1
|
Creamer DR, Beynon RJ, Hubbard SJ, Ashe MP, Grant CM. Isoform-specific sequestration of protein kinase A fine-tunes intracellular signaling during heat stress. Cell Rep 2024; 43:114360. [PMID: 38865242 DOI: 10.1016/j.celrep.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Protein kinase A (PKA) is a conserved kinase crucial for fundamental biological processes linked to growth, development, and metabolism. The PKA catalytic subunit is expressed as multiple isoforms in diverse eukaryotes; however, their contribution to ensuring signaling specificity in response to environmental cues remains poorly defined. Catalytic subunit activity is classically moderated via interaction with an inhibitory regulatory subunit. Here, a quantitative mass spectrometry approach is used to examine heat-stress-induced changes in the binding of yeast Tpk1-3 catalytic subunits to the Bcy1 regulatory subunit. We show that Tpk3 is not regulated by Bcy1 binding but, instead, is deactivated upon heat stress via reversible sequestration into cytoplasmic granules. These "Tpk3 granules" are enriched for multiple PKA substrates involved in various metabolic processes, with the Hsp42 sequestrase required for their formation. Hence, regulated sequestration of Tpk3 provides a mechanism to control isoform-specific kinase signaling activity during stress conditions.
Collapse
Affiliation(s)
- Declan R Creamer
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Simon J Hubbard
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Mark P Ashe
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
2
|
Galello F, Bermúdez-Moretti M, Martínez MCO, Rossi S, Portela P. The cAMP-PKA signalling crosstalks with CWI and HOG-MAPK pathways in yeast cell response to osmotic and thermal stress. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:90-105. [PMID: 38495453 PMCID: PMC10941952 DOI: 10.15698/mic2024.03.818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.
Collapse
Affiliation(s)
- Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
3
|
Zeng G, Xu X, Kok YJ, Deng FS, Ling Chow EW, Gao J, Bi X, Wang Y. Cytochrome c regulates hyphal morphogenesis by interfering with cAMP-PKA signaling in Candida albicans. Cell Rep 2023; 42:113473. [PMID: 37980562 DOI: 10.1016/j.celrep.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
In the human fungal pathogen Candida albicans, invasive hyphal growth is a well-recognized virulence trait. We employed transposon-mediated genome-wide mutagenesis, revealing that inactivating CTM1 blocks hyphal growth. CTM1 encodes a lysine (K) methyltransferase, which trimethylates cytochrome c (Cyc1) at K79. Mutants lacking CTM1 or expressing cyc1K79A grow as yeast under hyphae-inducing conditions, indicating that unmethylated Cyc1 suppresses hyphal growth. Transcriptomic analyses detected increased levels of the hyphal repressor NRG1 and decreased levels of hyphae-specific genes in ctm1Δ/Δ and cyc1K79A mutants, suggesting cyclic AMP (cAMP)-protein kinase A (PKA) signaling suppression. Co-immunoprecipitation and in vitro kinase assays demonstrated that unmethylated Cyc1 inhibits PKA kinase activity. Surprisingly, hyphae-defective ctm1Δ/Δ and cyc1K79A mutants remain virulent in mice due to accelerated proliferation. Our results unveil a critical role for cytochrome c in maintaining the virulence of C. albicans by orchestrating proliferation, growth mode, and metabolism. Importantly, this study identifies a biological function for lysine methylation on cytochrome c.
Collapse
Affiliation(s)
- Guisheng Zeng
- A(∗)STAR Infectious Diseases Labs (A(∗)STAR ID Labs), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore.
| | - Xiaoli Xu
- A(∗)STAR Infectious Diseases Labs (A(∗)STAR ID Labs), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Fu-Sheng Deng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Eve Wai Ling Chow
- A(∗)STAR Infectious Diseases Labs (A(∗)STAR ID Labs), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuezhi Bi
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Yue Wang
- A(∗)STAR Infectious Diseases Labs (A(∗)STAR ID Labs), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
4
|
Wagner ER, Gasch AP. Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense. J Fungi (Basel) 2023; 9:786. [PMID: 37623557 PMCID: PMC10455348 DOI: 10.3390/jof9080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Yeast Protein Kinase A Isoforms: A Means of Encoding Specificity in the Response to Diverse Stress Conditions? Biomolecules 2022; 12:biom12070958. [PMID: 35883514 PMCID: PMC9313097 DOI: 10.3390/biom12070958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells have developed a complex circuitry of signalling molecules which monitor changes in their intra- and extracellular environments. One of the most widely studied signalling pathways is the highly conserved cyclic AMP (cAMP)/protein kinase A (PKA) pathway, which is a major glucose sensing circuit in the yeast Saccharomyces cerevisiae. PKA activity regulates diverse targets in yeast, positively activating the processes that are associated with rapid cell growth (e.g., fermentative metabolism, ribosome biogenesis and cell division) and negatively regulating the processes that are associated with slow growth, such as respiratory growth, carbohydrate storage and entry into stationary phase. As in higher eukaryotes, yeast has evolved complexity at the level of the PKA catalytic subunit, and Saccharomyces cerevisiae expresses three isoforms, denoted Tpk1-3. Despite evidence for isoform differences in multiple biological processes, the molecular basis of PKA signalling specificity remains poorly defined, and many studies continue to assume redundancy with regards to PKA-mediated regulation. PKA has canonically been shown to play a key role in fine-tuning the cellular response to diverse stressors; however, recent studies have now begun to interrogate the requirement for individual PKA catalytic isoforms in coordinating distinct steps in stress response pathways. In this review, we discuss the known non-redundant functions of the Tpk catalytic subunits and the evolving picture of how these isoforms establish specificity in the response to different stress conditions.
Collapse
|
6
|
Cañonero L, Pautasso C, Galello F, Sigaut L, Pietrasanta L, Arroyo J, Bermúdez-Moretti M, Portela P, Rossi S. Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119209. [PMID: 34999138 DOI: 10.1016/j.bbamcr.2021.119209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.
Collapse
Affiliation(s)
- Luciana Cañonero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Constanza Pautasso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Lia Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Kocik RA, Gasch AP. Breadth and Specificity in Pleiotropic Protein Kinase A Activity and Environmental Responses. Front Cell Dev Biol 2022; 10:803392. [PMID: 35252178 PMCID: PMC8888911 DOI: 10.3389/fcell.2022.803392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Protein Kinase A (PKA) is an essential kinase that is conserved across eukaryotes and plays fundamental roles in a wide range of organismal processes, including growth control, learning and memory, cardiovascular health, and development. PKA mediates these responses through the direct phosphorylation of hundreds of proteins-however, which proteins are phosphorylated can vary widely across cell types and environmental cues, even within the same organism. A major question is how cells enact specificity and precision in PKA activity to mount the proper response, especially during environmental changes in which only a subset of PKA-controlled processes must respond. Research over the years has uncovered multiple strategies that cells use to modulate PKA activity and specificity. This review highlights recent advances in our understanding of PKA signaling control including subcellular targeting, phase separation, feedback control, and standing waves of allosteric regulation. We discuss how the complex inputs and outputs to the PKA network simultaneously pose challenges and solutions in signaling integration and insulation. PKA serves as a model for how the same regulatory factors can serve broad pleiotropic functions but maintain specificity in localized control.
