1
|
De Silva N, Lehman N, Fargason T, Paul T, Zhang Z, Zhang J. Unearthing a novel function of SRSF1 in binding and unfolding of RNA G-quadruplexes. Nucleic Acids Res 2024; 52:4676-4690. [PMID: 38567732 PMCID: PMC11077049 DOI: 10.1093/nar/gkae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
SRSF1 governs splicing of over 1500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but not other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.
Collapse
Affiliation(s)
- Naiduwadura Ivon Upekala De Silva
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Nathan Lehman
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Talia Fargason
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Trenton Paul
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Zihan Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| | - Jun Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL 35294-1240, USA
| |
Collapse
|
2
|
Olazabal-Herrero A, He B, Kwon Y, Gupta AK, Dutta A, Huang Y, Boddu P, Liang Z, Liang F, Teng Y, Lan L, Chen X, Pei H, Pillai MM, Sung P, Kupfer GM. The FANCI/FANCD2 complex links DNA damage response to R-loop regulation through SRSF1-mediated mRNA export. Cell Rep 2024; 43:113610. [PMID: 38165804 PMCID: PMC10865995 DOI: 10.1016/j.celrep.2023.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Boxue He
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Abhishek K Gupta
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Prajwal Boddu
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Fengshan Liang
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Yaqun Teng
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Xiaoyong Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manoj M Pillai
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
3
|
De Silva NIU, Lehman N, Fargason T, Paul T, Zhang Z, Zhang J. Unearthing SRSF1's Novel Function in Binding and Unfolding of RNA G-Quadruplexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.563137. [PMID: 37961538 PMCID: PMC10634998 DOI: 10.1101/2023.10.30.563137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
SRSF1 governs splicing of over 1,500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity. With our success in solving the insolubility problem of SRSF1, we can explore the unknown RNA-binding landscape of SRSF1. We find that SRSF1 RS prefers purine over pyrimidine. Moreover, SRSF1 binds to the G-quadruplex (GQ) from the ARPC2 mRNA, with both RRMs and RS being crucial. Our binding assays show that the traditional RNA-binding sites on the RRM tandem and the Arg in RS are responsible for GQ binding. Interestingly, our FRET and circular dichroism data reveal that SRSF1 unfolds the ARPC2 GQ, with RS leading unfolding and RRMs aiding. Our saturation transfer difference NMR results discover that Arg residues in SRSF1 RS interact with the guanine base but other nucleobases, underscoring the uniqueness of the Arg/guanine interaction. Our luciferase assays confirm that SRSF1 can alleviate the inhibitory effect of GQ on gene expression in the cell. Given the prevalence of RNA GQ and SR proteins, our findings unveil unexplored SR protein functions with broad implications in RNA splicing and translation.
Collapse
Affiliation(s)
- Naiduwadura Ivon Upekala De Silva
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Nathan Lehman
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Talia Fargason
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Trenton Paul
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Zihan Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| | - Jun Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, AL, 35294-1240, USA
| |
Collapse
|
4
|
De Silva NIU, Fargason T, Zhang Z, Wang T, Zhang J. Inter-domain Flexibility of Human Ser/Arg-Rich Splicing Factor 1 Allows Variable Spacer Length in Cognate RNA’s Bipartite Motifs. Biochemistry 2022; 61:2922-2932. [DOI: 10.1021/acs.biochem.2c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naiduwadura Ivon Upekala De Silva
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| | - Talia Fargason
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| | - Zihan Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| | - Ting Wang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| | - Jun Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, CH266, 901 14th Street South, Birmingham, Alabama35294-1240, United States
| |
Collapse
|
5
|
Sun M, Jin Y, Zhang Y, Gregorich ZR, Ren J, Ge Y, Guo W. SR Protein Kinases Regulate the Splicing of Cardiomyopathy-Relevant Genes via Phosphorylation of the RSRSP Stretch in RBM20. Genes (Basel) 2022; 13:1526. [PMID: 36140694 PMCID: PMC9498672 DOI: 10.3390/genes13091526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: RNA binding motif 20 (RBM20) regulates mRNA splicing specifically in muscle tissues. Missense mutations in the arginine/serine (RS) domain of RBM20 lead to abnormal gene splicing and have been linked to severe dilated cardiomyopathy (DCM) in human patients and animal models. Interestingly, many of the reported DCM-linked missense mutations in RBM20 are in a highly conserved RSRSP stretch within the RS domain. Recently, it was found that the two Ser residues within this stretch are constitutively phosphorylated, yet the identity of the kinase(s) responsible for phosphorylating these residues, as well as the function of RSRSP phosphorylation, remains unknown. (2) Methods: The ability of three known SR protein kinases (SRPK1, CLK1, and AKT2) to phosphorylate the RBM20 RSRSP stretch and regulate target gene splicing was evaluated by using both in vitro and in vivo approaches. (3) Results: We found that all three kinases phosphorylated S638 and S640 in the RSRSP stretch and regulated RBM20 target gene splicing. While SRPK1 and CLK1 were both capable of directly phosphorylating the RS domain in RBM20, whether AKT2-mediated control of the RS domain phosphorylation is direct or indirect could not be determined. (4) Conclusions: Our results indicate that SR protein kinases regulate the splicing of a cardiomyopathy-relevant gene by modulating phosphorylation of the RSRSP stretch in RBM20. These findings suggest that SR protein kinases may be potential targets for the treatment of RBM20 cardiomyopathy.
Collapse
Affiliation(s)
- Mingming Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yanghai Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Zhang Y, Wang C, Sun M, Jin Y, Braz CU, Khatib H, Hacker TA, Liss M, Gotthardt M, Granzier H, Ge Y, Guo W. RBM20 phosphorylation and its role in nucleocytoplasmic transport and cardiac pathogenesis. FASEB J 2022; 36:e22302. [PMID: 35394688 PMCID: PMC9233413 DOI: 10.1096/fj.202101811rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
Arginine-serine (RS) domain(s) in splicing factors are critical for protein-protein interaction in pre-mRNA splicing. Phosphorylation of RS domain is important for splicing control and nucleocytoplasmic transport in the cell. RNA-binding motif 20 (RBM20) is a splicing factor primarily expressed in the heart. A previous study using phospho-antibody against RS domain showed that RS domain can be phosphorylated. However, its actual phosphorylation sites and function have not been characterized. Using middle-down mass spectrometry, we identified 16 phosphorylation sites, two of which (S638 and S640 in rats, or S637 and S639 in mice) were located in the RSRSP stretch in the RS domain. Mutations on S638 and S640 regulated splicing, promoted nucleocytoplasmic transport and protein-RNA condensates. Phosphomimetic mutations on S638 and S640 indicated that phosphorylation was not the major cause for RBM20 nucleocytoplasmic transport and condensation in vitro. We generated a S637A knock-in (KI) mouse model (Rbm20S637A ) and observed the reduced RBM20 phosphorylation. The KI mice exhibited aberrant gene splicing, protein condensates, and a dilated cardiomyopathy (DCM)-like phenotype. Transcriptomic profiling demonstrated that KI mice had altered expression and splicing of genes involving cardiac dysfunction, protein localization, and condensation. Our in vitro data showed that phosphorylation was not a direct cause for nucleocytoplasmic transport and protein condensation. Subsequently, the in vivo results reveal that RBM20 mutations led to cardiac pathogenesis. However, the role of phosphorylation in vivo needs further investigation.
