgens: a common steroid binding site architecture. FASEB J 2003; 17:1334-6. [PMID: 12759331 DOI: 10.1096/fj.02-0524fje] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Steroid hormones play an essential role in a wide range of physiological and pathological processes, such as growth, metabolism, aging, and hormone-sensitive cancers. Estrogens are no exception and influence growth, differentiation, and functioning of many target tissues, such as the mammary gland, uterus, hypothalamus, pituitary, bone, and liver. Although very similar in structure, each steroid class (i.e., estrogens, androgens, progestins, mineral corticoids, or glucocorticoids) is responsible for distinct physiological processes. To permit specific biological responses for a given steroid class, specific proteins are responsible for steroid bioactivation, action, and inactivation, yet they have low or no affinity to other classes. Estrogens make no exception and possess their own set of related proteins. To understand the molecular basis underlying estrogen recognition from other steroids, structural features of estrogen-specific proteins were analyzed along with their ability to discriminate between steroid hormones belonging to different classes. Hence, the study of all estrogen-specific proteins for which an atomic structure has been determined demonstrated that a common steroid-binding pocket architecture is shared by these proteins. This architecture is composed of the following elements: i) a glutamate residue acting as a proton acceptor coupled with a proton donor that interact with the steroid O3; ii) a proton donor (His or Ser) that interacts with O17; iii) a highly conserved sandwich-like structure providing steric hindrance and preventing C19 steroid from binding; and iv) several amino acid residues interacting with the C18. As these different estrogen-specific proteins are not related in overall sequence, the inference is that the steroid binding site in these proteins has originated by convergent evolution.
Collapse
Affiliation(s)
- Virginie Nahoum
- Oncology and Molecular Endocrinology Research Center, CHUL Research Center and Laval University, Québec, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
42
|
Gangloff A, Shi R, Nahoum V, Lin SX. Pseudo-symmetry of C19 steroids, alternative binding orientations, and multispecificity in human estrogenic 17beta-hydroxysteroid dehydrogenase. FASEB J 2003; 17:274-6. [PMID: 12490543 DOI: 10.1096/fj.02-0397fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Steroids are implicated in many physiological processes, such as reproduction, aging, metabolism, and cancer. To understand the molecular basis for steroid recognition and discrimination, we studied the human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) responsible for the last step in the bioactivation of all estrogens. Here we report the first observation of the conversion of dihydrotestosterone (DHT) into 3beta,17beta-androstanediol (3beta-diol) by 17beta-HSD1, an estrogenic enzyme studied for more than half a century. Kinetic observations demonstrate that both the 3beta-reduction of DHT into 3beta-diol (kcat = 0.040 s(-1)1; Km = 32 +/- 9 microM) and the 17beta-oxidation of DHT into androstandione (A-dione) (kcat = 0.19 s(-1); Km = 26 +/-6 microM) are catalyzed by 17beta-HSD1 via alternative binding orientation of the steroid. The reduction of DHT was also observed in intact cells by using HEK-293 cells stably transformed with 17beta-HSD1. The high-resolution structure of a 17beta-HSD1-C19-steroid (testosterone) complex solved at 1.54 A demonstrates that the steroid is reversibly oriented in the active site, which strongly supports the existence of alternative binding mode. Such a phenomenon can be explained by the pseudo-symmetric structure of C19-steroids. Our results confirm the role of the Leu149 residue in C18/C19-steroid discrimination and suggest a possible mechanism of 17beta-HSD1 in the modulation of DHT levels in tissues, such as the breast, where both the enzyme and DHT are present.
Collapse
Affiliation(s)
- Anne Gangloff
- Oncology and Molecular Endocrinology Research Center, CHUL Research Center and Laval University, Québec, Canada, G1V 4G2
| | | | | | | |
Collapse
|
43
|
Tremblay MR, Lin SX, Poirier D. Chemical synthesis of 16beta-propylaminoacyl derivatives of estradiol and their inhibitory potency on type 1 17beta-hydroxysteroid dehydrogenase and binding affinity on steroid receptors. Steroids 2001; 66:821-31. [PMID: 11576622 DOI: 10.1016/s0039-128x(01)00116-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) are members of a family of enzymes that catalyze the interconversion of weakly active sexual hormones (ketosteroids) and potent hormones (17beta-hydroxysteroids). Among the known isoforms of 17beta-HSD, the type 1 catalyzes the NAD(P)H-mediated reduction of estrone (E(1)) to estradiol (E(2)), a predominant mitogen for the breast cancer cells. Therefore, the inhibition of this particular enzyme is a logical approach to reduce the concentration of estradiol in breast tumors. To develop inhibitors of type 1 17beta-HSD activity, we hypothesized that molecules containing both hydrophobic and hydrophilic components should be interesting candidates for interacting with both the steroid binding domain and some amino acid residues of the cofactor binding domain of the enzyme. Firstly, a conveniently protected 16beta-(3-aminopropyl)-E(2) derivative was synthesized from commercially available E(1). Then, a representative of all class of NHBoc-protected amino acids (basic, acid, aromatic, aliphatic, hydroxylated) were coupled using standard procedures to the amino group of the precursor. Finally, cleavage of all protecting groups was performed in a single step to generate a series of 16beta-propylaminoacyl derivatives of E(2). The enzymatic screening revealed that none of the novel compounds can inhibit the reductive activity of type 1 17beta-HSD. On the other hand, all of these E(2) derivatives did not show any significant binding affinity on four steroid receptors including the estrogen receptor. Additional efforts aimed at improving the inhibitory potency of these steroidal derivatives on type 1 17beta-HSD without providing estrogenic activities is under investigation using a combinatorial chemistry approach.
