1
|
DNA recombinase Rad51 is regulated with UVinduced DNA damage and the DNA mismatch repair inhibitor CdCl 2 in HC11 cells. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.3.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
2
|
Kim SY, Kim GY, You HJ, Kang MJ. Relationship between DNA mismatch repair and CRISPR/Cas9-mediated knock-in in the bovine β-casein gene locus. Anim Biosci 2021; 35:126-137. [PMID: 34293843 PMCID: PMC8738927 DOI: 10.5713/ab.21.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Efficient gene editing technology is critical for successful knock-in in domestic animals. RAD51 recombinase (RAD51) gene plays an important role in strand invasion during homologous recombination (HR) in mammals, and is regulated by checkpoint kinase 1 (CHK1) and CHK2 genes, which are upstream elements of RAD51 recombinase (RAD51). In addition, mismatch repair (MMR) system is inextricably linked to HR-related pathways and regulates HR via heteroduplex rejection. Thus, the aim of this study was to investigate whether clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9)-mediated knock-in efficiency of human lactoferrin (hLF) knock-in vector in the bovine β-casein gene locus can be increased by suppressing DNA MMR-related genes (MSH2, MSH3, MSH6, MLH1, and PMS2) and overexpressing DNA double-strand break (DSB) repair-related genes (RAD51, CHK1, CHK2). Methods Bovine mammary epithelial (MAC-T) cells were transfected with a knock-in vector, RAD51, CHK1, or CHK2 overexpression vector and CRISPR/sgRNA expression vector to target the bovine β-casein gene locus, followed by treatment of the cells with CdCl2 for 24 hours. After 3 days of CdCl2 treatment, the knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA expression levels of DNA MMR-related and DNA DSB repair-related genes were assessed by quantitative real-time PCR (RT-qPCR). Results Treatment with CdCl2 decreased the mRNA expression of RAD51 and MMR-related genes but did not increase the knock-in efficiency in MAC-T cells. Also, the overexpression of DNA DSB repair-related genes in MAC-T cells did not significantly affect the mRNA expression of MMR-related genes and failed to increase the knock-in efficiency. Conclusion Treatment with CdCl2 inhibited the mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells. However, the function of MMR pathway in relation to HR may differ in various cell types or species.
Collapse
Affiliation(s)
- Seung-Yeon Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| | - Ga-Yeon Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| | - Hyeong-Ju You
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
3
|
Gomes-Pereira M, Monckton DG. Chronic Exposure to Cadmium and Antioxidants Does Not Affect the Dynamics of Expanded CAG•CTG Trinucleotide Repeats in a Mouse Cell Culture System of Unstable DNA. Front Cell Neurosci 2021; 14:606331. [PMID: 33603644 PMCID: PMC7884634 DOI: 10.3389/fncel.2020.606331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 12/02/2022] Open
Abstract
More than 30 human disorders are caused by the expansion of simple sequence DNA repeats, among which triplet repeats remain the most frequent. Most trinucleotide repeat expansion disorders affect primarily the nervous system, through mechanisms of neurodysfunction and/or neurodegeneration. While trinucleotide repeat tracts are short and stably transmitted in unaffected individuals, disease-associated expansions are highly dynamic in the germline and in somatic cells, with a tendency toward further expansion. Since longer repeats are associated with increasing disease severity and earlier onset of symptoms, intergenerational repeat size gains account for the phenomenon of anticipation. In turn, higher levels of age-dependent somatic expansion have been linked with increased disease severity and earlier age of onset, implicating somatic instability in the onset and progression of disease symptoms. Hence, tackling the root cause of symptoms through the control of repeat dynamics may provide therapeutic modulation of clinical manifestations. DNA repair pathways have been firmly implicated in the molecular mechanism of repeat length mutation. The demonstration that repeat expansion depends on functional DNA mismatch repair (MMR) proteins, points to MMR as a potential therapeutic target. Similarly, a role of DNA base excision repair (BER) in repeat expansion has also been suggested, particularly during the removal of oxidative lesions. Using a well-characterized mouse cell model system of an unstable CAG•CTG trinucleotide repeat, we tested if expanded repeat tracts can be stabilized by small molecules with reported roles in both pathways: cadmium (an inhibitor of MMR activity) and a variety of antioxidants (capable of neutralizing oxidative species). We found that chronic exposure to sublethal doses of cadmium and antioxidants did not result in significant reduction of the rate of trinucleotide repeat expansion. Surprisingly, manganese yielded a significant stabilization of the triplet repeat tract. We conclude that treatment with cadmium and antioxidants, at doses that do not interfere with cell survival and cell culture dynamics, is not sufficient to modify trinucleotide repeat dynamics in cell culture.