Collapse
Affiliation(s)
- Yanghai Zhang
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Chunyan Wang
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Mingming Sun
- Department of Animal ScienceUniversity of WyomingLaramieWyomingUSA
| | - Yutong Jin
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Camila Urbano Braz
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Hasan Khatib
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonWisconsinUSA
| | - Timothy A. Hacker
- Division of Cardiovascular MedicineDepartment of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Martin Liss
- Neuromuscular and Cardiovascular Cell BiologyMax Delbrueck Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell BiologyMax Delbrueck Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Charité UniversitätsmedizinBerlinGermany
| | - Henk Granzier
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Ying Ge
- Department of ChemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Cell and Regenerative BiologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Human Proteomics ProgramSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wei Guo
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonWisconsinUSA
- Department of Animal ScienceUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
7
|
Lu YY, Krebber H. Nuclear mRNA Quality Control and Cytoplasmic NMD Are Linked by the Guard Proteins Gbp2 and Hrb1. Int J Mol Sci 2021; 22:ijms222011275. [PMID: 34681934 PMCID: PMC8541090 DOI: 10.3390/ijms222011275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA splicing is critical for cells, as defects in this process can lead to altered open reading frames and defective proteins, potentially causing neurodegenerative diseases and cancer. Introns are removed in the nucleus and splicing is documented by the addition of exon-junction-complexes (EJCs) at exon-exon boundaries. This “memory” of splicing events is important for the ribosome, which translates the RNAs in the cytoplasm. In case a stop codon was detected before an EJC, translation is blocked and the RNA is eliminated by the nonsense-mediated decay (NMD). In the model organism Saccharomyces cerevisiae, two guard proteins, Gbp2 and Hrb1, have been identified as nuclear quality control factors for splicing. In their absence, intron-containing mRNAs leak into the cytoplasm. Their presence retains transcripts until the process is completed and they release the mRNAs by recruitment of the export factor Mex67. On transcripts that experience splicing problems, these guard proteins recruit the nuclear RNA degradation machinery. Interestingly, they continue their quality control function on exported transcripts. They support NMD by inhibiting translation and recruiting the cytoplasmic degradation factors. In this way, they link the nuclear and cytoplasmic quality control systems. These discoveries are also intriguing for humans, as homologues of these guard proteins are present also in multicellular organisms. Here, we provide an overview of the quality control mechanisms of pre-mRNA splicing, and present Gbp2 and Hrb1, as well as their human counterparts, as important players in these pathways.
Collapse
|
8
|
Chanarat S. UBL5/Hub1: An Atypical Ubiquitin-Like Protein with a Typical Role as a Stress-Responsive Regulator. Int J Mol Sci 2021; 22:ijms22179384. [PMID: 34502293 PMCID: PMC8431670 DOI: 10.3390/ijms22179384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
Members of the ubiquitin-like protein family are known for their ability to modify substrates by covalent conjugation. The highly conserved ubiquitin relative UBL5/Hub1, however, is atypical because it lacks a carboxy-terminal di-glycine motif required for conjugation, and the whole E1-E2-E3 enzyme cascade is likely absent. Though the conjugation-mediated role of UBL5/Hub1 is controversial, it undoubtedly functions by interacting non-covalently with its partners. Several interactors of UBL5/Hub1 identified to date have suggested broad stress-responsive functions of the protein, for example, stress-induced control of pre-mRNA splicing, Fanconi anemia pathway of DNA damage repair, and mitochondrial unfolded protein response. While having an atypical mode of function, UBL5/Hub1 is still a stress protein that regulates feedback to various stimuli in a similar manner to other ubiquitin-like proteins. In this review, I discuss recent progress in understanding the functions of UBL5/Hub1 and the fundamental questions which remain to be answered.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Abstract
After human immunodeficiency virus type 1 (HIV-1) was identified in the early 1980s, intensive work began to understand the molecular basis of HIV-1 gene expression. Subgenomic HIV-1 RNA regions, spread throughout the viral genome, were described to have a negative impact on the nuclear export of some viral transcripts. Those studies revealed an intrinsic RNA code as a new form of nuclear export regulation. Since such regulatory regions were later also identified in other viruses, as well as in cellular genes, it can be assumed that, during evolution, viruses took advantage of them to achieve more sophisticated replication mechanisms. Here, we review HIV-1 cis-acting repressive sequences that have been identified, and we discuss their possible underlying mechanisms and importance. Additionally, we show how current bioinformatic tools might allow more predictive approaches to identify and investigate them.
Collapse
|
10
|
Mikolaskova B, Jurcik M, Cipakova I, Selicky T, Jurcik J, Polakova SB, Stupenova E, Dudas A, Sivakova B, Bellova J, Barath P, Aronica L, Gregan J, Cipak L. Identification of Nrl1 Domains Responsible for Interactions with RNA-Processing Factors and Regulation of Nrl1 Function by Phosphorylation. Int J Mol Sci 2021; 22:7011. [PMID: 34209806 PMCID: PMC8268110 DOI: 10.3390/ijms22137011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022] Open
Abstract
Pre-mRNA splicing is a key process in the regulation of gene expression. In the fission yeast Schizosaccharomyces pombe, Nrl1 regulates splicing and expression of several genes and non-coding RNAs, and also suppresses the accumulation of R-loops. Here, we report analysis of interactions between Nrl1 and selected RNA-processing proteins and regulation of Nrl1 function by phosphorylation. Bacterial two-hybrid system (BACTH) assays revealed that the N-terminal region of Nrl1 is important for the interaction with ATP-dependent RNA helicase Mtl1 while the C-terminal region of Nrl1 is important for interactions with spliceosome components Ctr1, Ntr2, and Syf3. Consistent with this result, tandem affinity purification showed that Mtl1, but not Ctr1, Ntr2, or Syf3, co-purifies with the N-terminal region of Nrl1. Interestingly, mass-spectrometry analysis revealed that in addition to previously identified phosphorylation sites, Nrl1 is also phosphorylated on serines 86 and 112, and that Nrl1-TAP co-purifies with Cka1, the catalytic subunit of casein kinase 2. In vitro assay showed that Cka1 can phosphorylate bacterially expressed Nrl1 fragments. An analysis of non-phosphorylatable nrl1 mutants revealed defects in gene expression and splicing consistent with the notion that phosphorylation is an important regulator of Nrl1 function. Taken together, our results provide insights into two mechanisms that are involved in the regulation of the spliceosome-associated factor Nrl1, namely domain-specific interactions between Nrl1 and RNA-processing proteins and post-translational modification of Nrl1 by phosphorylation.
Collapse
Affiliation(s)
- Barbora Mikolaskova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.M.); (M.J.); (I.C.); (T.S.); (J.J.)
| | - Matus Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.M.); (M.J.); (I.C.); (T.S.); (J.J.)
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.M.); (M.J.); (I.C.); (T.S.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.M.); (M.J.); (I.C.); (T.S.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.M.); (M.J.); (I.C.); (T.S.); (J.J.)
| | - Silvia Bagelova Polakova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (S.B.P.); (E.S.)
| | - Erika Stupenova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (S.B.P.); (E.S.)
| | - Andrej Dudas
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia; (B.S.); (J.B.); (P.B.)
| | - Jana Bellova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia; (B.S.); (J.B.); (P.B.)
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia; (B.S.); (J.B.); (P.B.)
- Medirex Group Academy, n.o., Jana Bottu 2, 917 01 Trnava, Slovakia
| | - Lucia Aronica
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Juraj Gregan
- Advanced Microscopy Facility, VBCF, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.M.); (M.J.); (I.C.); (T.S.); (J.J.)
| |
Collapse
|
11
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
12
|
Martín Moyano P, Němec V, Paruch K. Cdc-Like Kinases (CLKs): Biology, Chemical Probes, and Therapeutic Potential. Int J Mol Sci 2020; 21:E7549. [PMID: 33066143 PMCID: PMC7593917 DOI: 10.3390/ijms21207549] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Protein kinases represent a very pharmacologically attractive class of targets; however, some members of the family still remain rather unexplored. The biology and therapeutic potential of cdc-like kinases (CLKs) have been explored mainly over the last decade and the first CLK inhibitor, compound SM08502, entered clinical trials only recently. This review summarizes the biological roles and therapeutic potential of CLKs and their heretofore published small-molecule inhibitors, with a focus on the compounds' potential to be utilized as quality chemical biology probes.
Collapse
Affiliation(s)
- Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
| | - Václav Němec
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| |
Collapse
|
13
|
Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochem J 2020; 477:23-44. [DOI: 10.1042/bcj20190132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.
