1
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
2
|
Shu X, Asghar S, Yang F, Li ST, Wu H, Yang B. Uncover New Reactivity of Genetically Encoded Alkyl Bromide Non-Canonical Amino Acids. Front Chem 2022; 10:815991. [PMID: 35252115 PMCID: PMC8894327 DOI: 10.3389/fchem.2022.815991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Genetically encoded non-canonical amino acids (ncAAs) with electrophilic moieties are excellent tools to investigate protein-protein interactions (PPIs) both in vitro and in vivo. These ncAAs, including a series of alkyl bromide-based ncAAs, mainly target cysteine residues to form protein-protein cross-links. Although some reactivities towards lysine and tyrosine residues have been reported, a comprehensive understanding of their reactivity towards a broad range of nucleophilic amino acids is lacking. Here we used a recently developed OpenUaa search engine to perform an in-depth analysis of mass spec data generated for Thioredoxin and its direct binding proteins cross-linked with an alkyl bromide-based ncAA, BprY. The analysis showed that, besides cysteine residues, BprY also targeted a broad range of nucleophilic amino acids. We validated this broad reactivity of BprY with Affibody/Z protein complex. We then successfully applied BprY to map a binding interface between SUMO2 and SUMO-interacting motifs (SIMs). BprY was further applied to probe SUMO2 interaction partners. We identified 264 SUMO2 binders, including several validated SUMO2 binders and many new binders. Our data demonstrated that BprY can be effectively used to probe protein-protein interaction interfaces even without cysteine residues, which will greatly expand the power of BprY in studying PPIs.
Collapse
Affiliation(s)
- Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Sana Asghar
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shang-Tong Li
- Glbizzia Biosciences Co., Ltd, Beijing, China
- *Correspondence: Shang-Tong Li, ; Haifan Wu, ; Bing Yang,
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, United States
- *Correspondence: Shang-Tong Li, ; Haifan Wu, ; Bing Yang,
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Shang-Tong Li, ; Haifan Wu, ; Bing Yang,
| |
Collapse
|
3
|
Xu W, Kannan S, Verma CS, Nacro K. Update on the Development of MNK Inhibitors as Therapeutic Agents. J Med Chem 2021; 65:983-1007. [PMID: 34533957 DOI: 10.1021/acs.jmedchem.1c00368] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.
Collapse
Affiliation(s)
- Weijun Xu
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| |
Collapse
|
4
|
Li Y, Tang J, Ji X, Hua MM, Liu M, Chang L, Gu Y, Shi C, Ni W, Liu J, Shi HJ, Huang X, O'Neill C, Jin X. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development 2021; 148:268308. [PMID: 34013332 PMCID: PMC8254863 DOI: 10.1242/dev.190793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) mediates cap-dependent translation. Genetic and inhibitor studies show that eIF4E expression is required for the successful transition from maternal to embryonic control of mouse embryo development. eIF4E was present in the oocyte and in the cytoplasm soon after fertilization and during each stage of early development. Functional knockout (Eif4e−/−) by PiggyBac [Act-RFP] transposition resulted in peri-implantation embryonic lethality because of the failure of normal epiblast formation. Maternal stores of eIF4E supported development up to the two- to four-cell stage, after which new expression occurred from both maternal and paternal inherited alleles. Inhibition of the maternally acquired stores of eIF4E (using the inhibitor 4EGI-1) resulted in a block at the two-cell stage. eIF4E activity was required for new protein synthesis in the two-cell embryo and Eif4e−/− embryos had lower translational activity compared with wild-type embryos. eIF4E-binding protein 1 (4E-BP1) is a hypophosphorylation-dependent negative regulator of eIF4E. mTOR activity was required for 4E-BP1 phosphorylation and inhibiting mTOR retarded embryo development. Thus, this study shows that eIF4E activity is regulated at key embryonic transitions in the mammalian embryo and is essential for the successful transition from maternal to embryonic control of development. Summary: Combined use of a PB [Act-RFP] transgenesis model, selective pharmacological inhibition and expression analyses verified the essential role of eIF4E in the transition from maternal to embryonic control of mouse development.