Collapse
Affiliation(s)
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Sinkakarimi MH, Solgi E, Hosseinzadeh Colagar A. Subcellular partitioning of cadmium and lead in Eisenia fetida and their effects to sperm count, morphology and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109827. [PMID: 31655413 DOI: 10.1016/j.ecoenv.2019.109827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Earthworms and their biomarkers are considered good indicators for assessing the effects of toxic chemicals. Therefore, in this study, we exposed Eisenia fetida to lethal and sub-lethal concentrations of Cd and Pb nitrate in artificial soil for 14 and 28 days to evaluate the impact on subcellular partitioning, lethal toxicity (LC50), growth, sperm count, morphology and apoptosis (using TUNEL assay). The soluble internal pools of both metals were good predictors of the responses of biomarkers. We found sperm deformation, TUNEL positive sperms and weight loss positively and sperm count negatively correlated with the concentrations of Cd and Pb in the total internal and cytosolic fraction (p < 0.01) and to a lesser extent with Pb concentrations in the granular fraction (p < 0.05). Fourteen days LC50 for Cd and Pb were 2169 ± 322 and 6387 ± 904 μg/g, respectively. Cadmium and Pb caused a significant depression in sperm count after 14 (Cd: up to 46.9%; Pb: up to 36.24%) and 28 (Cd: up to 72.47%; Pb: up to 43.12%) days of exposure relative to the control (p < 0.05). Cadmium induced higher abnormality in sperm heads than Pb. For both metals, TUNEL positive sperms significantly increased after 14 (Cd: up to 14.17%; Pb: up to 16.33%) and 28 (Cd: up to 16.33%; Pb: up to 11.67%) days of exposure compared with the control (p < 0.05). The findings of this study, illustrate the importance of considering sperm parameters as a rapid, easy and sensitive biomarker for the evaluation of metal toxicity.
Collapse
Affiliation(s)
- Mohammad Hosein Sinkakarimi
- Department of Environment, Faculty of Natural Resource and Environment, Malayer University, 95863-65719, Malayer, Iran
| | - Eisa Solgi
- Department of Environment, Faculty of Natural Resource and Environment, Malayer University, 95863-65719, Malayer, Iran
| | | |
Collapse
|
5
|
The mutagen and carcinogen cadmium is a high-affinity inhibitor of the zinc-dependent MutLα endonuclease. Proc Natl Acad Sci U S A 2018; 115:7314-7319. [PMID: 29941579 PMCID: PMC6048502 DOI: 10.1073/pnas.1807319115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MutLα (MLH1-PMS2 heterodimer) is an endonuclease that acts during an early step of eukaryotic mismatch repair. We show that human MutLα endonuclease copurifies with two equivalents of bound zinc, at least one of which resides within the endonuclease active site. We also show that cadmium, a known inhibitor of zinc-dependent enzymes and a potent mutagen and carcinogen, is a high-affinity inhibitor of MutLα endonuclease and that exogenous MutLα significantly reverses the mismatch repair defect in cadmium-treated human cell nuclear extract or nuclear extract prepared from cadmium-treated cells. Because the mutagenic action of cadmium is largely due to the selective inhibition of mismatch repair, these findings suggest that MutLα is a primary cadmium target for mutagenesis and presumably, carcinogenesis as well. MutLα (MLH1-PMS2 heterodimer), which acts as a strand-directed endonuclease during the initiation of eukaryotic mismatch repair, has been postulated to function as a zinc-dependent enzyme [Kosinski J, Plotz G, Guarné A, Bujnicki JM, Friedhoff P (2008) J Mol Biol 382:610–627]. We show that human MutLα copurifies with two bound zinc ions, at least one of which resides within the endonuclease active site, and that bound zinc is required for endonuclease function. Mutagenic action of the carcinogen cadmium, a known inhibitor of zinc-dependent enzymes, is largely due to selective inhibition of mismatch repair [Jin YH, et al. (2003) Nat Genet 34:326–329]. We show that cadmium is a potent inhibitor (apparent Ki ∼ 200 nM) of MutLα endonuclease and that cadmium inhibition is reversed by zinc. We also show that inhibition of mismatch repair in cadmium-treated nuclear extract is significantly reversed by exogenous MutLα but not by MutSα (MSH2-MSH6 heterodimer) and that MutLα reversal depends on integrity of the endonuclease active site. Exogenous MutLα also partially rescues the mismatch repair defect in nuclear extract prepared from cells exposed to cadmium. These findings indicate that targeted inhibition of MutLα endonuclease contributes to cadmium inhibition of mismatch repair. This effect may play a role in the mechanism of cadmium carcinogenesis.