Collapse
|
14
|
Scott DD, Aguilar LC, Kramar M, Oeffinger M. It's Not the Destination, It's the Journey: Heterogeneity in mRNA Export Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:33-81. [PMID: 31811630 DOI: 10.1007/978-3-030-31434-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The process of creating a translation-competent mRNA is highly complex and involves numerous steps including transcription, splicing, addition of modifications, and, finally, export to the cytoplasm. Historically, much of the research on regulation of gene expression at the level of the mRNA has been focused on either the regulation of mRNA synthesis (transcription and splicing) or metabolism (translation and degradation). However, in recent years, the advent of new experimental techniques has revealed the export of mRNA to be a major node in the regulation of gene expression, and numerous large-scale and specific mRNA export pathways have been defined. In this chapter, we will begin by outlining the mechanism by which most mRNAs are homeostatically exported ("bulk mRNA export"), involving the recruitment of the NXF1/TAP export receptor by the Aly/REF and THOC5 components of the TREX complex. We will then examine various mechanisms by which this pathway may be controlled, modified, or bypassed in order to promote the export of subset(s) of cellular mRNAs, which include the use of metazoan-specific orthologs of bulk mRNA export factors, specific cis RNA motifs which recruit mRNA export machinery via specific trans-acting-binding factors, posttranscriptional mRNA modifications that act as "inducible" export cis elements, the use of the atypical mRNA export receptor, CRM1, and the manipulation or bypass of the nuclear pore itself. Finally, we will discuss major outstanding questions in the field of mRNA export heterogeneity and outline how cutting-edge experimental techniques are providing new insights into and tools for investigating the intriguing field of mRNA export heterogeneity.
Collapse
Affiliation(s)
- Daniel D Scott
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Mathew Kramar
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Marlene Oeffinger
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada. .,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada. .,Faculté de Médecine, Département de Biochimie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
15
|
Daras G, Rigas S, Alatzas A, Samiotaki M, Chatzopoulos D, Tsitsekian D, Papadaki V, Templalexis D, Banilas G, Athanasiadou AM, Kostourou V, Panayotou G, Hatzopoulos P. LEFKOTHEA Regulates Nuclear and Chloroplast mRNA Splicing in Plants. Dev Cell 2019; 50:767-779.e7. [PMID: 31447263 DOI: 10.1016/j.devcel.2019.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/27/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Eukaryotic organisms accomplish the removal of introns to produce mature mRNAs through splicing. Nuclear and organelle splicing mechanisms are distinctively executed by spliceosome and group II intron complex, respectively. Here, we show that LEFKOTHEA, a nuclear encoded RNA-binding protein, participates in chloroplast group II intron and nuclear pre-mRNA splicing. Transiently optimized LEFKOTHEA nuclear activity is fundamental for plant growth, whereas the loss of function abruptly arrests embryogenesis. Nucleocytoplasmic partitioning and chloroplast allocation are efficiently balanced via functional motifs in LEFKOTHEA polypeptide. In the context of nuclear-chloroplast coevolution, our results provide a strong paradigm of the convergence of RNA maturation mechanisms in the nucleus and chloroplasts to coordinately regulate gene expression and effectively control plant growth.
Collapse
Affiliation(s)
- Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Anastasios Alatzas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Vassiliki Papadaki
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | | - Georgios Banilas
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | |
Collapse
|
16
|
George A, Aubol BE, Fattet L, Adams JA. Disordered protein interactions for an ordered cellular transition: Cdc2-like kinase 1 is transported to the nucleus via its Ser-Arg protein substrate. J Biol Chem 2019; 294:9631-9641. [PMID: 31064840 DOI: 10.1074/jbc.ra119.008463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Indexed: 01/22/2023] Open
Abstract
Serine-arginine (SR) proteins are essential splicing factors that promote numerous steps associated with mRNA processing and whose biological function is tightly regulated through multi-site phosphorylation. In the nucleus, the cdc2-like kinases (CLKs) phosphorylate SR proteins on their intrinsically disordered Arg-Ser (RS) domains, mobilizing them from storage speckles to the splicing machinery. The CLKs have disordered N termini that bind tightly to RS domains, enhancing SR protein phosphorylation. The N termini also promote nuclear localization of CLKs, but their transport mechanism is presently unknown. To explore cytoplasmic-nuclear transitions, several classical nuclear localization sequences in the N terminus of the CLK1 isoform were identified, but their mutation had no effect on subcellular localization. Rather, we found that CLK1 amplifies its presence in the nucleus by forming a stable complex with the SR protein substrate and appropriating its NLS for transport. These findings indicate that, along with their well-established roles in mRNA splicing, SR proteins use disordered protein-protein interactions to carry their kinase regulator from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Athira George
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Brandon E Aubol
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Laurent Fattet
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| | - Joseph A Adams
- From the Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636
| |
Collapse
|
17
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
View from an mRNP: The Roles of SR Proteins in Assembly, Maturation and Turnover. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:83-112. [PMID: 31811631 DOI: 10.1007/978-3-030-31434-7_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Serine- and arginine-rich proteins (SR proteins) are a family of multitasking RNA-binding proteins (RBPs) that are key determinants of messenger ribonucleoprotein (mRNP) formation, identity and fate. Apart from their essential functions in pre-mRNA splicing, SR proteins display additional pre- and post-splicing activities and connect nuclear and cytoplasmic gene expression machineries. Through changes in their post-translational modifications (PTMs) and their subcellular localization, they provide functional specificity and adjustability to mRNPs. Transcriptome-wide UV crosslinking and immunoprecipitation (CLIP-Seq) studies revealed that individual SR proteins are present in distinct mRNPs and act in specific pairs to regulate different gene expression programmes. Adopting an mRNP-centric viewpoint, we discuss the roles of SR proteins in the assembly, maturation, quality control and turnover of mRNPs and describe the mechanisms by which they integrate external signals, coordinate their multiple tasks and couple subsequent mRNA processing steps.
Collapse
|
19
|
Long Y, Sou WH, Yung KWY, Liu H, Wan SWC, Li Q, Zeng C, Law COK, Chan GHC, Lau TCK, Ngo JCK. Distinct mechanisms govern the phosphorylation of different SR protein splicing factors. J Biol Chem 2018; 294:1312-1327. [PMID: 30478176 DOI: 10.1074/jbc.ra118.003392] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/17/2018] [Indexed: 01/30/2023] Open
Abstract
Serine-arginine (SR) proteins are essential splicing factors containing a canonical RNA recognition motif (RRM), sometimes followed by a pseudo-RRM, and a C-terminal arginine/serine-rich (RS) domain that undergoes multisite phosphorylation. Phosphorylation regulates the localization and activity of SR proteins, and thus may provide insight into their differential biological roles. The phosphorylation mechanism of the prototypic SRSF1 by serine-arginine protein kinase 1 (SRPK1) has been well-studied, but little is known about the phosphorylation of other SR protein members. In the present study, interaction and kinetic assays unveiled how SRSF1 and the single RRM-containing SRSF3 are phosphorylated by SRPK2, another member of the SRPK family. We showed that a conserved SRPK-specific substrate-docking groove in SRPK2 impacts the binding and phosphorylation of both SR proteins, and the localization of SRSF3. We identified a nonconserved residue within the groove that affects the kinase processivity. We demonstrated that, in contrast to SRSF1, for which SRPK-mediated phosphorylation is confined to the N-terminal region of the RS domain, SRSF3 phosphorylation sites are spread throughout its entire RS domain in vitro Despite this, SRSF3 appears to be hypophosphorylated in cells at steady state. Our results suggest that the absence of a pseudo-RRM renders the single RRM-containing SRSF3 more susceptible to dephosphorylation by phosphatase. These findings suggest that the single RRM- and two RRM-containing SR proteins represent two subclasses of phosphoproteins in which phosphorylation statuses are maintained by unique mechanisms, and pose new directions to explore the distinct roles of SR proteins in vivo.
Collapse
Affiliation(s)
- Yunxin Long
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Weng Hong Sou
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kristen Wing Yu Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Haizhen Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Stephanie Winn Chee Wan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chuyue Zeng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Carmen Oi Kwan Law
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Gordon Ho Ching Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
20
|
Wegener M, Müller-McNicoll M. Nuclear retention of mRNAs - quality control, gene regulation and human disease. Semin Cell Dev Biol 2017; 79:131-142. [PMID: 29102717 DOI: 10.1016/j.semcdb.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of nuclear retention, describe retention-promoting features in protein-coding transcripts and propose mechanisms for their regulated release into the cytoplasm. Moreover, we discuss examples of how aberrant nuclear retention of mRNAs may lead to human diseases.