Collapse
Affiliation(s)
- Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jianan Tang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xu Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Min-Min Hua
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Miao Liu
- Reproductive Medical Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Chang
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Changgen Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Jing Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, 200032, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Christopher O'Neill
- Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Xingliang Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.,Human Reproduction Unit, Sydney Center for Regenerative and Developmental Medicine, Kolling Institute for Medical Research, Sydney Medical School, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
5
|
Lin KH, Wilson GM, Blanco R, Steinert ND, Zhu WG, Coon JJ, Hornberger TA. A deep analysis of the proteomic and phosphoproteomic alterations that occur in skeletal muscle after the onset of immobilization. J Physiol 2021; 599:2887-2906. [PMID: 33873245 PMCID: PMC8353513 DOI: 10.1113/jp281071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
KEY POINTS A decrease in protein synthesis plays a major role in the loss of muscle mass that occurs in response to immobilization. In mice, immobilization leads to a rapid (within 6 h) and progressive decrease in the rate of protein synthesis and this effect is mediated by a decrease in translational efficiency. Deep proteomic and phosphoproteomic analyses of mouse skeletal muscles revealed that the rapid immobilization-induced decrease in protein synthesis cannot be explained by changes in the abundance or phosphorylation state of proteins that have been implicated in the regulation of translation. ABSTRACT The disuse of skeletal muscle, such as that which occurs during immobilization, can lead to the rapid loss of muscle mass, and a decrease in the rate of protein synthesis plays a major role in this process. Indeed, current dogma contends that the decrease in protein synthesis is mediated by changes in the activity of protein kinases (e.g. mTOR); however, the validity of this model has not been established. Therefore, to address this, we first subjected mice to 6, 24 or 72 h of unilateral immobilization and then used the SUnSET technique to measure changes in the relative rate of protein synthesis. The result of our initial experiments revealed that immobilization leads to a rapid (within 6 h) and progressive decrease in the rate of protein synthesis and that this effect is mediated by a decrease in translational efficiency. We then performed a deep mass spectrometry-based analysis to determine whether this effect could be explained by changes in the expression and/or phosphorylation state of proteins that regulate translation. From this analysis, we were able to quantify 4320 proteins and 15,020 unique phosphorylation sites, and surprisingly, the outcomes revealed that the rapid immobilization-induced decrease in protein synthesis could not be explained by changes in either the abundance, or phosphorylation state, of proteins. The results of our work not only challenge the current dogma in the field, but also provide an expansive resource of information for future studies that are aimed at defining how disuse leads to loss of muscle mass.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Rocky Blanco
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel D Steinert
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Wenyuan G Zhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Ruan H, Li X, Xu X, Leibowitz BJ, Tong J, Chen L, Ao L, Xing W, Luo J, Yu Y, Schoen RE, Sonenberg N, Lu X, Zhang L, Yu J. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. eLife 2020; 9:60151. [PMID: 33135632 PMCID: PMC7665890 DOI: 10.7554/elife.60151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
To better understand a role of eIF4E S209 in oncogenic translation, we generated EIF4ES209A/+ heterozygous knockin (4EKI) HCT 116 human colorectal cancer (CRC) cells. 4EKI had little impact on total eIF4E levels, cap binding or global translation, but markedly reduced HCT 116 cell growth in spheroids and mice, and CRC organoid growth. 4EKI strongly inhibited Myc and ATF4 translation, the integrated stress response (ISR)-dependent glutamine metabolic signature, AKT activation and proliferation in vivo. 4EKI inhibited polyposis in ApcMin/+ mice by suppressing Myc protein and AKT activation. Furthermore, p-eIF4E was highly elevated in CRC precursor lesions in mouse and human. p-eIF4E cooperated with mutant KRAS to promote Myc and ISR-dependent glutamine addiction in various CRC cell lines, characterized by increased cell death, transcriptomic heterogeneity and immune suppression upon deprivation. These findings demonstrate a critical role of eIF4E S209-dependent translation in Myc and stress-driven oncogenesis and as a potential therapeutic vulnerability.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,UPMC Hillman Cancer Center, Pittsburgh, United States
| | - Xiangyun Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Stem cell and regenerative medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Xu
- Department of Stem cell and regenerative medicine, Daping Hospital, Army Medical University, Chongqing, China.,Central laboratory, State key laboratory of trauma, burn and combined Injury, Daping Hospital, Chongqing, China
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,UPMC Hillman Cancer Center, Pittsburgh, United States
| | - Jingshan Tong
- UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Lujia Chen
- UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Luoquan Ao
- Department of Stem cell and regenerative medicine, Daping Hospital, Army Medical University, Chongqing, China.,Central laboratory, State key laboratory of trauma, burn and combined Injury, Daping Hospital, Chongqing, China
| | - Wei Xing
- Department of Stem cell and regenerative medicine, Daping Hospital, Army Medical University, Chongqing, China.,Central laboratory, State key laboratory of trauma, burn and combined Injury, Daping Hospital, Chongqing, China
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Yanping Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Robert E Schoen
- Departments of Medicine and Epidemiology, University of Pittsburgh, Pittsburgh, United States
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | - Xinghua Lu
- UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Biomedical informatics, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,UPMC Hillman Cancer Center, Pittsburgh, United States
| |
Collapse
|
7
|
Guo W, Qiu W, Ao X, Li W, He X, Ao L, Hu X, Li Z, Zhu M, Luo D, Xing W, Xu X. Low-concentration DMSO accelerates skin wound healing by Akt/mTOR-mediated cell proliferation and migration in diabetic mice. Br J Pharmacol 2020; 177:3327-3341. [PMID: 32167156 DOI: 10.1111/bph.15052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE DMSO has been found to promote tissue repair. However, the role of DMSO in diabetic skin wound healing and the underlying molecular mechanisms are still unclear. EXPERIMENTAL APPROACH The effects of DMSO on wound healing were evaluated by HE staining, immunohistochemistry and collagen staining using a wound model of full-thickness skin resection on the backs of non-diabetic or diabetic mice. Real-time cell analysis and 5-ethynyl-2'-deoxyuridine incorporation assays were used to study the effect of DMSO on primary fibroblast proliferation. A transwell assay was used to investigate keratinocyte migration. The associated signalling pathway was identified by western blotting and inhibitor blocking. The effect of DMSO on the translation rate of downstream target genes was studied by RT-qPCR of polyribosome mRNA. KEY RESULTS We found that low-concentration DMSO significantly accelerated skin wound closure by promoting fibroblast proliferation in both nondiabetic and diabetic mice. In addition, increased migration of keratinocytes may also contribute to accelerated wound healing, which was stimulated by increased TGF-β1 secretion from fibroblasts. Furthermore, we demonstrated that this effect of DMSO depends on Akt/mTOR-mediated translational control and the promotion of the translation of a set of cell proliferation-related genes. As expected, DMSO-induced wound healing and cell proliferation were impaired by rapamycin, an inhibitor of Akt/mTOR signalling. CONCLUSION AND IMPLICATIONS DMSO can promote skin wound healing in diabetic mice by activating the Akt/mTOR pathway. Low-concentration DMSO presents an alternative medication for chronic cutaneous wounds, especially for diabetic patients.
