1
|
Zhai J, Qi X, Cai L, Liu Y, Tang H, Xie L, Wang J. NNKcat: deep neural network to predict catalytic constants (Kcat) by integrating protein sequence and substrate structure with enhanced data imbalance handling. Brief Bioinform 2025; 26:bbaf212. [PMID: 40370097 PMCID: PMC12078937 DOI: 10.1093/bib/bbaf212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Catalytic constant (Kcat) is to describe the efficiency of catalyzing reactions. The Kcat value of an enzyme-substrate pair indicates the rate an enzyme converts saturated substrates into product during the catalytic process. However, it is challenging to construct robust prediction models for this important property. Most of the existing models, including the one recently published by Nature Catalysis (Li et al.), are suffering from the overfitting issue. In this study, we proposed a novel protocol to construct Kcat prediction models, introducing an intermedia step to separately develop substrate and protein processors. The substrate processor leverages analyzing Simplified Molecular Input Line Entry System (SMILES) strings using a graph neural network model, attentive FP, while the protein processor abstracts protein sequence information utilizing long short-term memory architecture. This protocol not only mitigates the impact of data imbalance in the original dataset but also provides greater flexibility in customizing the general-purpose Kcat prediction model to enhance the prediction accuracy for specific enzyme classes. Our general-purpose Kcat prediction model demonstrates significantly enhanced stability and slightly better accuracy (R2 value of 0.54 versus 0.50) in comparison with Li et al.'s model using the same dataset. Additionally, our modeling protocol enables personalization of fine-tuning the general-purpose Kcat model for specific enzyme categories through focused learning. Using Cytochrome P450 (CYP450) enzymes as a case study, we achieved the best R2 value of 0.64 for the focused model. The high-quality performance and expandability of the model guarantee its broad applications in enzyme engineering and drug research & development.
Collapse
Affiliation(s)
- Jingchen Zhai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Xiguang Qi
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Lianjin Cai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Yue Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Haocheng Tang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, 695 Park Ave, New York, NY 10065, United States
- Helen & Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, 413 E 69th St, New York, NY 10021, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| |
Collapse
|
2
|
Gering HE, Manley OM, Holwerda AJ, Grant JL, Ratigan SC, Makris TM. Regulation of ferryl reactivity by the cytochrome P450 decarboxylase OleT. J Inorg Biochem 2025; 270:112912. [PMID: 40222261 DOI: 10.1016/j.jinorgbio.2025.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
The cytochrome P450 OleT catalyzes the decarboxylation of long-chain fatty acid substrates to produce terminal alkenes using hydrogen peroxide as a co-substrate. The facile activation of peroxide to form Compound I in the first step of the reaction, and subsequent CC bond cleavage mediated by Compound II, provides a unique opportunity to visualize both ferryl intermediates using transient kinetic approaches. Analysis of the Arrhenius behavior yields activation barriers of ∼6 kcal/mol and ∼ 18 kcal/mol for the decay of Compound I and Compound II respectively. The influence of the secondary coordination sphere, probed through site-directed mutagenesis approaches, suggests that restriction of the donor-acceptor distance contributes to the reactivity of Compound I. The reactivity of Compound II was further probed using kinetic solvent isotope effect approaches, confirming that the large barrier owes to a proton-gated mechanism in the decarboxylation reaction coordinate. Hydrogen-bonding to an active-site histidine (H85) in the distal pocket plays a key role in this process.
Collapse
Affiliation(s)
- Hannah E Gering
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Olivia M Manley
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Alexis J Holwerda
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Job L Grant
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Steven C Ratigan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Thomas M Makris
- Department of Structural and Molecular Biochemistry, North Carolina State University, Raleigh, NC 27695, United States; Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
3
|
Rade LL, Generoso WC, Das S, Souza AS, Silveira RL, Avila MC, Vieira PS, Miyamoto RY, Lima ABB, Aricetti JA, de Melo RR, Milan N, Persinoti GF, Bonomi AMFLJ, Murakami MT, Makris TM, Zanphorlin LM. Dimer-assisted mechanism of (un)saturated fatty acid decarboxylation for alkene production. Proc Natl Acad Sci U S A 2023; 120:e2221483120. [PMID: 37216508 PMCID: PMC10235961 DOI: 10.1073/pnas.2221483120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.
Collapse
Affiliation(s)
- Leticia L. Rade
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Wesley C. Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Suman Das
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC27695-7622
| | - Amanda S. Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Rodrigo L. Silveira
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro21941-594, Brazil
| | - Mayara C. Avila
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Plinio S. Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Renan Y. Miyamoto
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Ana B. B. Lima
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro21941-594, Brazil
| | - Juliana A. Aricetti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Ricardo R. de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Natalia Milan
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Gabriela F. Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Antonio M. F. L. J. Bonomi
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Mario T. Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| | - Thomas M. Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC27695-7622
| | - Leticia M. Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas13083-100, Brazil
| |
Collapse
|
4
|
Suzuki K, Stanfield JK, Omura K, Shisaka Y, Ariyasu S, Kasai C, Aiba Y, Sugimoto H, Shoji O. A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: Insight into the Stereoselectivity of P450-Catalysed Oxidations. Angew Chem Int Ed Engl 2023; 62:e202215706. [PMID: 36519803 DOI: 10.1002/anie.202215706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Catching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity. This structure was attained by incorporation of the stable Cpd I mimic oxomolybdenum mesoporphyrin IX into P450BM3 in the presence of styrene. The orientation of styrene to the Mo-oxo species in the crystal structures sheds light onto the dynamics involved in the rotation of styrene to present its vinyl group to Cpd I. This method serves as a powerful tool for predicting and modelling the stereoselectivity of P450 reactions.