Collapse
Affiliation(s)
- Marius Wegener
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
21
|
Brugiolo M, Botti V, Liu N, Müller-McNicoll M, Neugebauer KM. Fractionation iCLIP detects persistent SR protein binding to conserved, retained introns in chromatin, nucleoplasm and cytoplasm. Nucleic Acids Res 2017; 45:10452-10465. [PMID: 28977534 PMCID: PMC5737842 DOI: 10.1093/nar/gkx671] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 07/20/2017] [Indexed: 01/25/2023] Open
Abstract
RNA binding proteins (RBPs) regulate the lives of all RNAs from transcription, processing, and function to decay. How RNA-protein interactions change over time and space to support these roles is poorly understood. Towards this end, we sought to determine how two SR proteins-SRSF3 and SRSF7, regulators of pre-mRNA splicing, nuclear export and translation-interact with RNA in different cellular compartments. To do so, we developed Fractionation iCLIP (Fr-iCLIP), in which chromatin, nucleoplasmic and cytoplasmic fractions are prepared from UV-crosslinked cells and then subjected to iCLIP. As expected, SRSF3 and SRSF7 targets were detected in all fractions, with intron, snoRNA and lncRNA interactions enriched in the nucleus. Cytoplasmically-bound mRNAs reflected distinct functional groupings, suggesting coordinated translation regulation. Surprisingly, hundreds of cytoplasmic intron targets were detected. These cytoplasmic introns were found to be highly conserved and introduced premature termination codons into coding regions. However, many intron-retained mRNAs were not substrates for nonsense-mediated decay (NMD), even though they were detected in polysomes. These findings suggest that intron-retained mRNAs in the cytoplasm have previously uncharacterized functions and/or escape surveillance. Hence, Fr-iCLIP detects the cellular location of RNA-protein interactions and provides insight into co-transcriptional, post-transcriptional and cytoplasmic RBP functions for coding and non-coding RNAs.
Collapse
Affiliation(s)
- Mattia Brugiolo
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Na Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe-University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| |
Collapse
|
22
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Wang Y, Zhao JC. Update: Mechanisms Underlying N 6-Methyladenosine Modification of Eukaryotic mRNA. Trends Genet 2016; 32:763-773. [PMID: 27793360 DOI: 10.1016/j.tig.2016.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022]
Abstract
Eukaryotic mRNA undergoes chemical modification both at the 5' cap and internally. Among internal modifications, N6-methyladensone (m6A), by far the most abundant, is present in all eukaryotes examined so far, including mammals, flies, plants, and yeast. m6A modification has an essential role in diverse biological processes. Over the past few years, our knowledge relevant to the establishment and function of this modification has grown rapidly. In this review, we focus on technologies that have facilitated m6A detection in mRNAs, the identification of m6A methylation enzymes and binding proteins, and potential functions of the modification at the molecular level.
Collapse
Affiliation(s)
- Yang Wang
- Tumor Initiation And Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jing Crystal Zhao
- Tumor Initiation And Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Müller-McNicoll M, Botti V, de Jesus Domingues AM, Brandl H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K, Neugebauer KM. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev 2016; 30:553-66. [PMID: 26944680 PMCID: PMC4782049 DOI: 10.1101/gad.276477.115] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, Müller-McNicoll et al. investigate how export machinery assembles on mRNA and how it senses mRNA maturity before exporting mRNAs from the nucleus. They show that SR proteins act as NXF1 adaptors by connecting alternative splicing and 3′ end formation to mRNA export in vivo and propose that SR proteins and NXF1 form a ternary complex on mRNAs, particularly in last exons, and shuttle together to the cytoplasm. Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends.
Collapse
Affiliation(s)
- Michaela Müller-McNicoll
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Oliver D Schwich
- RNA Regulation Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, 60438 Frankfurt/Main, Germany; Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt/Main, Germany
| | - Michaela C Steiner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Kathi Zarnack
- Buchmann Institute for Life Sciences (BMLS), 60438 Frankfurt/Main, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
25
|
Directional Phosphorylation and Nuclear Transport of the Splicing Factor SRSF1 Is Regulated by an RNA Recognition Motif. J Mol Biol 2016; 428:2430-2445. [PMID: 27091468 DOI: 10.1016/j.jmb.2016.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 01/21/2023]
Abstract
Multisite phosphorylation is required for the biological function of serine-arginine (SR) proteins, a family of essential regulators of mRNA splicing. These modifications are catalyzed by serine-arginine protein kinases (SRPKs) that phosphorylate numerous serines in arginine-serine-rich (RS) domains of SR proteins using a directional, C-to-N-terminal mechanism. The present studies explore how SRPKs govern this highly biased phosphorylation reaction and investigate biological roles of the observed directional phosphorylation mechanism. Using NMR spectroscopy with two separately expressed domains of SRSF1, we showed that several residues in the RNA-binding motif 2 interact with the N-terminal region of the RS domain (RS1). These contacts provide a structural framework that balances the activities of SRPK1 and the protein phosphatase PP1, thereby regulating the phosphoryl content of the RS domain. Disruption of the implicated intramolecular RNA-binding motif 2-RS domain interaction impairs both the directional phosphorylation mechanism and the nuclear translocation of SRSF1 demonstrating that the intrinsic phosphorylation bias is obligatory for SR protein biological function.
Collapse
|
26
|
Stankovic N, Schloesser M, Joris M, Sauvage E, Hanikenne M, Motte P. Dynamic Distribution and Interaction of the Arabidopsis SRSF1 Subfamily Splicing Factors. PLANT PHYSIOLOGY 2016; 170:1000-13. [PMID: 26697894 PMCID: PMC4734559 DOI: 10.1104/pp.15.01338] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/19/2015] [Indexed: 05/19/2023]
Abstract
Ser/Arg-rich (SR) proteins are essential nucleus-localized splicing factors. Our prior studies showed that Arabidopsis (Arabidopsis thaliana) RSZ22, a homolog of the human SRSF7 SR factor, exits the nucleus through two pathways, either dependent or independent on the XPO1 receptor. Here, we examined the expression profiles and shuttling dynamics of the Arabidopsis SRSF1 subfamily (SR30, SR34, SR34a, and SR34b) under control of their endogenous promoter in Arabidopsis and in transient expression assay. Due to its rapid nucleocytoplasmic shuttling and high expression level in transient assay, we analyzed the multiple determinants that regulate the localization and shuttling dynamics of SR34. By site-directed mutagenesis of SR34 RNA-binding sequences and Arg/Ser-rich (RS) domain, we further show that functional RRM1 or RRM2 are dispensable for the exclusive protein nuclear localization and speckle-like distribution. However, mutations of both RRMs induced aggregation of the protein whereas mutation in the RS domain decreased the stability of the protein and suppressed its nuclear accumulation. Furthermore, the RNA-binding motif mutants are defective for their export through the XPO1 (CRM1/Exportin-1) receptor pathway, but retain nucleocytoplasmic mobility. We performed a yeast two hybrid screen with SR34 as bait and discovered SR45 as a new interactor. SR45 is an unusual SR splicing factor bearing two RS domains. These interactions were confirmed in planta by FLIM-FRET and BiFC and the roles of SR34 domains in protein-protein interactions were further studied. Altogether, our report extends our understanding of shuttling dynamics of Arabidopsis SR splicing factors.