Collapse
Affiliation(s)
- Wei Guo
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Wei Qiu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Weiqiang Li
- Department of Stem Cell & Regenerative Medicine.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| | - Xiao He
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Luoquan Ao
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xueting Hu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Ming Zhu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Donglin Luo
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine.,Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R., China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| |
Collapse
|
8
|
MORC2 regulates C/EBPα-mediated cell differentiation via sumoylation. Cell Death Differ 2019; 26:1905-1917. [PMID: 30644437 PMCID: PMC6748086 DOI: 10.1038/s41418-018-0259-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/29/2022] Open
Abstract
The expression and activity of CCAAT/enhancer-binding protein α (C/EBPα) are involved in sumoylation modification, which is critical to divert normal cells from differentiation to proliferation. However, the role and underlying mechanism of C/EBPα in cancer is poorly understood. Human MORC2 (microrchidia family CW-type zinc-finger 2), is a member of the MORC proteins family containing a CW-type zinc-finger domain. Here, we found that MORC2 interacted with TE-III domain of C/EBPα, and the overexpression of MORC2 promoted wild-type C/EBPα sumoylation and its subsequent degradation, which didn’t significantly observe in mutant C/EBPα-K161R. Furthermore, the overexpression of MORC2 inhibited C/EBPα-mediated C2C12 cell differentiation to maintain cell cycle progression. Moreover, the striking correlation between the decreased C/EBPα expression and the increased MORC2 expression was also observed in the poor differentiation status of gastric cancer tissues. Most notably, the high expression of MORC2 is correlated with an aggressive phenotype of clinical gastric cancer and shorter overall survival of patients. Taken together, our findings demonstrated that MORC2 expression regulated C/EBPα-mediated the axis of differentiation/proliferation via sumoylation modification, and affected its protein stability, causing cell proliferation and tumorigenesis.
Collapse
|
9
|
Sulaiman A, McGarry S, Lam KM, El-Sahli S, Chambers J, Kaczmarek S, Li L, Addison C, Dimitroulakos J, Arnaout A, Nessim C, Yao Z, Ji G, Song H, Liu S, Xie Y, Gadde S, Li X, Wang L. Co-inhibition of mTORC1, HDAC and ESR1α retards the growth of triple-negative breast cancer and suppresses cancer stem cells. Cell Death Dis 2018; 9:815. [PMID: 30050079 PMCID: PMC6062597 DOI: 10.1038/s41419-018-0811-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer. It causes the majority of breast cancer-related deaths, which has been largely associated with the plasticity of tumor cells and persistence of cancer stem cells (CSCs). Conventional chemotherapeutics enrich CSCs and lead to drug resistance and disease relapse. Development of a strategy capable of inhibiting both bulk and CSC populations is an unmet medical need. Inhibitors against estrogen receptor 1, HDACs, or mTOR have been studied in the treatment of TNBC; however, the results are inconsistent. In this work, we found that patient TNBC samples expressed high levels of mTORC1 and HDAC genes in comparison to luminal breast cancer samples. Furthermore, co-inhibition of mTORC1 and HDAC with rapamycin and valproic acid, but neither alone, reproducibly promoted ESR1 expression in TNBC cells. In combination with tamoxifen (inhibiting ESR1), both S6RP phosphorylation and rapamycin-induced 4E-BP1 upregulation in TNBC bulk cells was inhibited. We further showed that fractionated CSCs expressed higher levels of mTORC1 and HDAC than non-CSCs. As a result, co-inhibition of mTORC1, HDAC, and ESR1 was capable of reducing both bulk and CSC subpopulations as well as the conversion of fractionated non-CSC to CSCs in TNBC cells. These observations were partially recapitulated with the cultured tumor fragments from TNBC patients. Furthermore, co-administration of rapamycin, valproic acid, and tamoxifen retarded tumor growth and reduced CD44high/+/CD24low/- CSCs in a human TNBC xenograft model and hampered tumorigenesis after secondary transplantation. Since the drugs tested are commonly used in clinic, this study provides a new therapeutic strategy and a strong rationale for clinical evaluation of these combinations for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, 200032, Shanghai, China
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sarah McGarry
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ka Mien Lam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jason Chambers
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shelby Kaczmarek
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Li Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, 200032, Shanghai, China
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Christina Addison
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Jim Dimitroulakos
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Angel Arnaout
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Carolyn Nessim
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, 200032, Shanghai, China
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Guang Ji
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, 200032, Shanghai, China
| | - Haiyan Song
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, 200032, Shanghai, China
| | - Sheng Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, 200032, Shanghai, China
| | - Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, 200032, Shanghai, China
| | - Suresh Gadde
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Xuguang Li
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada Sir Frederick G. Banting Research Centre, A/L 2201E, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, 200032, Shanghai, China.
- Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
10
|
Wagner T, Godmann M, Heinzel T. Analysis of Histone Deacetylases Sumoylation by Immunoprecipitation Techniques. Methods Mol Biol 2018; 1510:339-351. [PMID: 27761833 DOI: 10.1007/978-1-4939-6527-4_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Histone deacetylases (HDACs) are controlling dynamic protein acetylation by removing acetyl moieties from lysine. Histone deacetylases themselves are regulated on the posttranslational level, including modifications with small ubiquitin-like modifier (SUMO) proteins. Detecting SUMO modifications of deacetylases by immunoblotting is technically challenging due to the typically low ratio of the modified compared to the unmodified species. Here, we describe a set of methods for the detection of endogenous sumoylated HDACs by immunoprecipitation and immunoblotting techniques.