Collapse
Affiliation(s)
- Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Joshua Kyle Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuma Shisaka
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Chie Kasai
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Centre, 1-1-1, Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
5
|
Collins DP, Johnson E, Coulter ED, Beharry Z, Ballou DP, Dawson JH. Caught in the act: Monitoring OO bond cleavage in Acylperoxoferric cytochrome P450cam to form compound I in real time. J Inorg Biochem 2022; 236:111949. [PMID: 36028338 DOI: 10.1016/j.jinorgbio.2022.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
While monitoring the reaction of ferric cytochrome P450cam (Cyp101) with substituted peroxybenzoic acids using rapid-scanning, stopped-flow (RSSF) spectroscopy, an intermediate appears en route to formation of the high-valent moiety known as Compound I [Fe(IV)=O/porphyrin radical cation] that is thought to be the key catalytic species for O-atom transfer to substrate. We have previously suggested (Spolitak, T., Dawson, J.H., Ballou, D.P., J. Biol. Chem.2005, 280, 20,300-20,309) that this species is an acylperoxo-ferric heme adduct that subsequently undergoes OO bond cleavage to generate Compound I. Singular value decomposition analysis of the RSSF data for formation of this intermediate shows that the energy of its Soret absorption peak is sensitive to the electron donor properties of the aryl substituents on the peracid. A linear Hammett correlation plot is seen for the energy of the Soret absorption peak vs. the Hammett σ constant. This correlation requires that the aryl substituents remain as part of the ligand bound to the heme iron, providing direct evidence that the adduct is indeed a ferric acylperoxo derivative. Linear Hammett correlation plots are also seen for both the rate of formation of the intermediate as well as for its conversion to Compound I. It is proposed that the electron donating/withdrawing properties of the aryl-bound substituents affect the electrophilic nature for binding substrate, changing the observed rate of formation for the acylperoxo intermediate, as well as the propensity and stability of the substituted benzoic acid to serve as the leaving group during OO bond cleavage yielding Compound I.
Collapse
Affiliation(s)
- Daniel P Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Johnson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Eric D Coulter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Zanna Beharry
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - David P Ballou
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| | - John H Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
6
|
Zhang C, Gilardi G, Di Nardo G. Depicting the proton relay network in human aromatase: New insights into the role of the alcohol-acid pair. Protein Sci 2022; 31:e4389. [PMID: 36040260 PMCID: PMC9366932 DOI: 10.1002/pro.4389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Human aromatase is the cytochrome P450 catalyzing the conversion of androgens into estrogens in a three steps reaction essential to maintain steroid hormones balance. Here we report the capture and spectroscopic characterization of its compound I (Cpd I), the main reactive species in cytochromes P450. The typical spectroscopic transitions indicating the formation of Cpd I are detected within 0.8 s when mixing aromatase with meta-chloroperoxybenzoic acid. The estrogen product is obtained from the same reaction mixture, demonstrating the involvement of Cpd I in aromatization reaction. Site-directed mutagenesis is applied to the acid-alcohol pair D309 and T310 and to R192, predicted to be part of the proton relay network. Mutants D309N and R192Q do not lead to Cpd I with an associated loss of activity, confirming that these residues are involved in proton delivery for Cpd I generation. Cpd I is captured for T310A mutant and shows 2.9- and 4.4-fold faster rates of formation and decay, respectively, compared to wild-type (WT). However, its activity is lower than the WT and a larger amount of H2 O2 is produced during catalysis, indicating that T310 has an essential role in proton gating for generation of Cpd 0 and Cpd I and for their stabilization. The data provide new evidences on the role of threonine belonging to the conserved "acid-alcohol" pair and known to be crucial for oxygen activation in cytochromes P450.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems BiologyUniversity of TurinTurin10123Italy
| |
Collapse
|
7
|
Omura K, Aiba Y, Suzuki K, Ariyasu S, Sugimoto H, Shoji O. A P450 Harboring Manganese Protoporphyrin IX Generates a Manganese Analogue of Compound I by Activating Dioxygen. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
8
|
Sun H, Wu H, Teng Q, Liu Y, Wang H, Wang ZG. Enzyme-Mimicking Materials from Designed Self-Assembly of Lysine-Rich Peptides and G-Quadruplex DNA/Hemin DNAzyme: Charge Effect of the Key Residues on the Catalytic Functions. Biomacromolecules 2022; 23:3469-3476. [PMID: 35901109 DOI: 10.1021/acs.biomac.2c00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In enzymatic active sites, the essential functional groups are spatially arranged as a result of the enzyme three-dimensional folding, which leads to remarkable catalytic properties. We are inspired to self-assemble the polylysine peptides with guanine-rich DNA and hemin as cofactor to fabricate the peroxidase-mimicking catalytic nanomaterials. The DNA can fold into G-quadruplex to provide a supramolecular scaffold and a nucleobase for supporting and coordinating hemin, and the polylysine provides amine as distal groups to promote the H2O2 adsorption to the iron of hemin. The polylysine and DNA components synergistically accelerated the hemin-catalyzed reactions, and the complex containing ε-polylysine exhibited higher activity than α-polylysine. This activity difference is attributed to the higher pKa value and more susceptible protonation of amine of ε-polylysine than α-polylysine. The ε-polylysine/DNA/hemin had similar coordination states of hemin and conformations of the components to α-polylysine/DNA/hemin but accelerated the formation of the intermediate compound I faster than α-polylysine. Theoretical simulation reveals that the unprotonated NH2 behaved like a base catalyst, similar to His-42 residue in the natural heme pocket, while the protonated NH3+ acted as an acid, which indicated that the base catalyst on the distal side of the hemin pocket is more active than the acid. This work provides an avenue to control the distribution of the catalytic residues in an enzyme-like active site and to understand the roles of the key residues of native enzymes.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Nastke A, Gröger H. Biocatalytic Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Gray HB, Winkler JR. Functional and protective hole hopping in metalloenzymes. Chem Sci 2021; 12:13988-14003. [PMID: 34760183 PMCID: PMC8565380 DOI: 10.1039/d1sc04286f] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
Electrons can tunnel through proteins in microseconds with a modest release of free energy over distances in the 15 to 20 Å range. To span greater distances, or to move faster, multiple charge transfers (hops) are required. When one of the reactants is a strong oxidant, it is convenient to consider the movement of a positively charged "hole" in a direction opposite to that of the electron. Hole hopping along chains of tryptophan (Trp) and tyrosine (Tyr) residues is a critical function in several metalloenzymes that generate high-potential intermediates by reactions with O2 or H2O2, or by activation with visible light. Examination of the protein structural database revealed that Tyr/Trp chains are common protein structural elements, particularly among enzymes that react with O2 and H2O2. In many cases these chains may serve a protective role in metalloenzymes by deactivating high-potential reactive intermediates formed in uncoupled catalytic turnover.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology 1200 E California Boulevard Pasadena CA 19925 USA
| |
Collapse
|
11
|
Nguyen KT, Nguyen NL, Milhim M, Nguyen VT, Lai THN, Nguyen HH, Le TTX, Phan TTM, Bernhardt R. Characterization of a thermophilic cytochrome P450 of the CYP203A subfamily from Binh Chau hot spring in Vietnam. FEBS Open Bio 2020; 11:124-132. [PMID: 33176055 PMCID: PMC7780096 DOI: 10.1002/2211-5463.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cytochromes P450 (CYPs or P450s) comprise a superfamily of heme-containing monooxygenases that are involved in a variety of biological processes. CYPs have broad utilities in industry, but most exhibit low thermostability, limiting their use on an industrial scale. Highly thermostable enzymes can be obtained from thermophiles in geothermal areas, including hot springs, offshore oil-producing wells and volcanoes. Here, we report the identification of a gene encoding for a thermophilic CYP from the Binh Chau hot spring metagenomic database, which was designated as P450-T2. The deduced amino acid sequence showed the highest identity of 73.15% with CYP203A1 of Rhodopseudomonas palustris, supporting that P450-T2 is a member of the CYP203A subfamily. Recombinant protein expression yielded 541 nm. The optimal temperature and pH of P450-T2 were 50 °C and 8.0, respectively. The half-life of P450-T2 was 50.2 min at 50 °C, and its melting temperature was 56.80 ± 0.08 °C. It was found to accept electrons from all tested redox partners systems, with BmCPR-Fdx2 being the most effective partner. Screening for putative substrates revealed binding of phenolic compounds, such as l-mimosine and emodin, suggesting a potential application of this new thermophilic P450 in the production of the corresponding hydroxylated products.