Collapse
Affiliation(s)
- Nancy Stankovic
- Laboratory of Functional Genomics and Plant Molecular Imaging (N.S., M.S., M.J., M.H., P.M.), Laboratory of Macromolecular Crystallography (E.S.), PhytoSYSTEMS (M.H., P.M.), Centre for Protein Engineering (CIP; N.S., M.S., M.J., E.S., M.H., P.M.), Department of Life Sciences, and Centre for Assistance in Technology of Microscopy (CATM; P.M.), University of Liège, B-4000 Liège, Belgium
| | - Marie Schloesser
- Laboratory of Functional Genomics and Plant Molecular Imaging (N.S., M.S., M.J., M.H., P.M.), Laboratory of Macromolecular Crystallography (E.S.), PhytoSYSTEMS (M.H., P.M.), Centre for Protein Engineering (CIP; N.S., M.S., M.J., E.S., M.H., P.M.), Department of Life Sciences, and Centre for Assistance in Technology of Microscopy (CATM; P.M.), University of Liège, B-4000 Liège, Belgium
| | - Marine Joris
- Laboratory of Functional Genomics and Plant Molecular Imaging (N.S., M.S., M.J., M.H., P.M.), Laboratory of Macromolecular Crystallography (E.S.), PhytoSYSTEMS (M.H., P.M.), Centre for Protein Engineering (CIP; N.S., M.S., M.J., E.S., M.H., P.M.), Department of Life Sciences, and Centre for Assistance in Technology of Microscopy (CATM; P.M.), University of Liège, B-4000 Liège, Belgium
| | - Eric Sauvage
- Laboratory of Functional Genomics and Plant Molecular Imaging (N.S., M.S., M.J., M.H., P.M.), Laboratory of Macromolecular Crystallography (E.S.), PhytoSYSTEMS (M.H., P.M.), Centre for Protein Engineering (CIP; N.S., M.S., M.J., E.S., M.H., P.M.), Department of Life Sciences, and Centre for Assistance in Technology of Microscopy (CATM; P.M.), University of Liège, B-4000 Liège, Belgium
| | - Marc Hanikenne
- Laboratory of Functional Genomics and Plant Molecular Imaging (N.S., M.S., M.J., M.H., P.M.), Laboratory of Macromolecular Crystallography (E.S.), PhytoSYSTEMS (M.H., P.M.), Centre for Protein Engineering (CIP; N.S., M.S., M.J., E.S., M.H., P.M.), Department of Life Sciences, and Centre for Assistance in Technology of Microscopy (CATM; P.M.), University of Liège, B-4000 Liège, Belgium
| | - Patrick Motte
- Laboratory of Functional Genomics and Plant Molecular Imaging (N.S., M.S., M.J., M.H., P.M.), Laboratory of Macromolecular Crystallography (E.S.), PhytoSYSTEMS (M.H., P.M.), Centre for Protein Engineering (CIP; N.S., M.S., M.J., E.S., M.H., P.M.), Department of Life Sciences, and Centre for Assistance in Technology of Microscopy (CATM; P.M.), University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
27
|
Abstract
Exonic splice enhancers (ESEs) are short nucleotide motifs, enriched near exon ends, that enhance the recognition of the splice site and thus promote splicing. Are intronless genes under selection to avoid these motifs so as not to attract the splicing machinery to an mRNA that should not be spliced, thereby preventing the production of an aberrant transcript? Consistent with this possibility, we find that ESEs in putative recent retrocopies are at a higher density and evolving faster than those in other intronless genes, suggesting that they are being lost. Moreover, intronless genes are less dense in putative ESEs than intron-containing ones. However, this latter difference is likely due to the skewed base composition of intronless sequences, a skew that is in line with the general GC richness of few exon genes. Indeed, after controlling for such biases, we find that both intronless and intron-containing genes are denser in ESEs than expected by chance. Importantly, nucleotide-controlled analysis of evolutionary rates at synonymous sites in ESEs indicates that the ESEs in intronless genes are under purifying selection in both human and mouse. We conclude that on the loss of introns, some but not all, ESE motifs are lost, the remainder having functions beyond a role in splice promotion. These results have implications for the design of intronless transgenes and for understanding the causes of selection on synonymous sites.
Collapse
Affiliation(s)
- Rosina Savisaar
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
28
|
Post-Translational Modifications and RNA-Binding Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:297-317. [PMID: 27256391 DOI: 10.1007/978-3-319-29073-7_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins affect cellular metabolic programs through development and in response to cellular stimuli. Though much work has been done to elucidate the roles of a handful of RNA-binding proteins and their effect on RNA metabolism, the progress of studies to understand the effects of post-translational modifications of this class of proteins is far from complete. This chapter summarizes the work that has been done to identify the consequence of post-translational modifications to some RNA-binding proteins. The effects of these modifications have been shown to increase the panoply of functions that a given RNA-binding protein can assume. We will survey the experimental methods that are used to identify the presence of several protein modifications and methods that attempt to discern the consequence of these modifications.
Collapse
|
29
|
Posttranscriptional Regulation of Splicing Factor SRSF1 and Its Role in Cancer Cell Biology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:287048. [PMID: 26273603 PMCID: PMC4529898 DOI: 10.1155/2015/287048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/16/2014] [Indexed: 01/23/2023]
Abstract
Over the past decade, alternative splicing has been progressively recognized as a major mechanism regulating gene expression patterns in different tissues and disease states through the generation of multiple mRNAs from the same gene transcript. This process requires the joining of selected exons or usage of different pairs of splice sites and is regulated by gene-specific combinations of RNA-binding proteins. One archetypical splicing regulator is SRSF1, for which we review the molecular mechanisms and posttranscriptional modifications involved in its life cycle. These include alternative splicing of SRSF1 itself, regulatory protein phosphorylation events, and the role of nuclear versus cytoplasmic SRSF1 localization. In addition, we resume current knowledge on deregulated SRSF1 expression in tumors and describe SRSF1-regulated alternative transcripts with functional consequences for cancer cell biology at different stages of tumor development.
Collapse
|
30
|
Viphakone N, Cumberbatch MG, Livingstone MJ, Heath PR, Dickman MJ, Catto JW, Wilson SA. Luzp4 defines a new mRNA export pathway in cancer cells. Nucleic Acids Res 2015; 43:2353-66. [PMID: 25662211 PMCID: PMC4344508 DOI: 10.1093/nar/gkv070] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors. Luzp4 binds the principal mRNA export receptor Nxf1, enhances its RNA binding activity and complements Alyref knockdown in vivo. Whilst Luzp4 is up-regulated in a range of tumours, it appears preferentially expressed in melanoma cells where it is required for growth.
Collapse
Affiliation(s)
- Nicolas Viphakone
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Marcus G Cumberbatch
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK Academic Urology Unit, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michaela J Livingstone
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, UK
| | - James W Catto
- Academic Urology Unit, The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Stuart A Wilson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| |
Collapse
|
31
|
Howard JM, Sanford JR. The RNAissance family: SR proteins as multifaceted regulators of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:93-110. [PMID: 25155147 DOI: 10.1002/wrna.1260] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 12/29/2022]
Abstract
Serine and arginine-rich (SR) proteins play multiple roles in the eukaryotic gene expression pathway. Initially described as constitutive and alternative splicing factors, now it is clear that SR proteins are key determinants of exon identity and function as molecular adaptors, linking the pre-messenger RNA (pre-mRNA) to the splicing machinery. In addition, now SR proteins are implicated in many aspects of mRNA and noncoding RNA (ncRNA) processing well beyond splicing. These unexpected roles, including RNA transcription, export, translation, and decay, may prove to be the rule rather than the exception. To simply define, this family of RNA-binding proteins as splicing factors belies the broader roles of SR proteins in post-transcriptional gene expression.
Collapse
Affiliation(s)
- Jonathan M Howard
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | | |
Collapse
|
32
|
Das S, Krainer AR. Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res 2014; 12:1195-204. [PMID: 24807918 DOI: 10.1158/1541-7786.mcr-14-0131] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Serine/Arginine Splicing Factor 1 (SRSF1) is the archetype member of the SR protein family of splicing regulators. Since its discovery over two decades ago, SRSF1 has been repeatedly surprising and intriguing investigators by the plethora of complex biologic pathways it regulates. These include several key aspects of mRNA metabolism, such as mRNA splicing, stability, and translation, as well as other mRNA-independent processes, such as miRNA processing, protein sumoylation, and the nucleolar stress response. In this review, the structural features of SRSF1 are discussed as they relate to the intricate mechanism of splicing and the multiplicity of functions it performs. Similarly, a list of relevant alternatively spliced transcripts and SRSF1 interacting proteins is provided. Finally, emphasis is given to the deleterious consequences of overexpression of the SRSF1 proto-oncogene in human cancers, and the complex mechanisms and pathways underlying SRSF1-mediated transformation. The accumulated knowledge about SRSF1 provides critical insight into the integral role it plays in maintaining cellular homeostasis and suggests new targets for anticancer therapy. Mol Cancer Res; 12(9); 1195-204. ©2014 AACR.