Collapse
|
6
|
Huang Y, He C, Shen C, Guo J, Mubeen S, Yuan J, Yang Z. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food Funct 2017; 8:1373-1401. [PMID: 28232985 DOI: 10.1039/c6fo01580h] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) is a highly toxic heavy metal and has spread widely in the environment in recent decades. This review summarizes current knowledge about Cd contamination of leafy vegetables, its toxicity, exposure, health risks, and approaches to reducing its toxicity in humans. Leafy vegetable consumption has been identified as a dominant exposure pathway of Cd in the human body. An overview of Cd pollution in leafy vegetables as well as the main sources of Cd is given. Notable estimated daily intakes and health risks of Cd exposure through vegetable consumption for humans are revealed in occupational exposure areas and even in some reference areas. Vegetable consumption is one of the most significant sources of exposure to Cd, particularly in occupational exposure regions. Therefore, numerous approaches have been developed to minimize the accumulation of Cd in leafy vegetables, among which the breeding of Cd pollution-safe cultivars is one of the most effective tools. Furthermore, dietary supplements from leafy vegetables perform positive roles in alleviating Cd toxicity in humans with regard to the effects of essential mineral elements, vitamins and phytochemicals taken into the human body via leafy vegetable consumption.
Collapse
Affiliation(s)
- Yingying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Cadmium(II) inhibition of human uracil-DNA glycosylase by catalytic water supplantation. Sci Rep 2016; 6:39137. [PMID: 27974818 PMCID: PMC5156901 DOI: 10.1038/srep39137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Toxic metals are known to inhibit DNA repair but the underlying mechanisms of inhibition are still not fully understood. DNA repair enzymes such as human uracil-DNA glycosylase (hUNG) perform the initial step in the base excision repair (BER) pathway. In this work, we showed that cadmium [Cd(II)], a known human carcinogen, inhibited all activity of hUNG at 100 μM. Computational analyses based on 2 μs equilibrium, 1.6 μs steered molecular dynamics (SMD), and QM/MM MD determined that Cd(II) ions entered the enzyme active site and formed close contacts with both D145 and H148, effectively replacing the catalytic water normally found in this position. Geometry refinement by density functional theory (DFT) calculations showed that Cd(II) formed a tetrahedral structure with D145, P146, H148, and one water molecule. This work for the first time reports Cd(II) inhibition of hUNG which was due to replacement of the catalytic water by binding the active site D145 and H148 residues. Comparison of the proposed metal binding site to existing structural data showed that D145:H148 followed a general metal binding motif favored by Cd(II). The identified motif offered structural insights into metal inhibition of other DNA repair enzymes and glycosylases.
Collapse
|
8
|
Mechanistic insight into cadmium-induced inactivation of the Bloom protein. Sci Rep 2016; 6:26225. [PMID: 27194376 PMCID: PMC4872126 DOI: 10.1038/srep26225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/25/2016] [Indexed: 11/08/2022] Open
Abstract
Cadmium is a toxic metal that inactivates DNA-repair proteins via multiple mechanisms, including zinc substitution. In this study, we investigated the effect of Cd(2+) on the Bloom protein (BLM), a DNA-repair helicase carrying a zinc-binding domain (ZBD) and playing a critical role to ensure genomic stability. One characteristics of BLM-deficient cells is the elevated rate of sister chromatid exchanges, a phenomenon that is also induced by Cd(2+). Here, we show that Cd(2+) strongly inhibits both ATPase and helicase activities of BLM. Cd(2+) primarily prevents BLM-DNA interaction via its binding to sulfhydryl groups of solvent-exposed cysteine residues and, concomitantly, promotes the formation of large BLM multimers/aggregates. In contrast to previously described Cd(2+) effects on other zinc-containing DNA-repair proteins, the ZBD appears to play a minor role in the Cd(2+)-mediated inhibition. While the Cd(2+)-dependent formation of inactive multimers and the defect of DNA-binding were fully reversible upon addition of EDTA, the inhibition of the DNA unwinding activity was not counteracted by EDTA, indicating another mechanism of inhibition by Cd(2+) relative to the targeting of a catalytic residue. Altogether, our results provide new clues for understanding the mechanism behind the ZBD-independent inactivation of BLM by Cd(2+) leading to accumulation of DNA double-strand breaks.