Collapse
Affiliation(s)
- Tobias Wagner
- Department of Biochemistry, Institute of Biochemistry and Biophysics, CMB - Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Maren Godmann
- Department of Biochemistry, Institute of Biochemistry and Biophysics, CMB - Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Thorsten Heinzel
- Department of Biochemistry, Institute of Biochemistry and Biophysics, CMB - Center for Molecular Biomedicine, Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany.
| |
Collapse
|
11
|
Saunders A, Huang X, Fidalgo M, Reimer MH, Faiola F, Ding J, Sánchez-Priego C, Guallar D, Sáenz C, Li D, Wang J. The SIN3A/HDAC Corepressor Complex Functionally Cooperates with NANOG to Promote Pluripotency. Cell Rep 2017; 18:1713-1726. [PMID: 28199843 DOI: 10.1016/j.celrep.2017.01.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/24/2016] [Accepted: 01/22/2017] [Indexed: 12/31/2022] Open
Abstract
Although SIN3A is required for the survival of early embryos and embryonic stem cells (ESCs), the role of SIN3A in the maintenance and establishment of pluripotency remains unclear. Here, we find that the SIN3A/HDAC corepressor complex maintains ESC pluripotency and promotes the generation of induced pluripotent stem cells (iPSCs). Members of the SIN3A/HDAC corepressor complex are enriched in an extended NANOG interactome and function in transcriptional coactivation in ESCs. We also identified a critical role for SIN3A and HDAC2 in efficient reprogramming of somatic cells. Mechanistically, NANOG and SIN3A co-occupy transcriptionally active pluripotency genes in ESCs and also co-localize extensively at their genome-wide targets in pre-iPSCs. Additionally, both factors are required to directly induce a synergistic transcriptional program wherein pluripotency genes are activated and reprogramming barrier genes are repressed. Our findings indicate a transcriptional regulatory role for a major HDAC-containing complex in promoting pluripotency.
Collapse
Affiliation(s)
- Arven Saunders
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Reimer
- Department of Cell Biology, Neurobiology, and Anatomy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53233, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francesco Faiola
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Sánchez-Priego
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Sáenz
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Li
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
12
|
Cell-specific expression of aquaporin-5 (Aqp5) in alveolar epithelium is directed by GATA6/Sp1 via histone acetylation. Sci Rep 2017; 7:3473. [PMID: 28615712 PMCID: PMC5471216 DOI: 10.1038/s41598-017-03152-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/25/2017] [Indexed: 01/23/2023] Open
Abstract
Epigenetic regulation of differentiation-related genes is poorly understood. We previously reported that transcription factors GATA6 and Sp1 interact with and activate the rat proximal 358-bp promoter/enhancer (p358P/E) of lung alveolar epithelial type I (AT1) cell-specific gene aquaporin-5 (Aqp5). In this study, we found that histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) increased AQP5 expression and Sp1-mediated transcription of p358P/E. HDAC3 overexpression inhibited Sp1-mediated Aqp5 activation, while HDAC3 knockdown augmented AQP5 protein expression. Knockdown of GATA6 or transcriptional co-activator/histone acetyltransferase p300 decreased AQP5 expression, while p300 overexpression enhanced p358P/E activation by GATA6 and Sp1. GATA6 overexpression, SAHA treatment or HDAC3 knockdown increased histone H3 (H3) but not histone H4 (H4) acetylation within the homologous p358P/E region of mouse Aqp5. HDAC3 binds to Sp1 and HDAC3 knockdown increased interaction of GATA6/Sp1, GATA6/p300 and Sp1/p300. These results indicate that GATA6 and HDAC3 control Aqp5 transcription via modulation of H3 acetylation/deacetylation, respectively, through competition for binding to Sp1, and suggest that p300 modulates acetylation and/or interacts with GATA6/Sp1 to regulate Aqp5 transcription. Cooperative interactions among transcription factors and histone modifications regulate Aqp5 expression during alveolar epithelial cell transdifferentiation, suggesting that HDAC inhibitors may enhance repair by promoting acquisition of AT1 cell phenotype.
Collapse
|
13
|
Pirone L, Xolalpa W, Sigurðsson JO, Ramirez J, Pérez C, González M, de Sabando AR, Elortza F, Rodriguez MS, Mayor U, Olsen JV, Barrio R, Sutherland JD. A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation. Sci Rep 2017; 7:40756. [PMID: 28098257 PMCID: PMC5241687 DOI: 10.1038/srep40756] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Abstract
Post-translational modification by ubiquitin and ubiquitin-like proteins (UbLs) is fundamental for maintaining protein homeostasis. Efficient isolation of UbL conjugates is hampered by multiple factors, including cost and specificity of reagents, removal of UbLs by proteases, distinguishing UbL conjugates from interactors, and low quantities of modified substrates. Here we describe bioUbLs, a comprehensive set of tools for studying modifications in Drosophila and mammals, based on multicistronic expression and in vivo biotinylation using the E. coli biotin protein ligase BirA. While the bioUbLs allow rapid validation of UbL conjugation for exogenous or endogenous proteins, the single vector approach can facilitate biotinylation of most proteins of interest. Purification under denaturing conditions inactivates deconjugating enzymes and stringent washes remove UbL interactors and non-specific background. We demonstrate the utility of the method in Drosophila cells and transgenic flies, identifying an extensive set of putative SUMOylated proteins in both cases. For mammalian cells, we show conjugation and localization for many different UbLs, with the identification of novel potential substrates for UFM1. Ease of use and the flexibility to modify existing vectors will make the bioUbL system a powerful complement to existing strategies for studying this important mode of protein regulation.