Collapse
Affiliation(s)
- Shipra Das
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
33
|
Naro C, Sette C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int J Cell Biol 2013; 2013:151839. [PMID: 24069033 PMCID: PMC3771450 DOI: 10.1155/2013/151839] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large macromolecular complex, the spliceosome, whose activity needs a fine regulation exerted by cis-acting RNA sequence elements and trans-acting RNA binding proteins (RBP). The activity of both core spliceosomal components and accessory splicing factors is modulated by their reversible phosphorylation. The kinases and phosphatases involved in these posttranslational modifications significantly contribute to AS regulation and to its integration in the complex regulative network that controls gene expression in eukaryotic cells. Herein, we will review the major canonical and noncanonical splicing factor kinases and phosphatases, focusing on those whose activity has been implicated in the aberrant splicing events that characterize neoplastic transformation.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
34
|
Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013; 122:191-207. [PMID: 23525660 DOI: 10.1007/s00412-013-0407-z] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.
Collapse
|
35
|
Lee KM, Tarn WY. Coupling pre-mRNA processing to transcription on the RNA factory assembly line. RNA Biol 2013; 10:380-90. [PMID: 23392244 DOI: 10.4161/rna.23697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Institute of Biomedical Sciences; Academia Sinica; Taipei, Taiwan
| | | |
Collapse
|
36
|
Abstract
Serine-arginine (SR) proteins commonly designate a family of eukaryotic RNA binding proteins containing a protein domain composed of several repeats of the arginine-serine dipeptide, termed the arginine-serine (RS) domain. This protein family is involved in essential nuclear processes such as constitutive and alternative splicing of mRNA precursors. Besides participating in crucial activities in the nuclear compartment, several SR proteins are able to shuttle between the nucleus and the cytoplasm and to exert regulatory functions in the latter compartment. This review aims at discussing the properties of shuttling SR proteins with particular emphasis on their nucleo-cytoplasmic traffic and their cytoplasmic functions. Indeed, recent findings have unravelled the complex regulation of SR protein nucleo-cytoplasmic distribution and the diversity of cytoplasmic mechanisms in which these proteins are involved.
Collapse
Affiliation(s)
- Laure Twyffels
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|
37
|
Tranell A, Tingsborg S, Fenyö EM, Schwartz S. Inhibition of splicing by serine-arginine rich protein 55 (SRp55) causes the appearance of partially spliced HIV-1 mRNAs in the cytoplasm. Virus Res 2011; 157:82-91. [PMID: 21345357 DOI: 10.1016/j.virusres.2011.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 02/07/2011] [Accepted: 02/11/2011] [Indexed: 01/08/2023]
Abstract
We have previously shown that SRp55 inhibits splicing from HIV-1 exon 3, thereby generating partially spliced mRNAs encoding HIV-1 vpr. Here we show that SRp55 also inhibits splicing from HIV-1 exon 5 to generate HIV-1 vpu/env mRNA, albeit with lower efficiency. We also show that inhibition of HIV-1 splicing by SRp55 causes the appearance of partially spliced vpu, env and vpr mRNAs in the cytoplasm. SRp55 could also induce production of extracellular p24gag from a rev-defective HIV-1 provirus. These results indicate that SRp55 aids in the generation of partially spliced and unspliced HIV-1 mRNAs.
Collapse
Affiliation(s)
- Anna Tranell
- Department of Medical Biochemistry & Microbiology, Uppsala University, BMC, 75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Zhang YX, Xing M, Fei X, Zhang JH, Tian SL, Li MH, Liu SD. Identification of a novel PSR as the substrate of an SR protein kinase in the true slime mold. J Biochem 2010; 149:275-83. [PMID: 21149255 DOI: 10.1093/jb/mvq141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Here, a novel cDNA encoding a serine/arginine (SR)-rich protein, designated PSR, was isolated from the true slime mold Physarum polycephalum and expressed in Escherichia coli. The deduced amino acid (aa) sequence reveals that PSR contains RS repeats at its C-terminus, similar to the conventional PSRPK substrate ASF/SF2. To study the novel protein, we generated a variety of mutant constructs by PCR and site-directed mutagenesis. Our analysis indicated that the purified recombinant PSR was phosphorylated by PSRPK in vitro and the SR-rich domain (amino acids 460-469) in the PSR protein was required for phosphorylation. In addition, removal of the docking motif (amino acids 424-450) from PSR significantly reduced the overall catalytic efficiency of the phosphorylation reaction. We also found that the conserved ATP-binding region (62)LGWGHFSTVWLAIDEKNGGREVALK(86) and the serine/threonine protein kinases active-site signature (184)IIHTDLKPENVLL(196) of PSRPK played a crucial role in substrate phosphorylation and Lys(86) and Asp(188) were crucial for PSRPK phosphorylation of PSR. These results suggest that PSR is a novel SR-related protein that is phosphorylated by PSRPK.
Collapse
Affiliation(s)
- Yong-Xia Zhang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, P.R. China
| | | | | | | | | | | | | |
Collapse
|
39
|
Hsu HS, Chen HW, Kao CL, Wu ML, Li AFY, Cheng TH. MDM2 is overexpressed and regulated by the eukaryotic translation initiation factor 4E (eIF4E) in human squamous cell carcinoma of esophagus. Ann Surg Oncol 2010; 18:1469-77. [PMID: 21080085 DOI: 10.1245/s10434-010-1428-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND We investigated the association between the increased eukaryotic translation initiation factor 4E (eIF4E) level and MDM2 overexpression in the esophageal cancer tissue and cells. METHODS This was a retrospective study of specimens from esophageal cancer patients treated over a 5-year period in a Taiwan university hospital. The predictor variable was eIF4E level in esophageal tumors and CE48T/VGH and TE6 esophageal carcinoma cell lines. The main outcome variable was MDM2 overexpression. Appropriate descriptive and univariate statistics were computed, and a P value of <0.05 was considered statistically significant. RESULTS There were two study sample groups. Immunohistochemistry analyses of the first sample group (51 esophageal tumors) revealed that 19 specimens demonstrated MDM2 elevation and 20 specimens had eIF4E overexpression. eIF4E elevation was evidenced by accumulation of the protein in the cytoplasm. There was a significant association between the eIF4E and MDM2 expression (P < 0.001). Western blot analysis and semiquantitative reverse transcriptase-polymerase chain reaction of the second specimen group (20 pairs of tumors and normal tissues) revealed the co-elevation of MDM2 and eIF4E (P = 0.008). There was no increased mdm2 transcript in most of the specimens. Without significant alterations in the mdm2 mRNA level and subcellular distribution, MDM2 protein was upregulated in CE48T/VGH cultured cells expressing ectopic eIF4E. Conversely, reduction of eIF4E by specific siRNA enabled TE6 cells synthesizing reduced amounts of MDM2. CONCLUSIONS Our findings indicate that MDM2 protein levels are strongly associated with and regulated by eIF4E in a posttranscriptional mechanism in esophageal cancer.