Collapse
Affiliation(s)
- Rachel A Kocik
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States.,Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States.,Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Interaction of TOR and PKA Signaling in S. cerevisiae. Biomolecules 2022; 12:biom12020210. [PMID: 35204711 PMCID: PMC8961621 DOI: 10.3390/biom12020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
TOR and PKA signaling are the major growth-regulatory nutrient-sensing pathways in S. cerevisiae. A number of experimental findings demonstrated a close relationship between these pathways: Both are responsive to glucose availability. Both regulate ribosome production on the transcriptional level and repress autophagy and the cellular stress response. Sch9, a major downstream effector of TORC1 presumably shares its kinase consensus motif with PKA, and genetic rescue and synthetic defects between PKA and Sch9 have been known for a long time. Further, studies in the first decade of this century have suggested direct regulation of PKA by TORC1. Nonetheless, the contribution of a potential direct cross-talk vs. potential sharing of targets between the pathways has still not been completely resolved. What is more, other findings have in contrast highlighted an antagonistic relationship between the two pathways. In this review, I explore the association between TOR and PKA signaling, mainly by focusing on proteins that are commonly referred to as shared TOR and PKA targets. Most of these proteins are transcription factors which to a large part explain the major transcriptional responses elicited by TOR and PKA upon nutrient shifts. I examine the evidence that these proteins are indeed direct targets of both pathways and which aspects of their regulation are targeted by TOR and PKA. I further explore if they are phosphorylated on shared sites by PKA and Sch9 or when experimental findings point towards regulation via the PP2ASit4/PP2A branch downstream of TORC1. Finally, I critically review data suggesting direct cross-talk between the pathways and its potential mechanism.
Collapse
|
9
|
Bardeci NG, Tofolón E, Trajtenberg F, Caramelo J, Larrieux N, Rossi S, Buschiazzo A, Moreno S. The crystal structure of yeast regulatory subunit reveals key evolutionary insights into Protein Kinase A oligomerization. J Struct Biol 2021; 213:107732. [PMID: 33819633 DOI: 10.1016/j.jsb.2021.107732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Protein Kinase A (PKA) is a widespread enzyme that plays a key role in many signaling pathways from lower eukaryotes to metazoans. In mammals, the regulatory (R) subunits sequester and target the catalytic (C) subunits to proper subcellular locations. This targeting is accomplished by the dimerization and docking (D/D) domain of the R subunits. The activation of the holoenzyme depends on the binding of the second messenger cAMP. The only available structures of the D/D domain proceed from mammalian sources. Unlike dimeric mammalian counterparts, the R subunit from Saccharomyces cerevisiae (Bcy1) forms tetramers in solution. Here we describe the first high-resolution structure of a non-mammalian D/D domain. The tetramer in the crystals of the Bcy1 D/D domain is a dimer of dimers that retain the classical D/D domain fold. By using phylogenetic and structural analyses combined with site-directed mutagenesis, we found that fungal R subunits present an insertion of a single amino acid at the D/D domain that shifts the position of a downstream, conserved arginine. This residue participates in intra-dimer interactions in mammalian D/D domains, while due to this insertion it is involved in inter-dimer contacts in Bcy1, which are crucial for the stability of the tetramer. This surprising finding challenges well-established concepts regarding the oligomeric state within the PKAR protein family and provides important insights into the yet unexplored structural diversity of the D/D domains and the molecular determinants of R subunit oligomerization.
Collapse
Affiliation(s)
- Nicolás González Bardeci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina.
| | - Enzo Tofolón
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Julio Caramelo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Fundación Instituto Leloir, Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires C1405BWE, Argentina
| | - Nicole Larrieux
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Silvia Rossi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Silvia Moreno
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires C1428EHA, Argentina.
| |
Collapse
|
10
|
Barraza CE, Solari CA, Rinaldi J, Ojeda L, Rossi S, Ashe MP, Portela P. A prion-like domain of Tpk2 catalytic subunit of protein kinase A modulates P-body formation in response to stress in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118884. [PMID: 33039554 DOI: 10.1016/j.bbamcr.2020.118884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Low complexity regions are involved in the assembly and disassembly of P-bodies (PBs). Saccharomyces cerevisiae contains three genes encoding the protein kinase A (PKA) catalytic subunit: TPK1, TPK2 and TPK3. Tpk2 and Tpk3 isoforms localize to PBs upon glucose starvation showing different mechanisms and kinetics of accumulation. In contrast to the other two isoforms, Tpk2 harbors a glutamine-rich prion-like domain (PrLD) at the N-terminus. Here we show that the appearance of Tpk2 foci in response to glucose starvation, heat stress or stationary phase was dependent on its PrLD. Moreover, the PrLD of Tpk2 was necessary for efficient PB and stress granule aggregation during stress conditions and in quiescent cells. Deletion of PrLD does not affect the in vitro and in vivo kinase activity of Tpk2 or its interaction with the regulatory subunit Bcy1. We present evidence that the PrLD of Tpk2 serves as a scaffold domain for PB assembly in a manner that is independent of Pat1 phosphorylation by PKA. In addition, a mutant strain where Tpk2 lacks PrLD showed a decrease of turnover of mRNA during glucose starvation. This work therefore provides new insight into the mechanism of stress-induced cytoplasmic mRNP assembly, and the role of isoform specific domains in the regulation of PKA catalytic subunit specificity and dynamic localization to cytoplasmic RNPs granules.
Collapse
Affiliation(s)
- Carla E Barraza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Clara A Solari
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.
| | - Lucas Ojeda
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Mark P Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| |
Collapse
|
11
|
Walden EA, Fong RY, Pham TT, Knill H, Laframboise SJ, Huard S, Harper ME, Baetz K. Phenomic screen identifies a role for the yeast lysine acetyltransferase NuA4 in the control of Bcy1 subcellular localization, glycogen biosynthesis, and mitochondrial morphology. PLoS Genet 2020; 16:e1009220. [PMID: 33253187 PMCID: PMC7728387 DOI: 10.1371/journal.pgen.1009220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/10/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.
Collapse
Affiliation(s)
- Elizabeth A. Walden
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Roger Y. Fong
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Trang T. Pham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Hana Knill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sarah Jane Laframboise
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sylvain Huard
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
12
|
cAMP-PKA signal transduction specificity in Saccharomyces cerevisiae. Curr Genet 2020; 66:1093-1099. [PMID: 32935175 DOI: 10.1007/s00294-020-01107-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023]
Abstract
Living cells have developed a set of complex signaling responses, which allow them to withstand different environmental challenges. Signaling pathways enable the cell to monitor external and internal states and to articulate the appropriate physiological responses. Cellular signal transmission requires the dynamic formation of spatiotemporal controlled molecular interactions. One of the most important signaling circuits in Saccharomyces cerevisiae is the one controlled by cAMP-Protein Kinase A (PKA). In budding yeast, extracellular glucose and a plethora of signals related with growth and stress conditions regulate the intracellular cAMP levels that modulate PKA activity which in turn regulates a broad range of cellular processes. The cAMP-PKA signaling output requires a controlled specificity of the PKA responses. In this review we discuss the molecular mechanisms that are involved in the establishment of the specificity in the cAMP-PKA signaling pathway in S.cerevisiae.