Collapse
Affiliation(s)
- Lucia Pirone
- CIC bioGUNE, Bizkaia Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| | - Wendy Xolalpa
- CIC bioGUNE, Bizkaia Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| | - Jón Otti Sigurðsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Juanma Ramirez
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| | - Monika González
- CIC bioGUNE, Bizkaia Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| | | | - Félix Elortza
- CIC bioGUNE, Bizkaia Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| | - Manuel S Rodriguez
- ITAV, IPBS, Université de Toulouse, CNRS, UPS, 1 Place Pierre Potier Oncopole entrée B, BP 50624, 31106 Toulouse Cedex 1, France
| | - Ugo Mayor
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| | - James D Sutherland
- CIC bioGUNE, Bizkaia Technology Park, Building 801-A, 48160 DERIO, Bizkaia, Spain
| |
Collapse
|
14
|
Levins E, Tseng CY, Patrick RM, Mayberry LK, Cole N, Browning KS. Fusion proteins of Arabidopsis cap-binding proteins: Cautionary "tails" of woe. ACTA ACUST UNITED AC 2016; 4:e1257408. [PMID: 28090423 DOI: 10.1080/21690731.2016.1257408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 01/25/2023]
Abstract
The use of fluorescent proteins fused to other proteins has been very useful in revealing the location and function of many proteins. However, it is very important to show that the fusion of these reporter proteins does not impact the function of the protein of interest. Plants have 2 forms of the cap-binding protein that function in initiation of translation, eIF4E and a plant specific form, eIFiso4E. In an attempt to determine the cellular localization of eIFiso4E, fusions to GFP were made, but were found to not be competent to rescue the lethal phenotype of plants lacking eIF4E and eIFiso4E. This suggested that the GFP fusions at either the N- or C-terminus of eIFiso4E were not functional. Biochemical analysis of the fusions revealed that eIFiso4E•GFP fusions were not able to bind to m7GTP Sepharose indicating that they were not functional as cap-binding proteins. Analysis of eIF4E•GFP fusions, both in yeast and in vitro, showed that the N-terminal fusion may be functional, whereas the C-terminal fusion bound m7GTP Sepharose very poorly and functioned poorly in yeast. These results highlight the importance of verification both biochemically and in vivo that reporter fusions of proteins maintain activity and are stable in order to prevent observations that may result in artifacts.
Collapse
Affiliation(s)
- Elizabeth Levins
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin , Austin, TX, USA
| | - Ching-Ying Tseng
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin , Austin, TX, USA
| | - Ryan M Patrick
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin , Austin, TX, USA
| | - Laura K Mayberry
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin , Austin, TX, USA
| | - Nicola Cole
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin , Austin, TX, USA
| | - Karen S Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin , Austin, TX, USA
| |
Collapse
|
15
|
Citro S, Chiocca S. Detection of Sumo Modification of Endogenous Histone Deacetylase 2 (HDAC2) in Mammalian Cells. Methods Mol Biol 2016; 1436:15-22. [PMID: 27246205 DOI: 10.1007/978-1-4939-3667-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small ubiquitin-related modifier (SUMO) is an ubiquitin-like protein that is covalently attached to a variety of target proteins and has a significant role in their regulation. HDAC2 is an important epigenetic regulator, promoting the deacetylation of histones and non-histone proteins. HDAC2 has been shown to be modified by SUMO1 at lysine 462. Here we describe how to detect SUMO modification of endogenous HDAC2 in mammalian cells by immunoblotting. Although in this chapter we use this method to detect HDAC2 modification in mammalian cells, this protocol can be used for any cell type or for any protein of interest.
Collapse
Affiliation(s)
- Simona Citro
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, 20139, Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, 20139, Milan, Italy.
| |
Collapse
|
16
|
Watts FZ, Baldock R, Jongjitwimol J, Morley SJ. Weighing up the possibilities: Controlling translation by ubiquitylation and sumoylation. ACTA ACUST UNITED AC 2014; 2:e959366. [PMID: 26779408 DOI: 10.4161/2169074x.2014.959366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022]
Abstract
Regulation of protein synthesis is of fundamental importance to cells. It has a critical role in the control of gene expression, and consequently cell growth and proliferation. The importance of this control is supported by the fact that protein synthesis is frequently upregulated in tumor cells. The major point at which regulation occurs is the initiation stage. Initiation of translation involves the interaction of several proteins to form the eIF4F complex, the recognition of the mRNA by this complex, and the subsequent recruitment of the 40S ribosomal subunit to the mRNA. This results in the formation of the 48S complex that then scans the mRNA for the start codon, engages the methionyl-tRNA and eventually forms the mature 80S ribosome which is elongation-competent. Formation of the 48S complex is regulated by the availability of individual initiation factors and through specific protein-protein interactions. Both of these events can be regulated by post-translational modification by ubiquitin or Ubls (ubiquitin-like modifiers) such as SUMO or ISG15. We provide here a summary of translation initiation factors that are modified by ubiquitin or Ubls and, where they have been studied in detail, describe the role of these modifications and their effects on regulating protein synthesis.