Collapse
Affiliation(s)
- Han-Shui Hsu
- National Yang-Ming University School of Medicine, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
40
|
The SR protein B52/SRp55 is required for DNA topoisomerase I recruitment to chromatin, mRNA release and transcription shutdown. PLoS Genet 2010; 6:e1001124. [PMID: 20862310 PMCID: PMC2940736 DOI: 10.1371/journal.pgen.1001124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 08/13/2010] [Indexed: 12/20/2022] Open
Abstract
DNA- and RNA-processing pathways are integrated and interconnected in the eukaryotic nucleus to allow efficient gene expression and to maintain genomic stability. The recruitment of DNA Topoisomerase I (Topo I), an enzyme controlling DNA supercoiling and acting as a specific kinase for the SR-protein family of splicing factors, to highly transcribed loci represents a mechanism by which transcription and processing can be coordinated and genomic instability avoided. Here we show that Drosophila Topo I associates with and phosphorylates the SR protein B52. Surprisingly, expression of a high-affinity binding site for B52 in transgenic flies restricted localization, not only of B52, but also of Topo I to this single transcription site, whereas B52 RNAi knockdown induced mis-localization of Topo I in the nucleolus. Impaired delivery of Topo I to a heat shock gene caused retention of the mRNA at its site of transcription and delayed gene deactivation after heat shock. Our data show that B52 delivers Topo I to RNA polymerase II-active chromatin loci and provide the first evidence that DNA topology and mRNA release can be coordinated to control gene expression. DNA Topoisomerase I (Topo I) is a very well known enzyme capable of removing DNA topological constrains during transcription. In mammals, Topo I also harbours an intrinsic protein kinase activity required to achieve specific phosphorylation of factors in charge of maturating the transcript and exporting it from the transcription site in the nucleus to the cytoplasm. In this report, we have used Drosophila genetics to describe the surprising finding that Topo I is not directly recruited to active transcription sites by DNA but rather by an indirect interaction with its protein target of phosphorylation which in turn is bound to nascent transcripts at gene loci. Furthermore, we demonstrate that the delivery of Topo I to an activated heat shock gene is essential for efficient release of the mRNA from its transcription site and functions to turn off transcription of the gene. This study brings a new model for the long unanswered question of how genes are turned off and provides evidence that Topo I is at the heart of the mechanism by which DNA and RNA processes are coordinately regulated during development to avoid genomic instability.
Collapse
|
41
|
A novel SR protein binding site in a cis-regulatory element of HIV-1. Arch Virol 2010; 155:1789-95. [PMID: 20668893 DOI: 10.1007/s00705-010-0765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
We have previously described a cis enhancing sequence (CES) in the gp41 region of the HIV-1 env gene. It could enhance HIV-1 Gag expression via both rev-dependent and CTE (constitutive transport element)-dependent pathways. We identified a functionally important and conserved region in the CES that contained a predicted binding sequence for an SR protein, ASF/SF2. We show here that ASF/SF2 bound to this sequence in an electrophoretic mobility shift assay and that the putative ASF/SF2-binding sequence was required for the enhancement of Gag expression by CES and might play a role in HIV-1 posttranscriptional regulation.
Collapse
|
42
|
The Varicella-Zoster virus IE4 protein: a conserved member of the herpesviral mRNA export factors family and a potential alternative target in antiherpetic therapies. Biochem Pharmacol 2010; 80:1973-80. [PMID: 20650265 DOI: 10.1016/j.bcp.2010.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/05/2010] [Accepted: 07/08/2010] [Indexed: 02/07/2023]
Abstract
During a viral infection, in addition to cellular mRNAs, amounts of viral mRNAs have to be efficiently transported to the cytoplasm for translation. It is now established that herpesviruses encode a conserved gene family whose proteins act as viral mRNA export factors that mediate nucleocytoplasmic transport of viral transcripts and eventually modulate through this mechanism the antiviral response. This conserved family of proteins contains the IE4 protein of the Varicella-Zoster virus (VZV). Here, we compared the functional characteristics of IE4 with those of its herpesviral homologues and proposed a model by which IE4 would be able to recruit the essential TAP/NXF1 receptor to viral transcripts. Moreover, on the basis of their crucial roles in the infectious cycle, these conserved viral factors should be considered as alternative targets in therapeutic approaches. Here, we discussed the possibility of developing antiherpetic agents targeting IE4 or its herpesviral homologues.
Collapse
|
43
|
Swanson CM, Sherer NM, Malim MH. SRp40 and SRp55 promote the translation of unspliced human immunodeficiency virus type 1 RNA. J Virol 2010; 84:6748-59. [PMID: 20427542 PMCID: PMC2903291 DOI: 10.1128/jvi.02526-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/16/2010] [Indexed: 12/22/2022] Open
Abstract
Nuclear RNA processing events, such as 5' cap formation, 3' polyadenylation, and pre-mRNA splicing, mark mRNA for efficient translation. Splicing enhances translation via the deposition of the exon-junction complex and other multifunctional splicing factors, including SR proteins. All retroviruses synthesize their structural and enzymatic proteins from unspliced genomic RNAs (gRNAs) and must therefore exploit unconventional strategies to ensure their effective expression. Here, we report that specific SR proteins, particularly SRp40 and SRp55, promote human immunodeficiency virus type 1 (HIV-1) Gag translation from unspliced (intron-containing) viral RNA. This activity does not correlate with nucleocytoplasmic shuttling capacity and, in the case of SRp40, is dependent on the second RNA recognition motif and the arginine-serine (RS) domain. While SR proteins enhance Gag expression independent of RNA nuclear export pathway choice, altering the nucleotide sequence of the gag-pol coding region by codon optimization abolishes this effect. We therefore propose that SR proteins couple HIV-1 gRNA biogenesis to translational utilization.
Collapse
Affiliation(s)
- Chad M. Swanson
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, United Kingdom
| | - Nathan M. Sherer
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, United Kingdom
| | - Michael H. Malim
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, United Kingdom
| |
Collapse
|
44
|
Abstract
Although members of the serine (S)- and arginine (R)-rich splicing factor family (SR proteins) were initially purified on the basis of their splicing activity in the nucleus, there is recent documentation that they exhibit carbohydrate-binding activity at the cell surface. In contrast, galectins were isolated on the basis of their saccharide-binding activity and cell surface localization. Surprisingly, however, two members (galectin-1 and galectin-3) can be found in association with nuclear ribonucleoprotein complexes including the spliceosome and, using a cell-free assay, have been shown to be required splicing factors. Thus, despite the difference in terms of their original points of interest, it now appears that members of the two protein families share four key properties: (a) nuclear and cytoplasmic distribution; (b) pre-mRNA splicing activity; (c) carbohydrate-binding activity; and (d) cell surface localization in specific cells. These findings provoke stimulating questions regarding the relationship between splicing factors in the nucleus and carbohydrate-binding proteins at the cell surface.
Collapse
Affiliation(s)
- Kevin C Haudek
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
45
|
Sakashita E, Endo H. SR and SR-related proteins redistribute to segregated fibrillar components of nucleoli in a response to DNA damage. Nucleus 2010; 1:367-80. [PMID: 21327085 DOI: 10.4161/nucl.1.4.12683] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA splicing factors are often redistributed to nucleoli in response to physiological conditions and cell stimuli. In telophase nuclei, serine-arginine rich (SR) proteins, which usually reside in nuclear speckles, localize transiently to active ribosomal DNA (rDNA) transcription sites called nucleolar organizing region-associated patches (NAPs). Here, we show that ultraviolet light and DNA damaging chemicals induce the redistribution of SR and SR-related proteins to areas around nucleolar fibrillar components in interphase nuclei that are similar to, but distinct from, NAPs, and these areas have been termed DNA damage-induced NAPs (d-NAPs). In vivo labeling of nascent RNA distinguished d-NAPs from NAPs in that d-NAPs were observed even after full rDNA transcriptional arrest as a result of DNA damage. Studies under a variety of conditions revealed that d-NAP formation requires both RNA polymerase II-dependent transcriptional arrest and nucleolar segregation, in particular, the disorganization of the granular nucleolar components. Despite the redistribution of SR proteins, splicing factor-enriched nuclear speckles were not disrupted because other nuclear speckle components, such as nuclear poly(A) RNA and the U5-116K protein, remained in DNA-damaged cells. These data suggest that the selective redistribution of splicing factors contributes to the regulation of specific genes via RNA metabolism. Finally, we demonstrate that a change in alternative splicing of apoptosis-related genes is coordinated with the occurrence of d-NAPs. Our results reveal a novel response to DNA damage that involves the dynamic redistribution of splicing factors to nucleoli.