Collapse
|
9
|
Wang H, He L, Song J, Cui W, Zhang Y, Jia C, Francis D, Rogers HJ, Sun L, Tai P, Hui X, Yang Y, Liu W. Cadmium-induced genomic instability in Arabidopsis: Molecular toxicological biomarkers for early diagnosis of cadmium stress. CHEMOSPHERE 2016; 150:258-265. [PMID: 26907594 DOI: 10.1016/j.chemosphere.2016.02.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/26/2016] [Accepted: 02/09/2016] [Indexed: 05/11/2023]
Abstract
Microsatellite instability (MSI) analysis, random-amplified polymorphic DNA (RAPD), and methylation-sensitive arbitrarily primed PCR (MSAP-PCR) are methods to evaluate the toxicity of environmental pollutants in stress-treated plants and human cancer cells. Here, we evaluate these techniques to screen for genetic and epigenetic alterations of Arabidopsis plantlets exposed to 0-5.0 mg L(-1) cadmium (Cd) for 15 d. There was a substantial increase in RAPD polymorphism of 24.5, and in genomic methylation polymorphism of 30.5-34.5 at CpG and of 14.5-20 at CHG sites under Cd stress of 5.0 mg L(-1) by RAPD and of 0.25-5.0 mg L(-1) by MSAP-PCR, respectively. However, only a tiny increase of 1.5 loci by RAPD occurred under Cd stress of 4.0 mg L(-1), and an additional high dose (8.0 mg L(-1)) resulted in one repeat by MSI analysis. MSAP-PCR detected the most significant epigenetic modifications in plantlets exposed to Cd stress, and the patterns of hypermethylation and polymorphisms were consistent with inverted U-shaped dose responses. The presence of genomic methylation polymorphism in Cd-treated seedlings, prior to the onset of RAPD polymorphism, MSI and obvious growth effects, suggests that these altered DNA methylation loci are the most sensitive biomarkers for early diagnosis and risk assessment of genotoxic effects of Cd pollution in ecotoxicology.
Collapse
Affiliation(s)
- Hetong Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Department of Basic Medicine, He University, Shenyang 110163, PR China
| | - Lei He
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Environmental Science College, Liao University, Shenyang 110036, PR China
| | - Jie Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Environmental Science College, Liao University, Shenyang 110036, PR China
| | - Weina Cui
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China; Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yanzhao Zhang
- Life Science Department, Luoyang Normal University, Luoyang 471022, PR China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Dennis Francis
- Key Laboratory of Eco-restoration, Shenyang University, Shenyang 11044, PR China
| | - Hilary J Rogers
- Cardiff University, School of Biosciences, Cardiff CF10 33TL, UK
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Xiujuan Hui
- Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Yuesuo Yang
- Key Laboratory of Eco-restoration, Shenyang University, Shenyang 11044, PR China
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| |
Collapse
|
10
|
Machado-Silva A, Cerqueira PG, Grazielle-Silva V, Gadelha FR, Peloso EDF, Teixeira SMR, Machado CR. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:8-22. [DOI: 10.1016/j.mrrev.2015.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
|
11
|
Du X, Lan T, Yuan B, Chen J, Hu J, Ren W, Chen Z. Cadmium-induced microsatellite instability in the kidneys and leukocytes of C57BL/6J mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:683-692. [PMID: 24391048 DOI: 10.1002/tox.21946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/15/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
Cadmium is a cytotoxic, carcinogenic, and mutagenic industrial product or byproduct. The correlation between metal exposure and microsatellite instability (MSI) has been reported by several groups. In the present study, 50 C57BL/6J mice at 6 weeks of age were divided into five groups and intraperitoneally injected with 0, 0.25, 0.5, 1, or 2 mg/kg cadmium chloride quaque die alterna for 4 weeks. Then, the liver, kidney, testis, leukocytes, bone marrow, and small intestine were collected from the treated mice and weighed. Portions of these tissues were fixed for further histological analysis, and the remaining tissues were subjected to genomic DNA extraction for the analysis of a panel of 42 microsatellite markers. The liver and testis weight coefficients were significantly changed in the 1 and 2 mg/kg cadmium chloride-treated groups compared with the control group. Simultaneously, severe histopathologic changes in the liver and kidneys, along with a complete disorganization of testicular structure and obvious severe necrosis in the testes were observed in the cadmium-treated group. The cadmium accumulated in the liver and kidneys of the mice in all cadmium-treated groups; the tissue cadmium concentrations were significantly higher than those in the control group. After STR scanning, MSI was found at three loci (D15Mit5, D10Mit266, and DxMit172) in the kidneys and leukocytes of mice in the lower dose groups (0.25 and 0.5 mg/kg). In summary, we have successfully established a sub-chronic cadmium exposure model and confirmed that cadmium exposure can induce MSI in mice. We also identified two loci that could be regarded as "hotspots" of microsatellite mutation in mice.