Collapse
Affiliation(s)
- Kim-Thoa Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc-Lan Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mohammed Milhim
- Department of Biochemistry, Saarland University, Saarbrucken, Germany
| | - Van-Tung Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi-Hong-Nhung Lai
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huy-Hoang Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi-Thanh-Xuan Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi-Tuyet-Minh Phan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrucken, Germany
| |
Collapse
|
12
|
Visible light generation of high-valent metal-oxo intermediates and mechanistic insights into catalytic oxidations. J Inorg Biochem 2020; 212:111246. [PMID: 33059321 DOI: 10.1016/j.jinorgbio.2020.111246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 11/21/2022]
Abstract
High-valent metal-oxo complexes play central roles as active oxygen atom transfer (OAT) agents in many enzymatic and synthetic oxidation catalysis. This review focuses on our recent advances in application of photochemical approaches to probe the oxidizing metal-oxo species with different metals and macrocyclic ligands. Under visible light irradiation, a variety of important metal-oxo species including iron-oxo porphyrins, manganese-oxo porphyrin/corroles, ruthenium-oxo porphyrins, and chromium-oxo salens have been successfully generated. Kinetical studies in real time have provided mechanistic insights as to the reactivity and reaction pathways of the metal-oxo intermediates in their oxidation reactions. In photo-induced ligand cleavage reactions, metals in n+ oxidation state with the oxygen-containing ligands bromate, chlorate, or nitrites were photolyzed. Homolytic cleavage of the O-X bond in the ligand gives (n + 1)+ oxidation state metal-oxo species, and heterolytic cleavage gives (n + 2)+ oxidation state metal-oxo species. In photo-disproportionation reactions, reactive Mn+1-oxo species can be formed by photolysis of μ-oxo dimeric Mn+ complexes with the concomitant formation of Mn-1 products. Importantly, the oxidation of Mn-1 products by molecular oxygen (O2) to regenerate the μ-oxo dimeric Mn+ complexes in photo-disproportionation reactions represents an attractive and green catalytic cycle for the development of photocatalytic aerobic oxidations.
Collapse
|
13
|
Watanabe Y, Aiba Y, Ariyasu S, Abe S. Molecular Design and Regulation of Metalloenzyme Activities through Two Novel Approaches: Ferritin and P450s. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Abe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Su Z, Horner JH, Newcomb M. Cytochrome P450 119 Compounds I Formed by Chemical Oxidation and Photooxidation Are the Same Species. Chemistry 2019; 25:14015-14020. [PMID: 23108625 PMCID: PMC3930626 DOI: 10.1002/chem.201202254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Indexed: 11/07/2022]
Abstract
Compound I from cytochrome P450 119 prepared by the photooxidation method involving peroxynitrite oxidation of the resting enzyme to Compound II followed by photooxidation to Compound I was compared to Compound I generated by m-chloroperoxybenzoic acid (MCPBA) oxidation of the resting enzyme. The two methods gave the same UV/Visible spectra, the same products from oxidations of lauric acid and palmitic acid and their (ω-2,ω-2,ω-3,ω-3)-tetradeuterated analogues, and the same kinetics for oxidations of lauric acid and caprylic acid. The experimental identities between the transients produced by the two methods leave no doubt that the same Compound I species is formed by the two methods.
Collapse
Affiliation(s)
- Zhi Su
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60617 U.S.A, Fax: (+1) 312-996-0431
| | - John H. Horner
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60617 U.S.A, Fax: (+1) 312-996-0431
| | - Martin Newcomb
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60617 U.S.A, Fax: (+1) 312-996-0431
| |
Collapse
|
15
|
Morimoto Y, Shimaoka Y, Ishimizu Y, Fujii H, Itoh S. Direct Observation of Primary C−H Bond Oxidation by an Oxido‐Iron(IV) Porphyrin π‐Radical Cation Complex in a Fluorinated Carbon Solvent. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuma Morimoto
- Department of Material and Life Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yuki Shimaoka
- Department of Material and Life Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yuri Ishimizu
- Department of Chemistry Graduate School of Humanities and Sciences Nara Women's University Kitauoyanishi Nara 630-8506 Japan
| | - Hiroshi Fujii
- Department of Chemistry Graduate School of Humanities and Sciences Nara Women's University Kitauoyanishi Nara 630-8506 Japan
| | - Shinobu Itoh
- Department of Material and Life Science Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
16
|
Morimoto Y, Shimaoka Y, Ishimizu Y, Fujii H, Itoh S. Direct Observation of Primary C-H Bond Oxidation by an Oxido-Iron(IV) Porphyrin π-Radical Cation Complex in a Fluorinated Carbon Solvent. Angew Chem Int Ed Engl 2019; 58:10863-10866. [PMID: 31119841 DOI: 10.1002/anie.201901608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/22/2019] [Indexed: 12/23/2022]
Abstract
Oxido-iron(IV) porphyrin π-radical cation species are involved in a variety of heme-containing enzymes and have characteristic oxidation states consisting of a high-valent iron center and a π-conjugated macrocyclic ligand. However, the short lifetime of the complex has hampered detailed reactivity studies. Reported herein is a remarkable increase in the lifetime (80 s at 10 °C) of FeIV (TMP+. )(O)(Cl) (2; TMP=5,10,15,20-tetramesitylporphyrin dianion), produced by the oxidation of FeIII (TMP)(Cl) (1) by ozone in α,α,α-trifluorotoluene (TFT). The lifetime is 720 times longer compared to that of the currently most stable species reported to date. The increase in the lifetime improves the reaction efficiency of 2 toward inert alkane substrates, and allowed observation of the reaction of 2 with a primary C-H bond (BDEC-H =ca. 100 kcal mol-1 ) directly. Activation parameters for cyclohexane hydroxylation were also obtained.