Collapse
Affiliation(s)
- Eiji Sakashita
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan.
| | | |
Collapse
|
46
|
Escudero-Paunetto L, Li L, Hernandez FP, Sandri-Goldin RM. SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs. Virology 2010; 401:155-64. [PMID: 20227104 PMCID: PMC2862097 DOI: 10.1016/j.virol.2010.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/08/2010] [Accepted: 02/19/2010] [Indexed: 12/14/2022]
Abstract
Herpes simplex virus 1 (HSV-1) mRNAs are exported to the cytoplasm through the export receptor TAP/NFX1. HSV-1 multifunctional protein ICP27 interacts with TAP/NXF1, binds viral RNAs, and is required for efficient viral RNA export. In ICP27 mutant infections, viral RNA export is reduced but not ablated, indicating that other export adaptors can aid in viral RNA export. Export adaptor protein Aly/REF is recruited to viral replication compartments, however, Aly/REF knockdown has little effect on viral RNA export. SR proteins SRp20 and 9G8 interact with TAP/NXF1 and mediate export of some cellular RNAs. We report that siRNA knockdown of SRp20 or 9G8 resulted in about a 10 fold decrease in virus yields and in nuclear accumulation of polyA+ RNA. In infected cells depleted of SRp20, newly transcribed Bromouridine-labeled RNA also accumulated in the nucleus. We conclude that SRp20 and 9G8 contribute to HSV-1 RNA export.
Collapse
Affiliation(s)
- Laurimar Escudero-Paunetto
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697. USA
| | | | - Felicia P. Hernandez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697. USA
| | - Rozanne M. Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697. USA
| |
Collapse
|
47
|
Olshavsky NA, Comstock CE, Schiewer MJ, Augello MA, Hyslop T, Sette C, Zhang J, Parysek LM, Knudsen KE. Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res 2010; 70:3975-84. [PMID: 20460515 PMCID: PMC2873684 DOI: 10.1158/0008-5472.can-09-3468] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclin D1b oncogene arises from alternative splicing of the CCND1 transcript, and harbors markedly enhanced oncogenic functions not shared by full-length cyclin D1 (cyclin D1a). Recent studies showed that cyclin D1b is selectively induced in a subset of tissues as a function of tumorigenesis; however, the underlying mechanism(s) that control tumor-specific cyclin D1b induction remain unsolved. Here, we identify the RNA-binding protein ASF/SF2 as a critical, allele-specific, disease-relevant effector of cyclin D1b production. Initially, it was observed that SF2 associates with cyclin D1b mRNA (transcript-b) in minigene analyses and with endogenous transcript in prostate cancer (PCa) cells. SF2 association was altered by the CCND1 G/A870 polymorphism, which resides in the splice donor site controlling transcript-b production. This finding was significant, as the A870 allele promotes cyclin D1b in benign prostate tissue, but in primary PCa, cyclin D1b production is independent of A870 status. Data herein provide a basis for this disparity, as tumor-associated induction of SF2 predominantly results in binding to and accumulation of G870-derived transcript-b. Finally, the relevance of SF2 function was established, as SF2 strongly correlated with cyclin D1b (but not cyclin D1a) in human PCa. Together, these studies identify a novel mechanism by which cyclin D1b is induced in cancer, and reveal significant evidence of a factor that cooperates with a risk-associated polymorphism to alter cyclin D1 isoform production. Identification of SF2 as a disease-relevant effector of cyclin D1b provides a basis for future studies designed to suppress the oncogenic alternative splicing event.
Collapse
MESH Headings
- Alleles
- Alternative Splicing/genetics
- Biomarkers, Tumor/genetics
- Blotting, Western
- Cell Line, Tumor
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Disease Progression
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Male
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Nuclear Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Polymorphism, Genetic/genetics
- Prostate/metabolism
- Prostate/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Isoforms
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Serine-Arginine Splicing Factors
Collapse
Affiliation(s)
- Nicholas A. Olshavsky
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Clay E.S. Comstock
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Matthew J. Schiewer
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Michael A. Augello
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Terry Hyslop
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Claudio Sette
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Jinsong Zhang
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267
| | - Linda M. Parysek
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH 45267
| | - Karen E. Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
48
|
Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P. Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains. PLANT PHYSIOLOGY 2010; 153:273-84. [PMID: 20237019 PMCID: PMC2862426 DOI: 10.1104/pp.110.154740] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/11/2010] [Indexed: 05/22/2023]
Abstract
Serine/arginine-rich (SR) proteins are essential nuclear-localized splicing factors. We have investigated the dynamic subcellular distribution of the Arabidopsis (Arabidopsis thaliana) RSZp22 protein, a homolog of the human 9G8 SR factor. Little is known about the determinants underlying the control of plant SR protein dynamics, and so far most studies relied on ectopic transient overexpression. Here, we provide a detailed analysis of the RSZp22 expression profile and describe its nucleocytoplasmic shuttling properties in specific cell types. Comparison of transient ectopic- and stable tissue-specific expression highlights the advantages of both approaches for nuclear protein dynamic studies. By site-directed mutagenesis of RSZp22 RNA-binding sequences, we show that functional RNA recognition motif RNP1 and zinc-knuckle are dispensable for the exclusive protein nuclear localization and speckle-like distribution. Fluorescence resonance energy transfer imaging also revealed that these motifs are implicated in RSZp22 molecular interactions. Furthermore, the RNA-binding motif mutants are defective for their export through the CRM1/XPO1/Exportin-1 receptor pathway but retain nucleocytoplasmic mobility. Moreover, our data suggest that CRM1 is a putative export receptor for mRNPs in plants.
Collapse
|
49
|
Delestienne N, Wauquier C, Soin R, Dierick JF, Gueydan C, Kruys V. The splicing factor ASF/SF2 is associated with TIA-1-related/TIA-1-containing ribonucleoproteic complexes and contributes to post-transcriptional repression of gene expression. FEBS J 2010; 277:2496-514. [PMID: 20477871 DOI: 10.1111/j.1742-4658.2010.07664.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TIA-1-related (TIAR) protein is a shuttling RNA-binding protein implicated in several steps of RNA metabolism. In the nucleus, TIAR contributes to alternative splicing events, whereas, in the cytoplasm, it acts as a translational repressor on specific transcripts such as adenine and uridine-rich element-containing mRNAs. In addition, TIAR is involved in the general translational arrest observed in cells exposed to environmental stress. This activity is encountered by the ability of TIAR to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules. To elucidate these mechanisms of translational repression, we characterized TIAR-containing complexes by tandem affinity purification followed by MS. Amongst the identified proteins, we found the splicing factor ASF/SF2, which is also present in TIA-1 protein complexes. We show that, although mostly confined in the nuclei of normal cells, ASF/SF2 migrates into stress granules upon environmental stress. The migration of ASF/SF2 into stress granules is strictly determined both by its shuttling properties and its RNA-binding capacity. Our data also indicate that ASF/SF2 down-regulates the expression of a reporter mRNA carrying adenine and uridine-rich elements within its 3' UTR. Moreover, tethering of ASF/SF2 to a reporter transcript strongly reduces mRNA translation and stability. These results indicate that ASF/SF2 and TIA proteins cooperate in the regulation of mRNA metabolism in normal cells and in cells having to overcome environmental stress conditions. In addition, the present study provides new insights into the cytoplasmic function of ASF/SF2 and highlights mechanisms by which RNA-binding proteins regulate the diverse steps of RNA metabolism by subcellular relocalization upon extracellular stimuli.
Collapse
Affiliation(s)
- Nathalie Delestienne
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF. Mol Cell Biol 2010; 30:2762-74. [PMID: 20308322 DOI: 10.1128/mcb.01270-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing and posttranslational modifications (PTMs) are major sources of protein diversity in eukaryotic proteomes. The SR protein SF2/ASF is an oncoprotein that functions in pre-mRNA splicing, with additional roles in other posttranscriptional and translational events. Functional studies of SR protein PTMs have focused exclusively on the reversible phosphorylation of Ser residues in the C-terminal RS domain. We confirmed that human SF2/ASF is methylated at residues R93, R97, and R109, which were identified in a global proteomic analysis of Arg methylation, and further investigated whether these methylated residues regulate the properties of SF2/ASF. We show that the three arginines additively control the subcellular localization of SF2/ASF and that both the positive charge and the methylation state are important. Mutations that block methylation and remove the positive charge result in the cytoplasmic accumulation of SF2/ASF. The consequent decrease in nuclear SF2/ASF levels prevents it from modulating the alternative splicing of target genes, results in higher translation stimulation, and abrogates the enhancement of nonsense-mediated mRNA decay. This study addresses the mechanisms by which Arg methylation and the associated positive charge regulate the activities of SF2/ASF and emphasizes the significance of localization control for an oncoprotein with multiple functions in different cellular compartments.
Collapse
|