Collapse
Affiliation(s)
- Xiaoyan Du
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Tianfeng Lan
- Laboratory Animal Center, Jilin University, Changchun, Jilin, 130062, China
| | - Bao Yuan
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Jian Chen
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Jinping Hu
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Wenzhi Ren
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Zhenwen Chen
- Laboratory Animal Center, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
12
|
Di Vietro L, Daghino S, Abbà S, Perotto S. Gene expression and role in cadmium tolerance of two PLAC8-containing proteins identified in the ericoid mycorrhizal fungus Oidiodendron maius. Fungal Biol 2014; 118:695-703. [DOI: 10.1016/j.funbio.2014.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/17/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
13
|
Evaluation of the adverse effect of low concentration of cadmium on interleukin-4 induced class switch recombination in Burkett's lymphoma Raji cell line. Methods Mol Biol 2014; 1172:163-71. [PMID: 24908303 DOI: 10.1007/978-1-4939-0928-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Affinity maturation of B lymphocytes, a process that includes somatic hypermutation and class switch recombination, initiates global DNA rearrangements. The interruption of this process has an adverse effect on human health and results in immunodeficiency and autoimmune disease. Class switch recombination is a fundamental factor of the human adaptive immunity. Evaluation of the class switch recombination efficiency is an important component of laboratory diagnostic of immunotoxic components. Here, we describe a method for testing the efficiency of the class switch recombination. Cultivation of Raji Burkett's lymphoma cell line with anti-CD40 antibodies and recombinant interleukin-4 (IL-4) triggers a cascade of signal transduction network events that lead to switching the immunoglobulin isotopes from IgM to IgE. This chapter describes the methodology of class switch recombination assay for assessment of the effect of the environmental pollutants in toxicological laboratory diagnostics.
Collapse
|
14
|
|
15
|
Oliveira H, Lopes T, Almeida T, Pereira MDL, Santos C. Cadmium-induced genetic instability in mice testis. Hum Exp Toxicol 2012; 31:1228-36. [PMID: 22699117 DOI: 10.1177/0960327112445937] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cadmium is a well recognized carcinogenic, cytotoxic and mutagenic transition metal. Recent evidence suggests that the proteins participating in the DNA repair systems, especially in excision and mismatch repair (MMR), are sensitive targets of cadmium toxicity. Microsatellite instability (MSI) is regarded as one of the phenotypes of defective DNA MMR and, consequently, as a marker of high risk for cancer. The purpose of this work is to determine whether cadmium, in the form of cadmium chloride (CdCl(2)), may induce microsatellite mutations in murine testes. For this study, 2-month-old male ICR-CD1 mice were treated by a single subcutaneous injection of 1, 2 and 3 mg CdCl(2)/kg body weight and killed after 35 days. A panel of six microsatellite markers, previously reported as being the most sensitive in detecting MSI in murine tumours, was used in this study. The results show that CdCl(2) in the doses of 2 and 3 mg/kg induced a decrease in the testis weight and severe histopathologic changes with complete disorganization of testicular structure and evidences of severe necrosis. In addition, the animals exposed to the lowest CdCl(2) dose presented MSI in the testis. The results indicate the existence of MSI in at least two nuclear loci suggesting putative genotoxic effects induced by cadmium.