Collapse
Affiliation(s)
- Felicity Z Watts
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Robert Baldock
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Jirapas Jongjitwimol
- Genome Damage and Stability Center; School of Life Sciences; University of Sussex ; Falmer, Brighton, UK
| | - Simon J Morley
- Department of Biochemistry and Biomedical Science; School of Life Sciences; University of Sussex ; Brighton, UK
| |
Collapse
|
17
|
Baertschi S, Baur N, Lueders-Lefevre V, Voshol J, Keller H. Class I and IIa histone deacetylases have opposite effects on sclerostin gene regulation. J Biol Chem 2014; 289:24995-5009. [PMID: 25012661 DOI: 10.1074/jbc.m114.564997] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adult bone mass is controlled by the bone formation repressor sclerostin (SOST). Previously, we have shown that intermittent parathyroid hormone (PTH) bone anabolic therapy involves SOST expression reduction by inhibiting myocyte enhancer factor 2 (MEF2), which activates a distant bone enhancer. Here, we extended our SOST gene regulation studies by analyzing a role of class I and IIa histone deacetylases (HDACs), which are known regulators of MEF2s. Expression analysis using quantitative PCR (qPCR) showed high expression of HDACs 1 and 2, lower amounts of HDACs 3, 5, and 7, low amounts of HDAC4, and no expression of HDACs 8 and 9 in constitutively SOST-expressing UMR106 osteocytic cells. PTH-induced Sost suppression was associated with specific rapid nuclear accumulation of HDAC5 and co-localization with MEF2s in nuclear speckles requiring serine residues 259 and 498, whose phosphorylations control nucleocytoplasmic shuttling. Increasing nuclear levels of HDAC5 in UMR106 by blocking nuclear export with leptomycin B (LepB) or overexpression in transient transfection assays inhibited endogenous Sost transcription and reporter gene expression, respectively. This repressor effect of HDAC5 did not require catalytic activity using specific HDAC inhibitors. In contrast, inhibition of class I HDAC activities and expression using RNA interference suppressed constitutive Sost expression in UMR106 cells. An unbiased comprehensive search for involved HDAC targets using an acetylome analysis revealed several non-histone proteins as candidates. These findings suggest that PTH-mediated Sost repression involves nuclear accumulation of HDAC inhibiting the MEF2-dependent Sost bone enhancer, and class I HDACs are required for constitutive Sost expression in osteocytes.
Collapse
Affiliation(s)
| | - Nina Baur
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | | - Johannes Voshol
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | |
Collapse
|
18
|
Chen LZ, Li XY, Huang H, Xing W, Guo W, He J, Sun ZY, Luo AX, Liang HP, Hu J, Xu X, Xu YS, Wang ZG. SUMO-2 promotes mRNA translation by enhancing interaction between eIF4E and eIF4G. PLoS One 2014; 9:e100457. [PMID: 24971752 PMCID: PMC4074059 DOI: 10.1371/journal.pone.0100457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/25/2014] [Indexed: 01/02/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) proteins regulate many important eukaryotic cellular processes through reversible covalent conjugation to target proteins. In addition to its many well-known biological consequences, like subcellular translocation of protein, subnuclear structure formation, and modulation of transcriptional activity, we show here that SUMO-2 also plays a role in mRNA translation. SUMO-2 promoted formation of the active eukaryotic initiation factor 4F (eIF4F) complex by enhancing interaction between Eukaryotic Initiation Factor 4E (eIF4E) and Eukaryotic Initiation Factor 4G (eIF4G), and induced translation of a subset of proteins, such as cyclinD1 and c-myc, which essential for cell proliferation and apoptosis. As expected, overexpression of SUMO-2 can partially cancel out the disrupting effect of 4EGI-1, a small molecule inhibitor of eIF4E/eIF4G interaction, on formation of the eIF4F complex, translation of the cap-dependent protein, cell proliferation and apoptosis. On the other hand, SUMO-2 knockdown via shRNA partially impaired cap-dependent translation and cell proliferation and promoted apoptosis. These results collectively suggest that SUMO-2 conjugation plays a crucial regulatory role in protein synthesis. Thus, this report might contribute to the basic understanding of mammalian protein translation and sheds some new light on the role of SUMO in this process.
Collapse
Affiliation(s)
- Li-zhao Chen
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Department of Neurosurgery, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiang-yun Li
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hong Huang
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xing
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Guo
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing He
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-ya Sun
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - An-xiong Luo
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hua-ping Liang
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Xiang Xu
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yun-sheng Xu
- Department of Dermatology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou Zhejiang, China
| | - Zheng-guo Wang
- Fourth department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
19
|
Jongjitwimol J, Feng M, Zhou L, Wilkinson O, Small L, Baldock R, Taylor DL, Smith D, Bowler LD, Morley SJ, Watts FZ. The S. pombe translation initiation factor eIF4G is Sumoylated and associates with the SUMO protease Ulp2. PLoS One 2014; 9:e94182. [PMID: 24818994 PMCID: PMC4018355 DOI: 10.1371/journal.pone.0094182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/13/2014] [Indexed: 12/03/2022] Open
Abstract
SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein. SUMO is removed from target proteins by one of a number of specific proteases. The processes of sumoylation and desumoylation have well documented roles in DNA metabolism and in the maintenance of chromatin structure. To further analyse the role of this modification, we have purified protein complexes containing the S. pombe SUMO protease, Ulp2. These complexes contain proteins required for ribosome biogenesis, RNA stability and protein synthesis. Here we have focussed on two translation initiation factors that we identified as co-purifying with Ulp2, eIF4G and eIF3h. We demonstrate that eIF4G, but not eIF3h, is sumoylated. This modification is increased under conditions that produce cytoplasmic stress granules. Consistent with this we observe partial co-localisation of eIF4G and SUMO in stressed cells. Using HeLa cells, we demonstrate that human eIF4GI is also sumoylated; in vitro studies indicate that human eIF4GI is modified on K1368 and K1588, that are located in the C-terminal eIF4A- and Mnk-binding sites respectively.