Collapse
|
13
|
Caza M, Kronstad JW. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:212. [PMID: 31275865 PMCID: PMC6592070 DOI: 10.3389/fcimb.2019.00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nutrient sensing is critical for adaptation of fungi to environmental and host conditions. The conserved cAMP/PKA signaling pathway contributes to adaptation by sensing the availability of key nutrients such as glucose and directing changes in gene expression and metabolism. Interestingly, the cAMP/PKA pathway in fungal pathogens also influences the expression of virulence determinants in response to nutritional and host signals. For instance, protein kinase A (PKA) in the human pathogen Cryptococcus neoformans plays a central role in orchestrating phenotypic changes, such as capsule elaboration and melanin production, that directly impact disease development. In this review, we focus first on insights into the role of the cAMP/PKA pathway in nutrient sensing for the model yeast Saccharomyces cerevisiae to provide a foundation for understanding the pathway in C. neoformans. We then discuss key features of cAMP/PKA signaling in C. neoformans including new insights emerging from the analysis of transcriptional and proteomic changes in strains with altered PKA activity and expression. Finally, we highlight recent studies that connect the cAMP/PKA pathway to cell surface remodeling and the formation of titan cells.
Collapse
Affiliation(s)
- Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Wagner ER, Myers KS, Riley NM, Coon JJ, Gasch AP. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS One 2019; 14:e0212389. [PMID: 31112537 PMCID: PMC6528989 DOI: 10.1371/journal.pone.0212389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Lignocellulosic biomass offers a sustainable source for biofuel production that does not compete with food-based cropping systems. Importantly, two critical bottlenecks prevent economic adoption: many industrially relevant microorganisms cannot ferment pentose sugars prevalent in lignocellulosic medium, leaving a significant amount of carbon unutilized. Furthermore, chemical biomass pretreatment required to release fermentable sugars generates a variety of toxins, which inhibit microbial growth and metabolism, specifically limiting pentose utilization in engineered strains. Here we dissected genetic determinants of anaerobic xylose fermentation and stress tolerance in chemically pretreated corn stover biomass, called hydrolysate. We previously revealed that loss-of-function mutations in the stress-responsive MAP kinase HOG1 and negative regulator of the RAS/Protein Kinase A (PKA) pathway, IRA2, enhances anaerobic xylose fermentation. However, these mutations likely reduce cells' ability to tolerate the toxins present in lignocellulosic hydrolysate, making the strain especially vulnerable to it. We tested the contributions of Hog1 and PKA signaling via IRA2 or PKA negative regulatory subunit BCY1 to metabolism, growth, and stress tolerance in corn stover hydrolysate and laboratory medium with mixed sugars. We found mutations causing upregulated PKA activity increase growth rate and glucose consumption in various media but do not have a specific impact on xylose fermentation. In contrast, mutation of HOG1 specifically increased xylose usage. We hypothesized improving stress tolerance would enhance the rate of xylose consumption in hydrolysate. Surprisingly, increasing stress tolerance did not augment xylose fermentation in lignocellulosic medium in this strain background, suggesting other mechanisms besides cellular stress limit this strain's ability for anaerobic xylose fermentation in hydrolysate.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison WI United States of America
- Morgridge Institute for Research, Madison, WI United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI United States of America
| |
Collapse
|
15
|
Shwab EK, Juvvadi PR, Waitt G, Soderblom EJ, Moseley MA, Nicely NI, Steinbach WJ. Phosphorylation of Aspergillus fumigatus PkaR impacts growth and cell wall integrity through novel mechanisms. FEBS Lett 2017; 591:3730-3744. [PMID: 29067690 PMCID: PMC5705279 DOI: 10.1002/1873-3468.12886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 11/06/2022]
Abstract
Protein kinase A (PKA) signaling is essential for growth and virulence of the fungal pathogen Aspergillus fumigatus. Little is known concerning the regulation of this pathway in filamentous fungi. Employing liquid chromatography-tandem mass spectroscopy, we identified novel phosphorylation sites on the regulatory subunit PkaR, distinct from those previously identified in mammals and yeasts, and demonstrated the importance of two phosphorylation clusters for hyphal growth and cell wall-stress response. We also identified key differences in the regulation of PKA subcellular localization in A. fumigatus compared with other species. This is the first analysis of the phosphoregulation of a PKA regulatory subunit in a filamentous fungus and uncovers critical mechanistic differences between PKA regulation in filamentous fungi compared with mammals and yeast species, suggesting divergent targeting opportunities.
Collapse
Affiliation(s)
- E. Keats Shwab
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Praveen R. Juvvadi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
| | - Greg Waitt
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham NC, USA
| | - Erik J. Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham NC, USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham NC, USA
| | - Nathan I. Nicely
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - William J. Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
16
|
Barraza CE, Solari CA, Marcovich I, Kershaw C, Galello F, Rossi S, Ashe MP, Portela P. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae. PLoS One 2017; 12:e0185416. [PMID: 29045428 PMCID: PMC5646765 DOI: 10.1371/journal.pone.0185416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.
Collapse
Affiliation(s)
- Carla E Barraza
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Clara A Solari
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres", Buenos Aires, Argentina
| | - Christopher Kershaw
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Fiorella Galello
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| | - Mark P Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paula Portela
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina
| |
Collapse
|
17
|
Shao B, Yuan H, Zhang R, Wang X, Zhang S, Ouyang Q, Hao N, Luo C. Reconstructing the regulatory circuit of cell fate determination in yeast mating response. PLoS Comput Biol 2017; 13:e1005671. [PMID: 28742153 PMCID: PMC5546706 DOI: 10.1371/journal.pcbi.1005671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/07/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022] Open
Abstract
Massive technological advances enabled high-throughput measurements of proteomic changes in biological processes. However, retrieving biological insights from large-scale protein dynamics data remains a challenging task. Here we used the mating differentiation in yeast Saccharomyces cerevisiae as a model and developed integrated experimental and computational approaches to analyze the proteomic dynamics during the process of cell fate determination. When exposed to a high dose of mating pheromone, the yeast cell undergoes growth arrest and forms a shmoo-like morphology; however, at intermediate doses, chemotropic elongated growth is initialized. To understand the gene regulatory networks that control this differentiation switch, we employed a high-throughput microfluidic imaging system that allows real-time and simultaneous measurements of cell growth and protein expression. Using kinetic modeling of protein dynamics, we classified the stimulus-dependent changes in protein abundance into two sources: global changes due to physiological alterations and gene-specific changes. A quantitative framework was proposed to decouple gene-specific regulatory modes from the growth-dependent global modulation of protein abundance. Based on the temporal patterns of gene-specific regulation, we established the network architectures underlying distinct cell fates using a reverse engineering method and uncovered the dose-dependent rewiring of gene regulatory network during mating differentiation. Furthermore, our results suggested a potential crosstalk between the pheromone response pathway and the target of rapamycin (TOR)-regulated ribosomal biogenesis pathway, which might underlie a cell differentiation switch in yeast mating response. In summary, our modeling approach addresses the distinct impacts of the global and gene-specific regulation on the control of protein dynamics and provides new insights into the mechanisms of cell fate determination. We anticipate that our integrated experimental and modeling strategies could be widely applicable to other biological systems. A systematic characterization of the proteomic changes during the process of cell differentiation is critical for understanding the underlying molecular mechanisms. However, protein expression can be largely affected by changes in cell physiological state, which hampers the detection of regulatory interactions. Here we proposed an integrated experimental and computational framework to reconstruct regulatory circuits in mating differentiation of budding yeast Saccharomyces cerevisiae, in which distinct cell fates are triggered by alteration in pheromone concentration. A modeling approach was developed to decouple gene-specific regulation from growth-dependent global regulation of protein expression, allowing us to reverse engineering the gene regulatory circuits underlying distinct cell fates. Our work highlights the importance of model-based analysis of proteomic data and delivers new insight into dose-dependent differentiation behavior of budding yeast.