Collapse
Affiliation(s)
- Yuma Morimoto
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Shimaoka
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuri Ishimizu
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara, 630-8506, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishi, Nara, 630-8506, Japan
| | - Shinobu Itoh
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Wei X, Zhang C, Gao X, Gao Y, Yang Y, Guo K, Du X, Pu L, Wang Q. Enhanced Activity and Substrate Specificity by Site-Directed Mutagenesis for the P450 119 Peroxygenase Catalyzed Sulfoxidation of Thioanisole. ChemistryOpen 2019; 8:1076-1083. [PMID: 31406654 PMCID: PMC6682931 DOI: 10.1002/open.201900157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
P450 119 peroxygenase was found to catalyze the sulfoxidation of thioanisole and the sulfonation of sulfoxide in the presence of tert-butyl hydroperoxide (TBHP) for the first time with turnover rates of 1549 min-1 and 196 min-1 respectively. Several mutants were designed to improve the peroxygenation activity and thioanisole specificity by site-directed mutagenesis. The F153G/T213G mutant gave an increase of sulfoxide yield and a decrease of sulfone yield. Moreover the S148P/I161T/K199E/T214V mutant and the K199E mutant with acidic Glu residue contributed to improving the product ratio of sulfoxide to sulfone. Addition of short-alkyl-chain organic acids to the P450 119 peroxygenase-catalyzed sulfur oxidation of thioanisole was investigated. Octanoic acid was found to induce a preferred sulfoxidation of thioanisole catalyzed by the F153G/T213G mutant to give approximately 2.4-fold increase in turnover rate with a k cat value of 3687 min-1 relative to that of the wild-type, and by the F153G mutant to give the R-sulfoxide up to 30 % ee. The experimental control and the proposed mechanism for the P450 119 peroxygenase-catalyzed sulfoxidation of thioanisole in the presence of octanoic acid suggested that octanoic acid could partially occupy the substrate pocket; meanwhile the F153G mutation could enhance the substrate specificity, which could lead to efficiently regulate the spatial orientation of thioanisole and facilitate the formation of Compound I. This is the most effective catalytic system for the P450 119 peroxygenase-catalyzed sulfoxidation of thioanisole.
Collapse
Affiliation(s)
- Xiaoyao Wei
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Chun Zhang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Xiaowei Gao
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Yanping Gao
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Ya Yang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Kai Guo
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Xi Du
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| | - Lin Pu
- Department of Chemistry University of Virginia Charlottesville VA 22904-4319 USA
| | - Qin Wang
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University Luzhou Sichuan 646000 P. R. China
| |
Collapse
|
18
|
Abstract
Enzymes are complex biological catalysts and are critical to life. Most oxidations of chemicals are catalyzed by cytochrome P450 (P450, CYP) enzymes, which generally utilize mixed-function oxidase stoichiometry, utilizing pyridine nucleotides as electron donors: NAD(P)H + O2 + R → NAD(P)+ + RO + H2O (where R is a carbon substrate and RO is an oxidized product). The catalysis of oxidations is largely understood in the context of the heme iron-oxygen complex generally referred to as Compound I, formally FeO3+, whose basis was in peroxidase chemistry. Many X-ray crystal structures of P450s are now available (≥ 822 structures from ≥146 different P450s) and have helped in understanding catalytic specificity. In addition to hydroxylations, P450s catalyze more complex oxidations, including C-C bond formation and cleavage. Enzymes derived from P450s by directed evolution can even catalyze more unusual reactions, e.g. cyclopropanation. Current P450 questions under investigation include the potential role of the intermediate Compound 0 (formally FeIII-O2 -) in catalysis of some reactions, the roles of high- and low-spin forms of Compound I, the mechanism of desaturation, the roles of open and closed structures of P450s in catalysis, the extent of processivity in multi-step oxidations, and the role of the accessory protein cytochrome b 5. More global questions include exactly how structure drives function, prediction of catalysis, and roles of multiple protein conformations.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
19
|
Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Proc Natl Acad Sci U S A 2018; 115:E10049-E10058. [PMID: 30297413 PMCID: PMC6205451 DOI: 10.1073/pnas.1807473115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enhanced thermostability of thermophilic proteins with respect to their mesophilic counterparts is often attributed to the enthalpy effect, arising from strong interactions between protein residues. Intuitively, these strong interresidue interactions will rigidify the biomolecules. However, the present work utilizing neutron scattering and solution NMR spectroscopy measurements demonstrates a contrary example that the thermophilic cytochrome P450, CYP119, is much more flexible than its mesophilic counterpart, CYP101A1, something which is not apparent just from structural comparison of the two proteins. A mechanism to explain this apparent contradiction is that higher flexibility in the folded state of CYP119 increases its conformational entropy and thereby reduces the entropy gain during denaturation, which will increase the free energy needed for unfolding and thus stabilize the protein. This scenario is supported by thermodynamic data on the temperature dependence of unfolding free energy, which shows a significant entropic contribution to the thermostability of CYP119 and lends an added dimension to enhanced stability, previously attributed only to presence of aromatic stacking interactions and salt bridge networks. Our experimental data also support the notion that highly thermophilic P450s such as CYP119 may use a mechanism that partitions flexibility differently from mesophilic P450s between ligand binding and thermal stability.