Collapse
Affiliation(s)
- Jirapas Jongjitwimol
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Min Feng
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Oliver Wilkinson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Lauren Small
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Robert Baldock
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Deborah L. Taylor
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Duncan Smith
- Paterson Institute for Cancer Research, The University of Manchester, Manchester, United Kingdom
| | - Lucas D. Bowler
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Simon J. Morley
- Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Felicity Z. Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Dehennaut V, Loison I, Dubuissez M, Nassour J, Abbadie C, Leprince D. DNA double-strand breaks lead to activation of hypermethylated in cancer 1 (HIC1) by SUMOylation to regulate DNA repair. J Biol Chem 2013; 288:10254-64. [PMID: 23417673 PMCID: PMC3624409 DOI: 10.1074/jbc.m112.421610] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/14/2013] [Indexed: 11/06/2022] Open
Abstract
HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene frequently epigenetically silenced in human cancers. HIC1 encodes a transcriptional repressor involved in the regulation of growth control and DNA damage response. We previously demonstrated that HIC1 can be either acetylated or SUMOylated on lysine 314. This deacetylation/SUMOylation switch is governed by an unusual complex made up of SIRT1 and HDAC4 which deacetylates and thereby favors SUMOylation of HIC1 by a mechanism not yet fully deciphered. This switch regulates the interaction of HIC1 with MTA1, a component of the NuRD complex and potentiates the repressor activity of HIC1. Here, we show that HIC1 silencing in human fibroblasts impacts the repair of DNA double-strand breaks whereas ectopic expression of wild-type HIC1, but not of nonsumoylatable mutants, leads to a reduced number of γH2AX foci induced by etoposide treatment. In this way, we demonstrate that DNA damage leads to (i) an enhanced HDAC4/Ubc9 interaction, (ii) the activation of SIRT1 by SUMOylation (Lys-734), and (iii) the SUMO-dependent recruitment of HDAC4 by SIRT1 which permits the deacetylation/SUMOylation switch of HIC1. Finally, we show that this increase of HIC1 SUMOylation favors the HIC1/MTA1 interaction, thus demonstrating that HIC1 regulates DNA repair in a SUMO-dependent way. Therefore, epigenetic HIC1 inactivation, which is an early step in tumorigenesis, could contribute to the accumulation of DNA mutations through impaired DNA repair and thus favor tumorigenesis.
Collapse
Affiliation(s)
- Vanessa Dehennaut
- From the CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 rue Calmette, BP447, 59017 Lille Cedex, France
| | - Ingrid Loison
- From the CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 rue Calmette, BP447, 59017 Lille Cedex, France
| | - Marion Dubuissez
- From the CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 rue Calmette, BP447, 59017 Lille Cedex, France
| | - Joe Nassour
- From the CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 rue Calmette, BP447, 59017 Lille Cedex, France
| | - Corinne Abbadie
- From the CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 rue Calmette, BP447, 59017 Lille Cedex, France
| | - Dominique Leprince
- From the CNRS-UMR 8161, Institut de Biologie de Lille, Université de Lille Nord de France, Institut Pasteur de Lille, IFR 142, 1 rue Calmette, BP447, 59017 Lille Cedex, France
| |
Collapse
|
21
|
Novotny GW, Lundh M, Backe MB, Christensen DP, Hansen JB, Dahllöf MS, Pallesen EMH, Mandrup-Poulsen T. Transcriptional and translational regulation of cytokine signaling in inflammatory β-cell dysfunction and apoptosis. Arch Biochem Biophys 2012; 528:171-84. [PMID: 23063755 DOI: 10.1016/j.abb.2012.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 12/19/2022]
Abstract
Disease is conventionally viewed as the chaotic inappropriate outcome of deranged tissue function resulting from aberrancies in cellular processes. Yet the patho-biology of cellular dysfunction and death encompasses a coordinated network no less sophisticated and regulated than maintenance of homeostatic balance. Cellular demise is far from passive subordination to stress but requires controlled coordination of energy-requiring activities including gene transcription and protein translation that determine the graded transition between defensive mechanisms, cell cycle regulation, dedifferentiation and ultimately to the activation of death programmes. In fact, most stressors stimulate both homeostasis and regeneration on one hand and impairment and destruction on the other, depending on the ambient circumstances. Here we illustrate this bimodal ambiguity in cell response by reviewing recent progress in our understanding of how the pancreatic β cell copes with inflammatory stress by changing gene transcription and protein translation by the differential and interconnected action of reactive oxygen and nitric oxide species, microRNAs and posttranslational protein modifications.
Collapse
Affiliation(s)
- Guy W Novotny
- Section of Endocrinological Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists. Comp Funct Genomics 2012; 2012:134839. [PMID: 22778692 PMCID: PMC3388326 DOI: 10.1155/2012/134839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/09/2012] [Indexed: 01/01/2023] Open
Abstract
The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in “text-book” model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.