Collapse
Affiliation(s)
- Bin Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Haiyu Yuan
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Rongfei Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xuan Wang
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Shuwen Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Nan Hao
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (CL); (NH)
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- * E-mail: (CL); (NH)
| |
Collapse
|
18
|
Selvaraj P, Tham HF, Ramanujam R, Naqvi NI. Subcellular compartmentation, interdependency and dynamics of the cyclic AMP-dependent PKA subunits during pathogenic differentiation in rice blast. Mol Microbiol 2017; 105:484-504. [PMID: 28544028 DOI: 10.1111/mmi.13713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 02/03/2023]
Abstract
The cAMP-dependent PKA signalling plays a central role in growth, asexual development and pathogenesis in fungal pathogens. Here, we functionally characterised RPKA, the regulatory subunit of cAMP/PKA and studied the dynamics and organisation of the PKA subunits in the rice blast pathogen Magnaporthe oryzae. The RPKA subunit was essential for proper vegetative growth, asexual sporulation and surface hydrophobicity in M. oryzae. A spontaneous suppressor mutation, SMR19, that restored growth and conidiation in the RPKA deletion mutant was isolated and characterised. SMR19 enhanced conidiation and appressorium formation but failed to suppress the pathogenesis defects in rpkAΔ. The PKA activity was undetectable in the mycelial extracts of SMR19, which showed a single mutation (val242leu) in the highly conserved active site of the catalytic subunit (CPKA) of cAMP/PKA. The two subunits of cAMP/PKA showed different subcellular localisation patterns with RpkA being predominantly nucleocytoplasmic in conidia, while CpkA was largely cytosolic and/or vesicular. The CpkA anchored RpkA in cytoplasmic vesicles, and localisation of PKA in the cytoplasm was governed by CpkA in a cAMP-dependant or independent manner. We show that there exists a tight regulation of PKA subunits at the level of transcription, and the cAMP signalling is differentially compartmentalised in a stage-specific manner in rice blast.
Collapse
Affiliation(s)
- Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Hong Fai Tham
- School of Applied Science, Temasek Polytechnic, Singapore
| | - Ravikrishna Ramanujam
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Bodvard K, Peeters K, Roger F, Romanov N, Igbaria A, Welkenhuysen N, Palais G, Reiter W, Toledano MB, Käll M, Molin M. Light-sensing via hydrogen peroxide and a peroxiredoxin. Nat Commun 2017; 8:14791. [PMID: 28337980 PMCID: PMC5376668 DOI: 10.1038/ncomms14791] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/27/2017] [Indexed: 02/08/2023] Open
Abstract
Yeast lacks dedicated photoreceptors; however, blue light still causes pronounced oscillations of the transcription factor Msn2 into and out of the nucleus. Here we show that this poorly understood phenomenon is initiated by a peroxisomal oxidase, which converts light into a hydrogen peroxide (H2O2) signal that is sensed by the peroxiredoxin Tsa1 and transduced to thioredoxin, to counteract PKA-dependent Msn2 phosphorylation. Upon H2O2, the nuclear retention of PKA catalytic subunits, which contributes to delayed Msn2 nuclear concentration, is antagonized in a Tsa1-dependent manner. Conversely, peroxiredoxin hyperoxidation interrupts the H2O2 signal and drives Msn2 oscillations by superimposing on PKA feedback regulation. Our data identify a mechanism by which light could be sensed in all cells lacking dedicated photoreceptors. In particular, the use of H2O2 as a second messenger in signalling is common to Msn2 oscillations and to light-induced entrainment of circadian rhythms and suggests conserved roles for peroxiredoxins in endogenous rhythms. While yeasts lack dedicated photoreceptors, they nonetheless possess metabolic rhythms responsive to light. Here the authors find that light signalling in budding yeast involves the production of H2O2, which in turn regulates protein kinase A through a peroxiredoxin-thioredoxin redox relay.
Collapse
Affiliation(s)
- Kristofer Bodvard
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden.,Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Ken Peeters
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden
| | - Friederike Roger
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden
| | - Natalie Romanov
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Aeid Igbaria
- Oxidative Stress and Cancer, SBIGEM, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, CEA-Saclay, bat 142 F-91191 Gif Sur Yvette, France
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden.,Hohmann Lab, Department of Biology and Biological Engineering, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Gaël Palais
- Oxidative Stress and Cancer, SBIGEM, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, CEA-Saclay, bat 142 F-91191 Gif Sur Yvette, France
| | - Wolfgang Reiter
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Michel B Toledano
- Oxidative Stress and Cancer, SBIGEM, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, CEA-Saclay, bat 142 F-91191 Gif Sur Yvette, France
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden
| |
Collapse
|
20
|
A Novel Phosphoregulatory Switch Controls the Activity and Function of the Major Catalytic Subunit of Protein Kinase A in Aspergillus fumigatus. mBio 2017; 8:mBio.02319-16. [PMID: 28174315 PMCID: PMC5296607 DOI: 10.1128/mbio.02319-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Invasive aspergillosis (IA), caused by the filamentous fungal pathogen Aspergillus fumigatus, is a major cause of death among immunocompromised patients. The cyclic AMP/protein kinase A (PKA) signaling pathway is essential for hyphal growth and virulence of A. fumigatus, but the mechanism of regulation of PKA remains largely unknown. Here, we discovered a novel mechanism for the regulation of PKA activity in A. fumigatus via phosphorylation of key residues within the major catalytic subunit, PkaC1. Phosphopeptide enrichment and tandem mass spectrometry revealed the phosphorylation of PkaC1 at four sites (S175, T331, T333, and T337) with implications for important and diverse roles in the regulation of A. fumigatus PKA. While the phosphorylation at one of the residues (T333) is conserved in other species, the identification of three other residues represents previously unknown PKA phosphoregulation in A. fumigatus Site-directed mutagenesis of the phosphorylated residues to mimic or prevent phosphorylation revealed dramatic effects on kinase activity, growth, conidiation, cell wall stress response, and virulence in both invertebrate and murine infection models. Three-dimensional structural modeling of A. fumigatus PkaC1 substantiated the positive or negative regulatory roles for specific residues. Suppression of PKA activity also led to downregulation of PkaC1 protein levels in an apparent novel negative-feedback mechanism. Taken together, we propose a model in which PkaC1 phosphorylation both positively and negatively modulates its activity. These findings pave the way for future discovery of fungus-specific aspects of this key signaling network. IMPORTANCE Our understanding of signal transduction networks in pathogenic fungi is limited, despite the increase in invasive fungal infections and rising mortality rates in the immunosuppressed patient population. Because PKA is known to be essential for hyphal growth and virulence of A. fumigatus, we sought to identify fungus-specific regulatory mechanisms governing PKA activity. In this study, we identify, for the first time, a novel mechanism for the regulation of PKA signaling in which differential phosphorylation of the PkaC1 catalytic subunit can lead to either positive or negative regulation of activity. Furthermore, we show that inactivation of PKA signaling leads to downregulation of catalytic subunit protein levels in a negative-feedback mechanism distinct from expression patterns previously reported in the yeasts. Our findings represent a divergence in the regulation of PKA signaling in A. fumigatus, which could potentially be exploited as a target and also open the avenue for discovery of fungus-specific downstream effectors of PKA.