Collapse
Affiliation(s)
- M R Tremblay
- Medicinal Chemistry Division, Oncology and Molecular Endocrinology Research Center, Laval University Medical Center (CHUL), 2705 Laurier Boulevard, Sainte-Foy, Quebec G1V 4G2, Canada
| | | | | |
Collapse
|
44
|
Negishi M, Pedersen LG, Petrotchenko E, Shevtsov S, Gorokhov A, Kakuta Y, Pedersen LC. Structure and function of sulfotransferases. Arch Biochem Biophys 2001; 390:149-57. [PMID: 11396917 DOI: 10.1006/abbi.2001.2368] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sulfotransferases (STs) catalyze the transfer reaction of the sulfate group from the ubiquitous donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an acceptor group of numerous substrates. This reaction, often referred to as sulfuryl transfer, sulfation, or sulfonation, is widely observed from bacteria to humans and plays a key role in various biological processes such as cell communication, growth and development, and defense. The cytosolic STs sulfate small molecules such as steroids, bioamines, and therapeutic drugs, while the Golgi-membrane counterparts sulfate large molecules including glucosaminylglycans and proteins. We have now solved the X-ray crystal structures of four cytosolic and one membrane ST. All five STs are globular proteins composed of a single alpha/beta domain with the characteristic five-stranded beta-sheet. The beta-sheet constitutes the core of the Paps-binding and catalytic sites. Structural analysis of the PAPS-, PAP-, substrate-, and/or orthovanadate (VO(3-)(4))-bound enzymes has also revealed the common molecular mechanism of the transfer reaction catalyzed by sulfotransferses. The X-ray crystal structures have opened a new era for the study of sulfotransferases.
Collapse
Affiliation(s)
- M Negishi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gangloff A, Garneau A, Huang YW, Yang F, Lin SX. Human oestrogenic 17beta-hydroxysteroid dehydrogenase specificity: enzyme regulation through an NADPH-dependent substrate inhibition towards the highly specific oestrone reduction. Biochem J 2001; 356:269-76. [PMID: 11336660 PMCID: PMC1221836 DOI: 10.1042/0264-6021:3560269] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human oestrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) catalyses the final step in the biosynthesis of all active oestrogens. Here we report the steady-state kinetics for 17beta-HSD1 at 37 degrees C and pH 7.5, using a homogeneous enzyme preparation with oestrone, dehydroepiandrosterone (DHEA) or dihydrotestosterone (DHT) as substrate and NADP(H) as the cofactor. Kinetic studies made over a wide range of oestrone concentrations (10 nM-10 microM) revealed a typical substrate-inhibition phenomenon. Data analysis using the substrate-inhibition equation v=V.[s]/[K(m)+[s](1+[s]/K(i))] gave a K(m) of 0.07+/-0.01 microM, a k(cat) (for the dimer) of 1.5+/-0.1 s(-1), a specificity of 21 microM(-1) x s(-1) and a K(i) of 1.3 microM. When NADH was used instead of NADPH, substrate inhibition was no longer observed and the kinetic constants were significantly modified to 0.42+/-0.07 microM for the K(m), 0.8+/-0.04 s(-1) for the k(cat) and 1.9 microM(-1) x s(-1) for the specificity. The modification of an amino acid in the cofactor-binding site (Leu36Asp) eliminated the substrate inhibition observed in the presence of NADPH, confirming the NADPH-dependence of the phenomenon. The possible formation of an enzyme-NADP(+)-oestrone dead-end complex during the substrate-inhibition process is supported by the competitive inhibition of oestradiol oxidation by oestrone. Kinetic studies performed with either DHEA (K(m)=24+/-4 microM; k(cat)=0.47+/-0.06 s(-1); specificity=0.002 microM(-1) x s(-1)) or DHT (K(m)=26+/-6 microM; k(cat)=0.2+/-0.02 s(-1); specificity=0.0008 microM(-1) x s(-1)) in the presence of NADP(H) resulted in low specificities and no substrate inhibition. Taken together, our results demonstrate that the high specificity of 17beta-HSD1 towards oestrone is coupled with an NADPH-dependent substrate inhibition, suggesting that both the specificity and the enzyme control are provided for the cognate substrate.
Collapse
Affiliation(s)
- A Gangloff
- Oncology and Molecular Endocrinology Research Center, Laval University Medical Center (CHUL), 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
46
|
Han Q, Lin SX. The study of crystallization of estrogenic 17beta-hydroxysteroid dehydrogenase with DHEA and DHT at elevated temperature. Biochem Biophys Res Commun 2000; 277:100-6. [PMID: 11027647 DOI: 10.1006/bbrc.2000.3631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most crystallization experiments of macromolecules are carried out at a constant temperature. Room temperature (22 degrees C) and 4 degrees C are the most widely used settings in crystallization. In practice, crystal growth at relatively high temperatures has often been avoided for macromolecular crystallization. Human estrogenic 17beta-hydroxysteroid dehydrogenase has been crystallized in complex with dehydroepiandrosterone or dihydrotestosterone. The crystallization experiments were carried out at 27 degrees C. The 17beta-HSD1 crystals were greatly improved at the elevated temperature. The effects of higher temperatures on crystal growth were studied. High temperatures stimulated the nucleation of 17beta-HSD1, increased the rate of crystal growth, and higher occupancy of substrates was obtained in the crystal structure. This method also reduced the formation of twin crystals. Since temperature is the easiest factor to control in the laboratory, crystallization at elevated temperatures provides an efficient method to improve protein crystal growth. The mechanism of the effect of temperature and relative techniques are discussed.
Collapse
Affiliation(s)
- Q Han
- Medical Research Council Group in Molecular Endocrinology and Oncology, CHUL Research Center and Laval University, Ste-Foy, Quebec, G1V 4G2, Canada
| | | |
Collapse
|