Collapse
|
23
|
Abstract
Protein synthesis is a complex, tightly regulated process in eukaryotic cells and its deregulation is a hallmark of many cancers. Translational control occurs primarily at the rate-limiting initiation step, where ribosomal subunits are recruited to template mRNAs through the concerted action of several eukaryotic initiation factors (eIFs). One factor that interacts with both the mRNA and ribosomes, and appears limiting for translation is eIF4F, a complex composed of the cap-binding protein, eIF4E; the scaffold protein, eIF4G; and the ATP-dependent DEAD-box helicase, eIF4A. eIF4E appears to play an important role in tumor initiation and progression since its overexpression can cooperate with oncogenes to accelerate transformation in cell lines and animal models, and its levels are elevated in many human cancers. This, therefore, represents a vulnerability for transformed cells, and presents an opportunity for therapeutic intervention. In this review, we discuss approaches for targeting eIF4F activity.
Collapse
|
24
|
Rodriguez J, Vernus B, Toubiana M, Jublanc E, Tintignac L, Leibovitch S, Bonnieu A. Myostatin inactivation increases myotube size through regulation of translational initiation machinery. J Cell Biochem 2012; 112:3531-42. [PMID: 21769921 DOI: 10.1002/jcb.23280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Myostatin deficiency leads in skeletal muscle overgrowth but the precise molecular mechanisms underlying this hypertrophy are not well understood. In this study, to gain insight into the role of endogenous myostatin in the translational regulation, we used an in vitro model of cultured satellite cells derived from myostatin knock-out mice. Our results show that myostatin knock-out myotubes are larger than control myotubes and that this phenotype is associated with an increased activation of the Akt/mTOR signaling pathway, a known regulator of muscle hypertrophy. These results demonstrate that hypertrophy due to myostatin deficiency is preserved in vitro and suggest that myostatin deletion results in an increased protein synthesis. Accordingly, the rates of global RNA content, polysome formation and protein synthesis are all increased in myostatin-deficient myotubes while they are counteracted by the addition of recombinant myostatin. We furthermore demonstrated that genetic deletion of myostatin stimulates cap-dependent translation by positively regulating assembly of the translation preinitiation complex. Together the data indicate that myostatin controls muscle hypertrophy in part by regulating protein synthesis initiation rates, that is, translational efficiency.
Collapse
Affiliation(s)
- Julie Rodriguez
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier 1, F 34060 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Bayona JC, Nakayasu ES, Laverrière M, Aguilar C, Sobreira TJP, Choi H, Nesvizhskii AI, Almeida IC, Cazzulo JJ, Alvarez VE. SUMOylation pathway in Trypanosoma cruzi: functional characterization and proteomic analysis of target proteins. Mol Cell Proteomics 2011; 10:M110.007369. [PMID: 21832256 DOI: 10.1074/mcp.m110.007369] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMOylation is a relevant protein post-translational modification in eukaryotes. The C terminus of proteolytically activated small ubiquitin-like modifier (SUMO) is covalently linked to a lysine residue of the target protein by an isopeptide bond, through a mechanism that includes an E1-activating enzyme, an E2-conjugating enzyme, and transfer to the target, sometimes with the assistance of a ligase. The modification is reversed by a protease, also responsible for SUMO maturation. A number of proteins have been identified as SUMO targets, participating in the regulation of cell cycle progression, transcription, translation, ubiquitination, and DNA repair. In this study, we report that orthologous genes corresponding to the SUMOylation pathway are present in the etiological agent of Chagas disease, Trypanosoma cruzi. Furthermore, the SUMOylation system is functionally active in this protozoan parasite, having the requirements for SUMO maturation and conjugation. Immunofluorescence analysis showed that T. cruzi SUMO (TcSUMO) is predominantly found in the nucleus. To identify SUMOylation targets and get an insight into their physiological roles we generated transfectant T. cruzi epimastigote lines expressing a double-tagged T. cruzi SUMO, and SUMOylated proteins were enriched by tandem affinity chromatography. By two-dimensional liquid chromatography-mass spectrometry a total of 236 proteins with diverse biological functions were identified as potential T. cruzi SUMO targets. Of these, metacaspase-3 was biochemically validated as a bona fide SUMOylation substrate. Proteomic studies in other organisms have reported that orthologs of putative T. cruzi SUMOylated proteins are similarly modified, indicating conserved functions for protein SUMOylation in this early divergent eukaryote.
Collapse
|
26
|
Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:909-18. [DOI: 10.1016/j.bbadis.2010.12.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023]
|
27
|
Kang MK, Han SJ. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep 2011; 44:147-57. [DOI: 10.5483/bmbrep.2011.44.3.147] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Segré CV, Chiocca S. Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2010; 2011:690848. [PMID: 21197454 PMCID: PMC3004424 DOI: 10.1155/2011/690848] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/15/2010] [Indexed: 11/18/2022] Open
Abstract
Class I histone deacetylases (HDACs) are cellular enzymes expressed in many tissues and play crucial roles in differentiation, proliferation, and cancer. HDAC1 and HDAC2 in particular are highly homologous proteins that show redundant or specific roles in different cell types or in response to different stimuli and signaling pathways. The molecular details of this dual regulation are largely unknown. HDAC1 and HDAC2 are not only protein modifiers, but are in turn regulated by post-translational modifications (PTMs): phosphorylation, acetylation, ubiquitination, SUMOylation, nitrosylation, and carbonylation. Some of these PTMs occur and crosstalk specifically on HDAC1 or HDAC2, creating a rational "code" for a differential, context-related regulation. The global comprehension of this PTM code is central for dissecting the role of single HDAC1 and HDAC2 in physiology and pathology.
Collapse
Affiliation(s)
- Chiara V. Segré
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|