Collapse
|
21
|
Effects of heterologous expression of human cyclic nucleotide phosphodiesterase 3A (hPDE3A) on redox regulation in yeast. Biochem J 2016; 473:4205-4225. [PMID: 27647936 DOI: 10.1042/bcj20160572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/11/2023]
Abstract
Oxidative stress plays a pivotal role in pathogenesis of cardiovascular diseases and diabetes; however, the roles of protein kinase A (PKA) and human phosphodiesterase 3A (hPDE3A) remain unknown. Here, we show that yeast expressing wild-type (WT) hPDE3A or K13R hPDE3A (putative ubiquitinylation site mutant) exhibited resistance or sensitivity to exogenous hydrogen peroxide (H2O2), respectively. H2O2-stimulated ROS production was markedly increased in yeast expressing K13R hPDE3A (Oxidative stress Sensitive 1, OxiS1), compared with yeast expressing WT hPDE3A (Oxidative stress Resistant 1, OxiR1). In OxiR1, YAP1 and YAP1-dependent antioxidant genes were up-regulated, accompanied by a reduction in thioredoxin peroxidase. In OxiS1, expression of YAP1 and YAP1-dependent genes was impaired, and the thioredoxin system malfunctioned. H2O2 increased cyclic adenosine monophosphate (cAMP)-hydrolyzing activity of WT hPDE3A, but not K13R hPDE3A, through PKA-dependent phosphorylation of hPDE3A, which was correlated with its ubiquitinylation. The changes in antioxidant gene expression did not directly correlate with differences in cAMP-PKA signaling. Despite differences in their capacities to hydrolyze cAMP, total cAMP levels among OxiR1, OxiS1, and mock were similar; PKA activity, however, was lower in OxiS1 than in OxiR1 or mock. During exposure to H2O2, however, Sch9p activity, a target of Rapamycin complex 1-regulated Rps6 kinase and negative-regulator of PKA, was rapidly reduced in OxiR1, and Tpk1p, a PKA catalytic subunit, was diffusely spread throughout the cytosol, with PKA activation. In OxiS1, Sch9p activity was unchanged during exposure to H2O2, consistent with reduced activation of PKA. These results suggest that, during oxidative stress, TOR-Sch9 signaling might regulate PKA activity, and that post-translational modifications of hPDE3A are critical in its regulation of cellular recovery from oxidative stress.
Collapse
|
22
|
González Bardeci N, Caramelo JJ, Blumenthal DK, Rinaldi J, Rossi S, Moreno S. The PKA regulatory subunit from yeast forms a homotetramer: Low-resolution structure of the N-terminal oligomerization domain. J Struct Biol 2016; 193:141-54. [DOI: 10.1016/j.jsb.2015.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/13/2015] [Accepted: 12/06/2015] [Indexed: 01/23/2023]
|
23
|
Baccarini L, Martínez-Montañés F, Rossi S, Proft M, Portela P. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1329-39. [DOI: 10.1016/j.bbagrm.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 10/23/2022]
|
24
|
Abstract
Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. The role of Snf1 signaling in glucose repression and carbon metabolism in Saccharomyces cerevisae.
Collapse
Affiliation(s)
- Ömur Kayikci
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| |
Collapse
|
25
|
Systematic identification of signal integration by protein kinase A. Proc Natl Acad Sci U S A 2015; 112:4501-6. [PMID: 25831502 DOI: 10.1073/pnas.1409938112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein-protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA.
Collapse
|
26
|
Mony BM, Matthews KR. Assembling the components of the quorum sensing pathway in African trypanosomes. Mol Microbiol 2015; 96:220-32. [PMID: 25630552 PMCID: PMC4403954 DOI: 10.1111/mmi.12949] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2015] [Indexed: 12/14/2022]
Abstract
African trypanosomes, parasites that cause human sleeping sickness, undergo a density-dependent differentiation in the bloodstream of their mammalian hosts. This process is driven by a released parasite-derived factor that causes parasites to accumulate in G1 and become quiescent. This is accompanied by morphological transformation to 'stumpy' forms that are adapted to survival and further development when taken up in the blood meal of tsetse flies, the vector for trypanosomiasis. Although the soluble signal driving differentiation to stumpy forms is unidentified, a recent genome-wide RNAi screen identified many of the intracellular signalling and effector molecules required for the response to this signal. These resemble components of nutritional starvation and quiescence pathways in other eukaryotes, suggesting that parasite development shares similarities with the adaptive quiescence of organisms such as yeasts and Dictyostelium in response to nutritional starvation and stress. Here, the trypanosome signalling pathway is discussed in the context of these conserved pathways and the possible contributions of opposing 'slender retainer' and 'stumpy inducer' arms described. As evolutionarily highly divergent eukaryotes, the organisation and conservation of this developmental pathway can provide insight into the developmental cycle of other protozoan parasites, as well as the adaptive and programmed developmental responses of all eukaryotic cells.
Collapse
Affiliation(s)
- Binny M Mony
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghCharlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghCharlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- *For correspondence. E-mail ; Tel. (+44) 131 651 3639; Fax (+44) 131 651 3670
| |
Collapse
|
27
|
Galello F, Moreno S, Rossi S. Interacting proteins of protein kinase A regulatory subunit in Saccharomyces cerevisiae. J Proteomics 2014; 109:261-75. [DOI: 10.1016/j.jprot.2014.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/20/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022]
|
28
|
Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae. Biochem J 2014; 462:567-79. [DOI: 10.1042/bj20140577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications can modulate kinase protein activity. We show that autophosphorylation of catalytic subunit of PKA Tpk1 upon glucose stimulus increases its catalytic efficiency. Our findings describe a new control layer on PKA activity in response to nutrient availability.