Collapse
|
20
|
|
21
|
Huang X, Groves JT. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Chem Rev 2018; 118:2491-2553. [PMID: 29286645 PMCID: PMC5855008 DOI: 10.1021/acs.chemrev.7b00373] [Citation(s) in RCA: 658] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/20/2022]
Abstract
As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal-oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal-oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron-oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs.
Collapse
Affiliation(s)
- Xiongyi Huang
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - John T. Groves
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
22
|
Lee NF, Patel D, Liu H, Zhang R. Insights from kinetic studies of photo-generated compound II models: Reactivity toward aryl sulfides. J Inorg Biochem 2018; 183:58-65. [PMID: 29550659 DOI: 10.1016/j.jinorgbio.2018.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Iron(IV)-oxo porphyrins [FeIV(Por)O] (Por = poprhyrin), commonly called compound II models, were produced in three electron-deficient ligands by visible light irradiation of highly photo-labile porphyrin-iron(III) bromates or chlorates. The kinetics of oxygen transfer atom (OAT) reactions with aryl sulfides by these photo-generated [FeIV(Por)O] (3) were studied in CH3CN solutions. The iron(IV)-oxo porphyrins under study include 5,10,15,20-tetra(2,6-dichlorophenyl)porphyrin-iron(IV)-oxo (3a), 5,10,15,20-tetra(2,6-difluorophenyl)porphyrin-iron(IV)-oxo (3b), and 5,10,15,20-tetra(pentafluorophenyl)porphyrin-iron(IV)-oxo (3c). As expected, complexes 3 were competent oxidants and reacted rapidly with thioanisoles to give the corresponding sulfoxides with minor over-oxidation sulfones. Apparent second-order rate constants determined under pseudo-first-order conditions for sulfide oxidation reactions are (9.8 ± 0.1) × 102-(3.7 ± 0.3) × 101 M-1 s-1, which are 3 to 4 orders of magnitude greater in comparison to those of alkene epoxidations and activated CH bond oxidations by the same oxo species. Conventional Hammett analyses gave non-linear correlations, indicating no significant charge developed at the sulfur during the oxidation process. For a given substrate, the reactivity order for the iron(IV)-oxo species was 3c < 3b < 3a, which is inverted from expectations on the basis of the electron-withdrawing capacity of the porphyrin macrocycles. The absolute rate constants from kinetic studies provided insights into the transient oxidants in catalytic reactions under turnover conditions where actual reactive intermediates are not observable. Our kinetic and catalytic competition results strongly suggest that 3 may undergo a disproportionation reaction to form a higher oxidized iron(IV)-oxo porphyrin radical cations as the true oxidant.
Collapse
Affiliation(s)
- Ngo Fung Lee
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States
| | - Dharmesh Patel
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States
| | - Haiyan Liu
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States.
| |
Collapse
|
23
|
Structure and function of the cytochrome P450 peroxygenase enzymes. Biochem Soc Trans 2018; 46:183-196. [PMID: 29432141 PMCID: PMC5818669 DOI: 10.1042/bst20170218] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022]
Abstract
The cytochromes P450 (P450s or CYPs) constitute a large heme enzyme superfamily, members of which catalyze the oxidative transformation of a wide range of organic substrates, and whose functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The P450 peroxygenases are a subgroup of the P450s that have evolved in microbes to catalyze the oxidative metabolism of fatty acids, using hydrogen peroxide as an oxidant rather than NAD(P)H-driven redox partner systems typical of the vast majority of other characterized P450 enzymes. Early members of the peroxygenase (CYP152) family were shown to catalyze hydroxylation at the α and β carbons of medium-to-long-chain fatty acids. However, more recent studies on other CYP152 family P450s revealed the ability to oxidatively decarboxylate fatty acids, generating terminal alkenes with potential applications as drop-in biofuels. Other research has revealed their capacity to decarboxylate and to desaturate hydroxylated fatty acids to form novel products. Structural data have revealed a common active site motif for the binding of the substrate carboxylate group in the peroxygenases, and mechanistic and transient kinetic analyses have demonstrated the formation of reactive iron-oxo species (compounds I and II) that are ultimately responsible for hydroxylation and decarboxylation of fatty acids, respectively. This short review will focus on the biochemical properties of the P450 peroxygenases and on their biotechnological applications with respect to production of volatile alkenes as biofuels, as well as other fine chemicals.
Collapse
|
24
|
Wang L, Wei S, Pan X, Liu P, Du X, Zhang C, Pu L, Wang Q. Enhanced Turnover for the P450 119 Peroxygenase-Catalyzed Asymmetric Epoxidation of Styrenes by Random Mutagenesis. Chemistry 2018; 24:2741-2749. [DOI: 10.1002/chem.201705460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Li Wang
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Siping Wei
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Xianchao Pan
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Pingxian Liu
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Xi Du
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Chun Zhang
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
| | - Lin Pu
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Chemistry; University of Virginia; Charlottesville VA 22904-4319 USA
| | - Qin Wang
- Center for Pharmaceutical Research and Development, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Medicinal Chemistry, School of Pharmacy; Southwest Medical University, Luzhou; Sichuan 646000 P.R. China
- Department of Chemistry; University of Virginia; Charlottesville VA 22904-4319 USA
| |
Collapse
|
25
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
26
|
Erdogan H, Vandemeulebroucke A, Nauser T, Bounds PL, Koppenol WH. Jumpstarting the cytochrome P450 catalytic cycle with a hydrated electron. J Biol Chem 2017; 292:21481-21489. [PMID: 29109145 DOI: 10.1074/jbc.m117.813683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450cam (CYP101Fe3+) regioselectively hydroxylates camphor. Possible hydroxylating intermediates in the catalytic cycle of this well-characterized enzyme have been proposed on the basis of experiments carried out at very low temperatures and shunt reactions, but their presence has not yet been validated at temperatures above 0 °C during a normal catalytic cycle. Here, we demonstrate that it is possible to mimic the natural catalytic cycle of CYP101Fe3+ by using pulse radiolysis to rapidly supply the second electron of the catalytic cycle to camphor-bound CYP101[FeO2]2+ Judging by the appearance of an absorbance maximum at 440 nm, we conclude that CYP101[FeOOH]2+ (compound 0) accumulates within 5 μs and decays rapidly to CYP101Fe3+, with a k440 nm of 9.6 × 104 s-1 All processes are complete within 40 μs at 4 °C. Importantly, no transient absorbance bands could be assigned to CYP101[FeO2+por•+] (compound 1) or CYP101[FeO2+] (compound 2). However, indirect evidence for the involvement of compound 1 was obtained from the kinetics of formation and decay of a tyrosyl radical. 5-Hydroxycamphor was formed quantitatively, and the catalytic activity of the enzyme was not impaired by exposure to radiation during the pulse radiolysis experiment. The rapid decay of compound 0 enabled calculation of the limits for the Gibbs activation energies for the conversions of compound 0 → compound 1 → compound 2 → CYP101Fe3+, yielding a ΔG‡ of 45, 39, and 39 kJ/mol, respectively. At 37 °C, the steps from compound 0 to the iron(III) state would take only 4 μs. Our kinetics studies at 4 °C complement the canonical mechanism by adding the dimension of time.