Collapse
Affiliation(s)
- Helena Oliveira
- Department of Biology, CICECO, University of Aveiro, Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
16
|
Filipič M. Mechanisms of cadmium induced genomic instability. Mutat Res 2012; 733:69-77. [PMID: 21945723 DOI: 10.1016/j.mrfmmm.2011.09.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 09/03/2011] [Accepted: 09/08/2011] [Indexed: 05/15/2023]
Abstract
Cadmium is an ubiquitous environmental contaminant that represents hazard to humans and wildlife. It is found in the air, soil and water and, due to its extremely long half-life, accumulates in plants and animals. The main source of cadmium exposure for non-smoking human population is food. Cadmium is primarily toxic to the kidney, but has been also classified as carcinogenic to humans by several regulatory agencies. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Cadmium dose not induce direct DNA damage, however it induces increase in reactive oxygen species (ROS) formation, which in turn induce DNA damage and can also interfere with cell signalling. More important seems to be cadmium interaction with DNA repair mechanisms, cell cycle checkpoints and apoptosis as well as with epigenetic mechanisms of gene expression control. Cadmium mediated inhibition of DNA repair mechanisms and apoptosis leads to accumulation of cells with unrepaired DNA damage, which in turn increases the mutation rate and thus genomic instability. This increases the probability of developing not only cancer but also other diseases associated with genomic instability. In the in vitro experiments cadmium induced effects leading to genomic instability have been observed at low concentrations that were comparable to those observed in target organs and tissues of humans that were non-occupationally exposed to cadmium. Therefore, further studies aiming to clarify the relevance of these observations for human health risks due to cadmium exposure are needed.
Collapse
Affiliation(s)
- Metka Filipič
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Abbà S, Vallino M, Daghino S, Di Vietro L, Borriello R, Perotto S. A PLAC8-containing protein from an endomycorrhizal fungus confers cadmium resistance to yeast cells by interacting with Mlh3p. Nucleic Acids Res 2011; 39:7548-63. [PMID: 21672957 PMCID: PMC3177179 DOI: 10.1093/nar/gkr336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cadmium is a genotoxic pollutant known to target proteins that are involved in DNA repair and in antioxidant defence, altering their functions and ultimately causing mutagenic and carcinogenic effects. We have identified a PLAC8 domain-containing protein, named OmFCR, by a yeast functional screen aimed at identifying genes involved in cadmium resistance in the endomycorrhizal fungus Oidiodendron maius. OmFCR shows a remarkable specificity in mediating cadmium resistance. Both its function and its nuclear localization in yeast strictly depend on the interaction with Mlh3p, a subunit of the mismatch repair (MMR) system. Although proteins belonging to the PLAC8 family are widespread in eukaryotes, they are poorly characterized and their biological role still remains elusive. Our work represents the first report about the potential role of a PLAC8 protein in physically coupling DNA lesion recognition by the MMR system to appropriate effectors that affect cell cycle checkpoint pathways. On the basis of cell survival assays and yeast growth curves, we hypothesize that, upon cadmium exposure, OmFCR might promote a higher rate of cell division as compared to control cells.
Collapse
Affiliation(s)
- S Abbà
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino, Viale Mattioli 25, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Clark AB, Lujan SA, Kissling GE, Kunkel TA. Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε. DNA Repair (Amst) 2011; 10:476-82. [PMID: 21414850 PMCID: PMC3652408 DOI: 10.1016/j.dnarep.2011.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/27/2011] [Accepted: 02/11/2011] [Indexed: 01/11/2023]
Abstract
During DNA synthesis in vitro using dNTP and rNTP concentrations present in vivo, yeast replicative DNA polymerases α, δ and ɛ (Pols α, δ and ɛ) stably incorporate rNTPs into DNA. rNTPs are also incorporated during replication in vivo, and they are repaired in an RNase H2-dependent manner. In strains encoding a mutator allele of Pol ɛ (pol2-M644G), failure to remove rNMPs from DNA due to deletion of the RNH201 gene encoding the catalytic subunit of RNase H2, results in deletion of 2-5 base pairs in short repetitive sequences. Deletion rates depend on the orientation of the reporter gene relative to a nearby replication origin, suggesting that mutations result from rNMPs incorporated during replication. Here we demonstrate that 2-5 base pair deletion mutagenesis also strongly increases in rnh201Δ strains encoding wild type DNA polymerases. As in the pol2-M644G strains, the deletions occur at repetitive sequences and are orientation-dependent, suggesting that mismatches involving misaligned strands arise that could be subject to mismatch repair. Unexpectedly however, 2-5 base pair deletion rates resulting from loss of RNH201 in the pol2-M644G strain are unaffected by concomitant loss of MSH3, MSH6, or both. It could be that the mismatch repair machinery is unable to repair mismatches resulting from unrepaired rNMPs incorporated into DNA by M644G Pol ɛ, but this possibility is belied by the observation that Msh2-Msh6 can bind to a ribonucleotide-containing mismatch. Alternatively, following incorporation of rNMPs by M644G Pol ɛ during replication, the conversion of unrepaired rNMPs into mutations may occur outside the context of replication, e.g., during the repair of nicks resulting from rNMPs in DNA. The results make interesting predictions that can be tested.