Collapse
|
29
|
Ha CW, Kim K, Chang YJ, Kim B, Huh WK. The β-1,3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae. Nucleic Acids Res 2014; 42:8486-99. [PMID: 24981510 PMCID: PMC4117787 DOI: 10.1093/nar/gku570] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/23/2014] [Accepted: 06/14/2014] [Indexed: 11/24/2022] Open
Abstract
In Saccharomyces cerevisiae, the stability of highly repetitive rDNA array is maintained through transcriptional silencing. Recently, a β-1,3-glucanosyltransferase Gas1 has been shown to play a significant role in the regulation of transcriptional silencing in S. cerevisiae. Here, we show that the gas1Δ mutation increases rDNA silencing in a Sir2-dependent manner. Remarkably, the gas1Δ mutation induces nuclear localization of Msn2/4 and stimulates the expression of PNC1, a gene encoding a nicotinamidase that functions as a Sir2 activator. The lack of enzymatic activity of Gas1 or treatment with a cell wall-damaging agent, Congo red, exhibits effects similar to those of the gas1Δ mutation. Furthermore, the loss of Gas1 or Congo red treatment lowers the cAMP-dependent protein kinase (PKA) activity in a cell wall integrity MAP kinase Slt2-dependent manner. Collectively, our results suggest that the dysfunction of Gas1 plays a positive role in the maintenance of rDNA integrity by decreasing PKA activity and inducing the accumulation of Msn2/4 in the nucleus. It seems that nuclear-localized Msn2/4 stimulate the expression of Pnc1, thereby enhancing the association of Sir2 with rDNA and promoting rDNA stability.
Collapse
Affiliation(s)
- Cheol Woong Ha
- Department of Biological Sciences and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea
| | - Kwantae Kim
- Department of Biological Sciences and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea
| | - Yeon Ji Chang
- Department of Biological Sciences and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea
| | - Bongkeun Kim
- Department of Biological Sciences and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
30
|
Rødkaer SV, Faergeman NJ. Glucose- and nitrogen sensing and regulatory mechanisms inSaccharomyces cerevisiae. FEMS Yeast Res 2014; 14:683-96. [DOI: 10.1111/1567-1364.12157] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Steven V. Rødkaer
- Villum Center for Bioanalytical Sciences; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense M Denmark
| | - Nils J. Faergeman
- Villum Center for Bioanalytical Sciences; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense M Denmark
| |
Collapse
|
31
|
Pautasso C, Rossi S. Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: Autoregulatory role of the kinase A activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:275-87. [DOI: 10.1016/j.bbagrm.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/27/2022]
|
32
|
Abstract
For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
33
|
Protein kinase A is part of a mechanism that regulates nuclear reimport of the nuclear tRNA export receptors Los1p and Msn5p. EUKARYOTIC CELL 2013; 13:209-30. [PMID: 24297441 DOI: 10.1128/ec.00214-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.
Collapse
|
34
|
Schaekel A, Desai PR, Ernst JF. Morphogenesis-regulated localization of protein kinase A to genomic sites in Candida albicans. BMC Genomics 2013; 14:842. [PMID: 24289325 PMCID: PMC4046665 DOI: 10.1186/1471-2164-14-842] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human fungal pathogen Candida albicans is able to undergo morphogenesis from a yeast to a hyphal growth form. Protein kinase A (PKA) isoforms Tpk1 and Tpk2 promote hyphal growth in a signalling pathway via the transcription factor Efg1. RESULTS C. albicans strains producing epitope-tagged Tpk1 or Tpk2 were used in genome-wide chromatin immunoprecipitation on chip (ChIP chip) to reveal genomic binding sites. During yeast growth, both PKA isoforms were situated primarily within ORFs but moved to promoter regions shortly after hyphal induction. Binding sequences for Tpk2 greatly exceeded Tpk1 sites and did not coincide with binding of the PKA regulatory subunit Bcy1. Consensus binding sequences for Tpk2 within ORFs included ACCAC and CAGCA motifs that appeared to bias codon usage within the binding regions. Promoter residency of Tpk2 correlated with the transcript level of the corresponding gene during hyphal morphogenesis and occurred near Efg1 binding sites, mainly on genes encoding regulators of morphogenesis. CONCLUSIONS PKA isoforms change their genomic binding sites from ORF to promoter regions during yeast-hyphal morphogenesis. Tpk2 binds preferentially to promoters of genes encoding regulators of cellular morphogenesis.
Collapse
Affiliation(s)
| | | | - Joachim F Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| |
Collapse
|
35
|
Nuclear Ras2-GTP controls invasive growth in Saccharomyces cerevisiae. PLoS One 2013; 8:e79274. [PMID: 24244466 PMCID: PMC3828362 DOI: 10.1371/journal.pone.0079274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Using an eGFP-RBD3 probe, which specifically binds Ras-GTP, we recently showed that the fluorescent probe was localized to the plasma membrane and to the nucleus in wild type cells growing exponentially on glucose medium, indicating the presence of active Ras in these cellular compartments. To investigate the nuclear function of Ras-GTP, we generated a strain where Ras2 is fused to the nuclear export signal (NES) from the HIV virus, in order to exclude this protein from the nucleus. Our results show that nuclear active Ras2 is required for invasive growth development in haploid yeast, while the expression of the NES-Ras2 protein does not cause growth defects either on fermentable or non-fermentable carbon sources and does not influence protein kinase A (PKA) activity related phenotypes analysed. Moreover, we show that the cAMP/PKA pathway controls invasive growth influencing the localization of active Ras. In particular, we show that PKA activity plays a role in the localization of active Ras and influences the ability of the cells to invade the agar: high PKA activity leads to a predominant nuclear accumulation of active Ras and induces invasive growth, while low PKA activity leads to plasma membrane localization of active Ras and to a defective invasive growth phenotype.
Collapse
|
36
|
The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae. Biochem J 2012; 448:307-20. [DOI: 10.1042/bj20121061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PDK1 (phosphoinositide-dependent protein kinase 1) phosphorylates and activates PKA (cAMP-dependent protein kinase) in vitro. Docking of the HM (hydrophobic motif) in the C-terminal tail of the PKA catalytic subunits on to the PIF (PDK1-interacting fragment) pocket of PDK1 is a critical step in this activation process. However, PDK1 regulation of PKA in vivo remains controversial. Saccharomyces cerevisiae contains three PKA catalytic subunits, TPK1, TPK2 and TPK3. We demonstrate that Pkh [PKB (protein kinase B)-activating kinase homologue] protein kinases phosphorylate the activation loop of each Tpk in vivo with various efficiencies. Pkh inactivation reduces the interaction of each catalytic subunit with the regulatory subunit Bcy1 without affecting the specific kinase activity of PKA. Comparative analysis of the in vitro interaction and phosphorylation of Tpks by Pkh1 shows that Tpk1 and Tpk2 interact with Pkh1 through an HM–PIF pocket interaction. Unlike Tpk1, mutagenesis of the activation loop site in Tpk2 does not abolish in vitro phosphorylation, suggesting that Tpk2 contains other, as yet uncharacterized, Pkh1 target sites. Tpk3 is poorly phosphorylated on its activation loop site, and this is due to the weak interaction of Tpk3 with Pkh1 because of the atypical HM found in Tpk3. In conclusion, the results of the present study show that Pkh protein kinases contribute to the divergent regulation of the Tpk catalytic subunits.