Collapse
Affiliation(s)
| | - An Vandemeulebroucke
- Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
27
|
Hsieh CH, Huang X, Amaya JA, Rutland CD, Keys CL, Groves JT, Austin RN, Makris TM. The Enigmatic P450 Decarboxylase OleT Is Capable of, but Evolved To Frustrate, Oxygen Rebound Chemistry. Biochemistry 2017; 56:3347-3357. [PMID: 28603981 DOI: 10.1021/acs.biochem.7b00338] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OleT is a cytochrome P450 enzyme that catalyzes the removal of carbon dioxide from variable chain length fatty acids to form 1-alkenes. In this work, we examine the binding and metabolic profile of OleT with shorter chain length (n ≤ 12) fatty acids that can form liquid transportation fuels. Transient kinetics and product analyses confirm that OleT capably activates hydrogen peroxide with shorter substrates to form the high-valent intermediate Compound I and largely performs C-C bond scission. However, the enzyme also produces fatty alcohol side products using the high-valent iron oxo chemistry commonly associated with insertion of oxygen into hydrocarbons. When presented with a short chain fatty acid that can initiate the formation of Compound I, OleT oxidizes the diagnostic probe molecules norcarane and methylcyclopropane in a manner that is reminiscent of reactions of many CYP hydroxylases with radical clock substrates. These data are consistent with a decarboxylation mechanism in which Compound I abstracts a substrate hydrogen atom in the initial step. Positioning of the incipient substrate radical is a crucial element in controlling the efficiency of activated OH rebound.
Collapse
Affiliation(s)
- Chun H Hsieh
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Xiongyi Huang
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - José A Amaya
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Cooper D Rutland
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Carson L Keys
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - John T Groves
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Rachel N Austin
- Department of Chemistry, Barnard College, Columbia University , New York, New York 10027, United States
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
28
|
Yosca TH, Ledray AP, Ngo J, Green MT. A new look at the role of thiolate ligation in cytochrome P450. J Biol Inorg Chem 2017; 22:209-220. [PMID: 28091754 PMCID: PMC5640440 DOI: 10.1007/s00775-016-1430-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Protonated ferryl (or iron(IV)hydroxide) intermediates have been characterized in several thiolate-ligated heme proteins that are known to catalyze C-H bond activation. The basicity of the ferryl intermediates in these species has been proposed to play a critical role in facilitating this chemistry, allowing hydrogen abstraction at reduction potentials below those that would otherwise lead to oxidative degradation of the enzyme. In this contribution, we discuss the events that led to the assignment and characterization of the unusual iron(IV)hydroxide species, highlighting experiments that provided a quantitative measure of the ferryl basicity, the iron(IV)hydroxide pKa. We then turn to the importance of the iron(IV)hydroxide state, presenting a new way of looking at the role of thiolate ligation in these systems.
Collapse
Affiliation(s)
- Timothy H Yosca
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Aaron P Ledray
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Joanna Ngo
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA
| | - Michael T Green
- Departments of Chemistry & Molecular Biology and Biochemistry, University of California-Irvine, 4134, Natural Sciences 1, Irvine, CA 92697, USA.
| |
Collapse
|
29
|
Moosavifar M, Naseri S. Host (dealuminated Y zeolite)–guest (zirconium tetraphenylporphyrin) nanocomposite materials. An efficient catalyst in the oximation of aldehydes. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Kwong KW, Patel D, Malone J, Lee NF, Kash B, Zhang R. An investigation of ligand effects on the visible light-induced formation of porphyrin–iron(iv)-oxo intermediates. NEW J CHEM 2017. [DOI: 10.1039/c7nj03296j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depending on the structure of the porphyrin ligands, the visible light photolysis of porphyrin–iron(iii) bromates produced iron(iv)-oxo radical cations or iron(iv)-oxo porphyrins, permitting direct kinetic studies of their oxidation reactions.
Collapse
Affiliation(s)
- Ka Wai Kwong
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Dharmesh Patel
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Jonathan Malone
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Ngo Fung Lee
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Benjamin Kash
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Rui Zhang
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| |
Collapse
|
31
|
Wise CE, Grant JL, Amaya JA, Ratigan SC, Hsieh CH, Manley OM, Makris TM. Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis. J Biol Inorg Chem 2016; 22:221-235. [DOI: 10.1007/s00775-016-1425-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
|
32
|
Catalytic strategy for carbon-carbon bond scission by the cytochrome P450 OleT. Proc Natl Acad Sci U S A 2016; 113:10049-54. [PMID: 27555591 DOI: 10.1073/pnas.1606294113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OleT is a cytochrome P450 that catalyzes the hydrogen peroxide-dependent metabolism of Cn chain-length fatty acids to synthesize Cn-1 1-alkenes. The decarboxylation reaction provides a route for the production of drop-in hydrocarbon fuels from a renewable and abundant natural resource. This transformation is highly unusual for a P450, which typically uses an Fe(4+)-oxo intermediate known as compound I for the insertion of oxygen into organic substrates. OleT, previously shown to form compound I, catalyzes a different reaction. A large substrate kinetic isotope effect (≥8) for OleT compound I decay confirms that, like monooxygenation, alkene formation is initiated by substrate C-H bond abstraction. Rather than finalizing the reaction through rapid oxygen rebound, alkene synthesis proceeds through the formation of a reaction cycle intermediate with kinetics, optical properties, and reactivity indicative of an Fe(4+)-OH species, compound II. The direct observation of this intermediate, normally fleeting in hydroxylases, provides a rationale for the carbon-carbon scission reaction catalyzed by OleT.