Collapse
Affiliation(s)
- Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Scott A. Lujan
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Grace E. Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709
| |
Collapse
|
19
|
Kurowska E, Bal W. Recent Advances in Molecular Toxicology of Cadmium and Nickel. ADVANCES IN MOLECULAR TOXICOLOGY 2010. [DOI: 10.1016/s1872-0854(10)04003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Whiteside JR, Box CL, McMillan TJ, Allinson SL. Cadmium and copper inhibit both DNA repair activities of polynucleotide kinase. DNA Repair (Amst) 2009; 9:83-9. [PMID: 19962355 DOI: 10.1016/j.dnarep.2009.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/02/2009] [Accepted: 11/05/2009] [Indexed: 01/22/2023]
Abstract
Human exposure to heavy metals is of increasing concern due to their well-documented toxicological and carcinogenic effects and rising environmental levels through industrial processes and pollution. It has been widely reported that such metals can be genotoxic by several modes of action including generation of reactive oxygen species and inhibition of DNA repair. However, although it has been observed that certain heavy metals can inhibit single strand break (SSB) rejoining, the effects of these metals on SSB end-processing enzymes has not previously been investigated. Accordingly, we have investigated the potential inhibition of polynucleotide kinase (PNK)-dependent single strand break repair by six metals: cadmium, cobalt, copper, nickel, lead and zinc. It was found that micromolar concentrations of cadmium and copper are able to inhibit the phosphatase and kinase activities of PNK in both human cell extracts and purified recombinant protein, while the other metals had no effect at the concentrations tested. The inhibition of PNK by environmentally and physiologically relevant concentrations of cadmium and copper suggests a novel means by which these toxic heavy metals may exert their carcinogenic and neurotoxic effects.
Collapse
Affiliation(s)
- James R Whiteside
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster, UK
| | | | | | | |
Collapse
|
21
|
Liu C, Wang Z, Huen MSY, Lu LY, Liu DP, Huang JD. Cell death caused by single-stranded oligodeoxynucleotide-mediated targeted genomic sequence modification. Oligonucleotides 2009; 19:281-6. [PMID: 19653881 DOI: 10.1089/oli.2009.0191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeted gene repair directed by single-stranded oligodeoxynucleotides (ssODNs) offers a promising tool for biotechnology and gene therapy. However, the methodology is currently limited by its low frequency of repair events, variability, and low viability of "corrected" cells. In this study, we showed that during ssODN-mediated gene repair reaction, a significant population of corrected cells failed to divide, and were much more prone to undergo apoptosis, as marked by processing of caspases and PARP-1. In addition, we found that apoptotic cell death triggered by ssODN-mediated gene repair was largely independent of the ATM/ATR kinase. Furthermore, we examined the potential involvement of the mismatch repair (MMR) proteins in this "correction reaction-induced" cell death. Result showed that while defective MMR greatly enhanced the efficiency of gene correction, compromising the MMR system did not yield any viable corrected clone, indicating that the MMR machinery, although plays a critical role in determining ssODN-directed repair, was not involved in the observed cellular genotoxic responses.
Collapse
Affiliation(s)
- Chenli Liu
- Department of Biochemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Wieland M, Levin MK, Hingorani KS, Biro FN, Hingorani MM. Mechanism of cadmium-mediated inhibition of Msh2-Msh6 function in DNA mismatch repair. Biochemistry 2009; 48:9492-502. [PMID: 19320425 PMCID: PMC4684310 DOI: 10.1021/bi9001248] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The observation that Cadmium (Cd(2+)) inhibits Msh2-Msh6, which is responsible for identifying base pair mismatches and other discrepancies in DNA, has led to the proposal that selective targeting of this protein and consequent suppression of DNA repair or apoptosis promote the carcinogenic effects of the heavy metal toxin. It has been suggested that Cd(2+) binding to specific sites on Msh2-Msh6 blocks its DNA binding and ATPase activities. To investigate the mechanism of inhibition, we measured Cd(2+) binding to Msh2-Msh6, directly and by monitoring changes in protein structure and enzymatic activity. Global fitting of the data to a multiligand binding model revealed that binding of about 100 Cd(2+) ions per Msh2-Msh6 results in its inactivation. This finding indicates that the inhibitory effect of Cd(2+) occurs via a nonspecific mechanism. Cd(2+) and Msh2-Msh6 interactions involve cysteine sulfhydryl groups, and the high Cd(2+):Msh2-Msh6 ratio implicates other ligands such as histidine, aspartate, glutamate, and the peptide backbone as well. Our study also shows that cadmium inactivates several unrelated enzymes similarly, consistent with a nonspecific mechanism of inhibition. Targeting of a variety of proteins, including Msh2-Msh6, in this generic manner would explain the marked broad-spectrum impact of Cd(2+) on biological processes. We propose that the presence of multiple nonspecific Cd(2+) binding sites on proteins and their propensity to change conformation on interaction with Cd(2+) are critical determinants of the susceptibility of corresponding biological systems to cadmium toxicity.