Collapse
|
37
|
Schepers W, Van Zeebroeck G, Pinkse M, Verhaert P, Thevelein JM. In vivo phosphorylation of Ser21 and Ser83 during nutrient-induced activation of the yeast protein kinase A (PKA) target trehalase. J Biol Chem 2012; 287:44130-42. [PMID: 23155055 PMCID: PMC3531729 DOI: 10.1074/jbc.m112.421503] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The readdition of an essential nutrient to starved, fermenting cells of the yeast Saccharomyces cerevisiae triggers rapid activation of the protein kinase A (PKA) pathway. Trehalase is activated 5–10-fold within minutes and has been used as a convenient reporter for rapid activation of PKA in vivo. Although trehalase can be phosphorylated and activated by PKA in vitro, demonstration of phosphorylation during nutrient activation in vivo has been lacking. We now show, using phosphospecific antibodies, that glucose and nitrogen activation of trehalase in vivo is associated with phosphorylation of Ser21 and Ser83. Unexpectedly, mutants with reduced PKA activity show constitutive phosphorylation despite reduced trehalase activation. The same phenotype was observed upon deletion of the catalytic subunits of yeast protein phosphatase 2A, suggesting that lower PKA activity causes reduced trehalase dephosphorylation. Hence, phosphorylation of trehalase in vivo is not sufficient for activation. Deletion of the inhibitor Dcs1 causes constitutive trehalase activation and phosphorylation. It also enhances binding of trehalase to the 14-3-3 proteins Bmh1 and Bmh2, suggesting that Dcs1 inhibits by preventing 14-3-3 binding. Deletion of Bmh1 and Bmh2 eliminates both trehalase activation and phosphorylation. Our results reveal that trehalase activation in vivo is associated with phosphorylation of typical PKA sites and thus establish the enzyme as a reliable read-out for nutrient activation of PKA in vivo.
Collapse
Affiliation(s)
- Wim Schepers
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | | | | | | | | |
Collapse
|
38
|
Broggi S, Martegani E, Colombo S. Live-cell imaging of endogenous Ras-GTP shows predominant Ras activation at the plasma membrane and in the nucleus in Saccharomyces cerevisiae. Int J Biochem Cell Biol 2012; 45:384-94. [PMID: 23127800 DOI: 10.1016/j.biocel.2012.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/02/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
Abstract
Ras proteins function as a point of convergence for different signalling pathways in eukaryotes and are involved in many cellular responses; their different subcellular locations could regulate distinct functions. To investigate the localization of active Ras in vivo in Saccharomyces cerevisiae, we expressed a probe consisting of a GFP fusion with a trimeric Ras binding domain of Raf1 (eGFP-RBD3), which binds Ras-GTP with a much higher affinity than Ras-GDP. Our results show that in wild type cells active Ras accumulates mainly at the plasma membrane and in the nucleus during growth on medium containing glucose, while it accumulates mainly in mitochondria in wild type glucose-starved cells and relocalizes to the plasma membrane and to the nucleus upon addition of this sugar. A similar pattern is observed in a strain deleted in the CYR1 gene indicating that the absence of adenylate cyclase does not impair the localization of Ras-GTP. Remarkably, in a gpa2Δ, but not in a gpr1Δ mutant, active Ras accumulates in internal membranes and mitochondria, both when cells are growing on glucose medium or are starved, indicating that Gpa2, but not Gpr1 is required for the recruitment of Ras-GTP at the plasma membrane and in the nucleus. Moreover, deletion of both HXK1 and HXK2 also causes a mitochondrial localization of the probe, which relocalizes to the plasma membrane and to the nucleus upon expression of HXK2 on a centromeric plasmid, suggesting that this kinase is involved in the proper localization of active Ras.
Collapse
Affiliation(s)
- Serena Broggi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
39
|
Interactions between the kinetochore complex and the protein kinase A pathway in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2012; 2:831-41. [PMID: 22870406 PMCID: PMC3385989 DOI: 10.1534/g3.112.002675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/16/2012] [Indexed: 11/28/2022]
Abstract
The kinetochore is a large structure composed of multiple protein subcomplexes that connect chromosomes to spindle microtubules to enable accurate chromosome segregation. Significant advances have been made in the identification of kinetochore proteins and elucidation of kinetochore structure; however, comparatively little is known about how cellular signals integrate with kinetochore function. In the budding yeast Saccharomyces cerevisiae, the cyclic AMP protein kinase A signaling pathway promotes cellular growth in response to glucose. In this study, we find that decreasing protein kinase A activity, either by overexpressing negative regulators of the pathway or deleting the upstream effector Ras2, improves the viability of ipl1 and spc24 kinetochore mutants. Ipl1/Aurora B is a highly conserved kinase that corrects attachment of sister kinetochores that have attached to the same spindle pole, whereas Spc24 is a component of the conserved Ndc80 kinetochore complex that attaches directly to microtubules. Unexpectedly, we find that kinetochore mutants have increased phosphorylation levels of protein kinase A substrates, suggesting that the cyclic AMP protein kinase A signaling pathway is stimulated. The increase in protein kinase A activity in kinetochore mutants is not induced by activation of the spindle checkpoint or a metaphase delay because protein kinase A activity remains constant during an unperturbed cell cycle. Finally, we show that lowering protein kinase A activity can rescue the chromosome loss defect of the inner kinetochore ndc10 mutant. Overall, our data suggest that the increased protein kinase A activity in kinetochore mutants is detrimental to cellular growth and chromosome transmission fidelity.
Collapse
|
40
|
Zhang A, Gao W. Mechanisms of protein kinase Sch9 regulating Bcy1 in Saccharomyces cerevisiae. FEMS Microbiol Lett 2012; 331:10-6. [PMID: 22428880 DOI: 10.1111/j.1574-6968.2012.02552.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/17/2012] [Accepted: 03/05/2012] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated the mechanisms of Sch9 regulating the localization and phosphorylation of Bcy1. Our research indicated that Sch9 regulated localization of Bcy1 via Zds1 for the following reasons: (1) deletions of SCH9 or ZDS1 both caused nuclear localization of Bcy1; (2) Sch9 and Zds1 interacted physically; (3) overexpression of ZDS1 led to a significantly increased cytoplasmic localization of Bcy1 in sch9Δ cells, whereas overexpression of SCH9 had no visible effect on cytoplasmic localization of Bcy1 in zds1Δ cells. Our study also suggested that Sch9 regulated phosphorylation of Bcy1 via Yak1.