Collapse
|
33
|
Zhang C, Liu PX, Huang LY, Wei SP, Wang L, Yang SY, Yu XQ, Pu L, Wang Q. Engineering P450 Peroxygenase to Catalyze Highly Enantioselective Epoxidation of cis
-β-Methylstyrenes. Chemistry 2016; 22:10969-75. [PMID: 27362319 DOI: 10.1002/chem.201601176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/25/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Chun Zhang
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| | - Ping-Xian Liu
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| | - Lu-Yi Huang
- State Key Laboratory of Biotherapy; West China Hospital; Sichuan University; No.17 People's South Road Chengdu Sichuan 610041 P. R. China
| | - Si-Ping Wei
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| | - Li Wang
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy; West China Hospital; Sichuan University; No.17 People's South Road Chengdu Sichuan 610041 P. R. China
| | - Xiao-Qi Yu
- College of Chemistry; Sichuan University; No. 29 Wangjiang Road Chengdu Sichuan 610064 P. R. China
| | - Lin Pu
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
- Department of Chemistry; University of Virginia; Charlottesville Virginia 22903 USA
| | - Qin Wang
- Department of Medicinal Chemistry; Southwest Medical University; No. 319, Zhongshan Road Luzhou Sichuan 646000 P. R. China
| |
Collapse
|
34
|
Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi. J Inorg Biochem 2016; 158:11-16. [DOI: 10.1016/j.jinorgbio.2016.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/01/2016] [Accepted: 02/25/2016] [Indexed: 11/24/2022]
|
35
|
Sengupta K, Chatterjee S, Dey A. Catalytic H2O2 Disproportionation and Electrocatalytic O2 Reduction by a Functional Mimic of Heme Catalase: Direct Observation of Compound 0 and Compound I in Situ. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02668] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kushal Sengupta
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Sudipta Chatterjee
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
36
|
Oszajca M, Franke A, Brindell M, Stochel G, van Eldik R. Redox cycling in the activation of peroxides by iron porphyrin and manganese complexes. ‘Catching’ catalytic active intermediates. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Zhang Y, Biggs JD, Mukamel S. Characterizing the Intermediates Compound I and II in the Cytochrome P450 Catalytic Cycle with Nonlinear X-ray Spectroscopy: A Simulation Study. Chemphyschem 2015; 16:2006-14. [PMID: 25873009 DOI: 10.1002/cphc.201500064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Indexed: 11/06/2022]
Abstract
Cytochrome P450 enzymes are an important family of biocatalysts that oxidize chemically inert CH bonds. There are many unresolved questions regarding the catalytic reaction intermediates, in particular P450 Compound I (Cpd-I) and II (Cpd-II). By using simple molecular models, we simulate various X-ray spectroscopy signals, including X-ray absorption near-edge structure (XANES), resonant inelastic X-ray scattering (RIXS), and stimulated X-ray Raman spectroscopy (SXRS) of the low- and high-spin states of Cpd-I and II. Characteristic peak patterns are presented and connected to the corresponding electronic structures. These X-ray spectroscopy techniques are complementary to more conventional infrared and optical spectroscopy and they help to elucidate the evolving electronic structures of transient species along the reaction path.
Collapse
Affiliation(s)
- Yu Zhang
- Dept. of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697 (USA).
| | - Jason D Biggs
- Dept. of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697 (USA)
| | - Shaul Mukamel
- Dept. of Chemistry, University of California, 450 Rowland Hall, Irvine, California 92697 (USA).
| |
Collapse
|
38
|
Grant JL, Hsieh CH, Makris TM. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I. J Am Chem Soc 2015; 137:4940-3. [PMID: 25843451 DOI: 10.1021/jacs.5b01965] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OleT(JE), a cytochrome P450, catalyzes the conversion of fatty acids to terminal alkenes using hydrogen peroxide as a cosubstrate. Analytical studies with an eicosanoic acid substrate show that the enzyme predominantly generates nonadecene and that carbon dioxide is the one carbon coproduct of the reaction. The addition of hydrogen peroxide to a deuterated substrate-enzyme (E-S) complex results in the transient formation of an iron(IV) oxo π cation radical (Compound I) intermediate which is spectroscopically indistinguishable from those that perform oxygen insertion chemistries. A kinetic isotope effect for Compound I decay suggests that it abstracts a substrate hydrogen atom to initiate fatty acid decarboxylation. Together, these results indicate that the initial mechanism for alkene formation, which does not result from oxygen rebound, is similar to that widely suggested for P450 monooxygenation reactions.
Collapse
Affiliation(s)
- Job L Grant
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chun H Hsieh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
39
|
Elenewski JE, Hackett JC. Ab initio dynamics of the cytochrome P450 hydroxylation reaction. J Chem Phys 2015; 142:064307. [PMID: 25681906 PMCID: PMC4367892 DOI: 10.1063/1.4907733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/27/2015] [Indexed: 01/01/2023] Open
Abstract
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Collapse
Affiliation(s)
- Justin E Elenewski
- Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540, USA
| | - John C Hackett
- Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540, USA
| |
Collapse
|
40
|
Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:1-61. [PMID: 26002730 DOI: 10.1007/978-3-319-16009-2_1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.
Collapse
|
41
|
Casadei CM, Gumiero A, Metcalfe CL, Murphy EJ, Basran J, Concilio MG, Teixeira SCM, Schrader TE, Fielding AJ, Ostermann A, Blakeley MP, Raven EL, Moody PCE. Heme enzymes. Neutron cryo-crystallography captures the protonation state of ferryl heme in a peroxidase. Science 2014; 345:193-7. [PMID: 25013070 DOI: 10.1126/science.1254398] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heme enzymes activate oxygen through formation of transient iron-oxo (ferryl) intermediates of the heme iron. A long-standing question has been the nature of the iron-oxygen bond and, in particular, the protonation state. We present neutron structures of the ferric derivative of cytochrome c peroxidase and its ferryl intermediate; these allow direct visualization of protonation states. We demonstrate that the ferryl heme is an Fe(IV)=O species and is not protonated. Comparison of the structures shows that the distal histidine becomes protonated on formation of the ferryl intermediate, which has implications for the understanding of O-O bond cleavage in heme enzymes. The structures highlight the advantages of neutron cryo-crystallography in probing reaction mechanisms and visualizing protonation states in enzyme intermediates.