Collapse
Affiliation(s)
- Aili Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | | |
Collapse
|
41
|
|
42
|
Zhang A, Shen Y, Gao W, Dong J. Role of Sch9 in regulating Ras-cAMP signal pathway in Saccharomyces cerevisiae. FEBS Lett 2011; 585:3026-32. [PMID: 21888905 DOI: 10.1016/j.febslet.2011.08.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/04/2011] [Accepted: 08/16/2011] [Indexed: 11/19/2022]
Abstract
In Saccharomyces cerevisiae PKA plays a major role in regulating cell growth, metabolism, and stress resistance. We report that Sch9 regulates PKA directly and SCH9 deletion enhances PKA activity by showing that: (1) Bcy1 predominately localized in the nucleus in glycerol-grown sch9Δ cells; (2) large part of the catalytic subunits of PKA transferred from the nucleus to the cytoplasm in sch9Δ cells; (3) higher protein stability of Tpk2 resulted in higher protein level of Tpk2 in sch9Δ than in wild type cells. Our investigations suggest that Sch9 regulates phosphorylation of Bcy1. We also observed hyper-phosphorylation of Cdc25 in sch9Δ, in contrast to the tpk2Δ and tpk2Δsch9Δ mutants, suggesting that feedback inhibition of PKA on Cdc25 is through Tpk2.
Collapse
Affiliation(s)
- Aili Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | | | | | | |
Collapse
|
43
|
Budhwar R, Fang G, Hirsch JP. Kelch repeat proteins control yeast PKA activity in response to nutrient availability. Cell Cycle 2011; 10:767-70. [PMID: 21311222 DOI: 10.4161/cc.10.5.14828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Regulation of protein kinase A (PKA) by binding of cAMP to the regulatory subunit and the resulting release of the active catalytic subunit is a very well established mechanism of kinase activation. We have shown recently that PKA in budding yeast is also subject to an additional level of regulation that that modulates its activity in response to nutrient availability. Nutrient regulation of PKA activity requires a pair of proteins, Gpb1 and Gpb2, that contain several kelch repeats, a sequence motif that predicts that they fold into a β-propeller structure. The regulatory process mediated by Gpb1 and Gpb2 causes an increase in the stability and phosphorylation of the PKA regulatory subunit Bcy1 in response to low extracellular glucose concentrations. Phosphorylation of serine-145 of Bcy1 controls its stability, and other phosphorylation events at the cluster of serines at positions 74-84 correlate with changes in nutrient availability. Here we present data consistent with a model in which the effects of Gpb1 and Gpb2 on Bcy1 are an indirect consequence of their primary effects on the PKA catalytic subunits.
Collapse
Affiliation(s)
- Roli Budhwar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
44
|
Hu Y, Liu E, Bai X, Zhang A. The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:177-87. [PMID: 20059552 DOI: 10.1111/j.1567-1364.2009.00598.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The genome of the yeast Saccharomyces cerevisiae encodes two cyclic AMP (cAMP) phosphodiesterases, a low-affinity one, Pde1, and a high-affinity one, Pde2. Pde1 has been ascribed a function for downregulating agonist-induced cAMP accumulation in a protein kinase A (PKA)-governed negative feedback loop, whereas Pde2 controls the basal cAMP level in the cell. Here we show that PKA regulates the localization and protein concentration of Pde2. Pde2 is accumulated in the nucleus in wild-type cells growing on glucose, or in strains with hyperactive PKA. In contrast, in derepressed wild-type cells or cells with attenuated PKA activity, Pde2 is distributed over the nucleus and cytoplasm. We also show evidence indicating that the Pde2 protein level is positively correlated with PKA activity. The increase in the Pde2 protein level in high-PKA strains and in cells growing on glucose was due to its increased half-life. These results suggest that, like its low-affinity counterpart, the high-affinity phosphodiesterase may also play an important role in the PKA-controlled feedback inhibition of intracellular cAMP.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | | | | | | |
Collapse
|
45
|
Budhwar R, Lu A, Hirsch JP. Nutrient control of yeast PKA activity involves opposing effects on phosphorylation of the Bcy1 regulatory subunit. Mol Biol Cell 2010; 21:3749-58. [PMID: 20826609 PMCID: PMC2965690 DOI: 10.1091/mbc.e10-05-0388] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Kelch repeat proteins Gpb1 and Gpb2 control yeast PKA activity in response to nutrients by stimulating phosphorylation of the Bcy1 regulatory subunit. Gpb1 and Gpb2 function by blocking inhibition of Bcy1 phosphorylation by PKA catalytic subunits. Phosphorylated Bcy1 is more stable and is a more effective inhibitor of PKA activity. GPB1 and GPB2 encode kelch repeat-containing proteins that regulate protein kinase A (PKA) in yeast by a cAMP-independent process. Here we show that Gpb1 and Gpb2 stimulate phosphorylation of PKA regulatory subunit Bcy1 in low glucose concentrations, thereby promoting the inhibitory function of Bcy1 when nutrients are scarce and PKA activity is expected to be low. Gpb1 and Gpb2 stimulate Bcy1 phosphorylation at an unknown site, and this modification stabilizes Bcy1 that has been phosphorylated by PKA catalytic subunits at serine-145. The BCY1S145A mutation eliminates the effect of gpb1Δ gpb2Δ on Bcy1 stability but maintains their effect on phosphorylation and signaling, indicating that modulation of PKA activity by Gpb1 and Gpb2 is not solely due to increased levels of Bcy1. Inhibition of PKA catalytic subunits that are ATP analog-sensitive causes increased Bcy1 phosphorylation at the unknown site in high glucose. When PKA is inhibited, gpb1Δ gpb2Δ mutations have no effect on Bcy1 phosphorylation. Therefore, Gpb1 and Gpb2 oppose PKA activity by blocking the ability of PKA to inhibit Bcy1 phosphorylation at a site other than serine-145. Stimulation of Bcy1 phosphorylation by Gpb1 and Gpb2 produces a form of Bcy1 that is more stable and is a more effective PKA inhibitor.
Collapse
Affiliation(s)
- Roli Budhwar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
46
|
Soulard A, Cremonesi A, Moes S, Schütz F, Jenö P, Hall MN. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell 2010; 21:3475-86. [PMID: 20702584 PMCID: PMC2947482 DOI: 10.1091/mbc.e10-03-0182] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.
Collapse
|
47
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
48
|
Chou JY, Leu JY. Speciation through cytonuclear incompatibility: Insights from yeast and implications for higher eukaryotes. Bioessays 2010; 32:401-11. [DOI: 10.1002/bies.200900162] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
50
|
Tudisca V, Recouvreux V, Moreno S, Boy-Marcotte E, Jacquet M, Portela P. Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions. Eur J Cell Biol 2010; 89:339-48. [DOI: 10.1016/j.ejcb.2009.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/24/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022] Open
|