Collapse
Affiliation(s)
- Cecilia M Casadei
- Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK. Institut Laue-Langevin, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Andrea Gumiero
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Clive L Metcalfe
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Emma J Murphy
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jaswir Basran
- Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | | | - Susana C M Teixeira
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000, Grenoble, France. EPSAM, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Tobias E Schrader
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Alistair J Fielding
- The Photon Science Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, D-85748 Garching, Germany
| | | | - Emma L Raven
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK.
| | - Peter C E Moody
- Department of Biochemistry and Henry Wellcome Laboratories for Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
42
|
Affiliation(s)
- Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|
43
|
McQuarters AB, Wolf MW, Hunt AP, Lehnert N. 1958-2014: nach 56 Jahren Forschung endlich eine Erklärung für die Reaktivität von Cytochrom P450. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
McQuarters AB, Wolf MW, Hunt AP, Lehnert N. 1958-2014: after 56 years of research, cytochrome p450 reactivity is finally explained. Angew Chem Int Ed Engl 2014; 53:4750-2. [PMID: 24711286 DOI: 10.1002/anie.201402404] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 11/07/2022]
Abstract
Nature's wisdom in enzyme design: Compounds I and II in the catalytic cycle of the Cytochrome P450 enzymes have been trapped and characterized recently. This work has provided further insight into the electronic structure and reactivity of these crucial intermediates, and key questions regarding the mechanism of these enzymes have finally been answered.
Collapse
Affiliation(s)
- Ashley B McQuarters
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109 (USA)
| | | | | | | |
Collapse
|
45
|
Zhang C, Li J, Yang B, He F, Yang SY, Yu XQ, Wang Q. Enhanced turnover rate and enantioselectivity in the asymmetric epoxidation of styrene by new T213G mutants of CYP 119. RSC Adv 2014. [DOI: 10.1039/c4ra04626a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New CYP 119 T213G mutants were constructed and characterized. Introduction of T213G mutation into the wild-type CYP 119 enhances the turnover rate for the styrene epoxidation to 346.2 min−1, and the double T213G/T214V mutant improves the ratio of the S- and R-enantiomers of the epoxide products to 5.8. The molecular docking results support our initial design and experimental data.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Medicinal Chemistry
- Luzhou Medical College
- Luzhou 646000, China
| | - Jing Li
- Department of Medicinal Chemistry
- Luzhou Medical College
- Luzhou 646000, China
| | - Bo Yang
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041, China
| | - Fang He
- Department of Medicinal Chemistry
- Luzhou Medical College
- Luzhou 646000, China
| | - Sheng-Yong Yang
- State Key Laboratory of Biotherapy
- West China Hospital
- Sichuan University
- Chengdu 610041, China
| | - Xiao-Qi Yu
- College of Chemistry
- Sichuan University
- Chengdu 610064, China
| | - Qin Wang
- Department of Medicinal Chemistry
- Luzhou Medical College
- Luzhou 646000, China
| |
Collapse
|
46
|
Elenewski JE, Hackett JC. Cytochrome P450 compound I in the plane wave pseudopotential framework: GGA electronic and geometric structure of thiolate-ligated iron(IV)-oxo porphyrin. J Comput Chem 2013; 34:1647-60. [PMID: 23670855 PMCID: PMC3711018 DOI: 10.1002/jcc.23311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/18/2013] [Accepted: 04/07/2013] [Indexed: 11/11/2022]
Abstract
The cytochromes P450 constitute a ubiquitous family of metalloenzymes, catalyzing manifold reactions of biological and synthetic importance via a thiolate-ligated iron-oxo (IV) porphyrin radical species denoted compound I (Cpd I). Experimental investigations have implicated this intermediate in a broad spectrum of biophysically interesting phenomena, further augmenting the importance of a Cpd I model system. Ab initio molecular dynamics, including Car-Parrinello and path integral methods, conjoin electronic structure theory with finite temperature simulation, affording tools most valuable to approach such enzymes. These methods are typically driven by density functional theory (DFT) in a plane-wave pseudopotential framework; however, existing studies of Cpd I have been restricted to localized Gaussian basis sets. The appropriate choice of density functional and pseudopotential for such simulations is accordingly not obvious. To remedy this situation, a systematic benchmarking of thiolate-ligated Cpd I is performed using several generalized-gradient approximation (GGA) functionals in the Martins-Troullier and Vanderbilt ultrasoft pseudopotential schemes. The resultant electronic and structural parameters are compared to localized-basis DFT calculations using GGA and hybrid density functionals. The merits and demerits of each scheme are presented in the context of reproducing existing experimental and theoretical results for Cpd I.
Collapse
Affiliation(s)
- Justin E. Elenewski
- Goodwin Research Laboratory, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540
| | - John C Hackett
- Goodwin Research Laboratory, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540
| |
Collapse
|
47
|
Lian P, Li J, Wang DQ, Wei DQ. Car–Parrinello Molecular Dynamics/Molecular Mechanics (CPMD/MM) Simulation Study of Coupling and Uncoupling Mechanisms of Cytochrome P450cam. J Phys Chem B 2013; 117:7849-56. [DOI: 10.1021/jp312107r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Lian
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Jue Li
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Dong-Qi Wang
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093
Zurich, Switzerland
| | - Dong-Qing Wei
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
48
|
Krest CM, Onderko EL, Yosca TH, Calixto JC, Karp RF, Livada J, Rittle J, Green MT. Reactive intermediates in cytochrome p450 catalysis. J Biol Chem 2013; 288:17074-81. [PMID: 23632017 DOI: 10.1074/jbc.r113.473108] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis.
Collapse
Affiliation(s)
- Courtney M Krest
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Intrinsic properties and reactivities of mononuclear nonheme iron–oxygen complexes bearing the tetramethylcyclam ligand. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.06.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Zhang WJ, Jiang PP, Zhang PB, Zheng JW, Li H. Surface-functionalized Hexagonal Mesoporous Silica Supported 5-(4-Carboxyphenyl)-10,15,20-triphenyl Porphyrin Manganese(III) Chloride and Their Catalytic Activity. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.12.4015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|