Collapse
Affiliation(s)
- Markus Wieland
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown Connecticut 06459
- University of Konstanz, 78457 Konstanz, Germany
| | - Mikhail K. Levin
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710
| | | | - F. Noah Biro
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown Connecticut 06459
| | - Manju M. Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown Connecticut 06459
| |
Collapse
|
23
|
Yamauchi T, Ogawa M, Ueda T. Carmustine-resistant cancer cells are sensitized to temozolomide as a result of enhanced mismatch repair during the development of carmustine resistance. Mol Pharmacol 2008; 74:82-91. [PMID: 18430789 DOI: 10.1124/mol.107.041988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The cytotoxicity of the monofunctional alkylator temozolomide (TMZ) is mediated by mismatch repair (MMR) triggered by O(6)-alkylguanine, whereas MMR protects cells against bifunctional alkylators, including carmustine (BCNU). Therefore, TMZ may be cytotoxic to BCNU-resistant cancer cells because MMR affects sensitivity to TMZ and BCNU in a converse way. We evaluated TMZ cytotoxicity on BCNU-resistant variant (CEM-R) compared with the parental CCRF-CEM cell line (CEM-S). The mechanisms of its BCNU-resistance involved DNA repairs including nucleotide excision repair, base excision repair, alkylguanine alkyltransferase, MMR, and apoptotic and survival pathways. In particular, transcript levels of MMR-related hMLH1 and hMSH2 were enhanced in CEM-R cells. CEM-R cells were 8-fold more BCNU-resistant but surprisingly 9-fold more TMZ-sensitive than were CEM-S cells. Although TMZ-induced adducts include N-alkylated purines and O(6)-alkylguaine, DNA excision repair was enhanced in CEM-R cells, suggesting the efficient repair of N-alkylation adducts. Cotreatment with methoxyamine, a base excision repair inhibitor, did not sensitize CEM-R cells to TMZ, suggesting little or no contribution of N-alkylation to TMZ-induced cytotoxicity. Cotreatment with O(6)-benzylguanine, an alkylguanine alkyltransferase inhibitor, further sensitized CEM-R cells to TMZ, confirming the cytotoxic impact of O(6)-alkylguanine. Cotreatment with cadmium chloride, an MMR inhibitor, disrupted the sensitivity of CEM-R cells to TMZ. The sensitivity to TMZ was reversed in the CEM-R variant clone that had been established by transfecting CEM-R cells with short hairpin hRNA against hMLH1, suggesting the critical role of MMR on sensitization to TMZ. In conclusion, BCNU-resistant CEM-R cells were sensitized to TMZ as a result of enhanced MMR during the development of BCNU resistance.
Collapse
Affiliation(s)
- Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui 910-1193, Japan.
| | | | | |
Collapse
|
24
|
Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129:391-407. [PMID: 18406444 PMCID: PMC2574955 DOI: 10.1016/j.mad.2008.02.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 02/22/2008] [Accepted: 02/28/2008] [Indexed: 02/09/2023]
Abstract
DNA mismatch repair (MMR) proteins are ubiquitous players in a diverse array of important cellular functions. In its role in post-replication repair, MMR safeguards the genome correcting base mispairs arising as a result of replication errors. Loss of MMR results in greatly increased rates of spontaneous mutation in organisms ranging from bacteria to humans. Mutations in MMR genes cause hereditary nonpolyposis colorectal cancer, and loss of MMR is associated with a significant fraction of sporadic cancers. Given its prominence in mutation avoidance and its ability to target a range of DNA lesions, MMR has been under investigation in studies of ageing mechanisms. This review summarizes what is known about the molecular details of the MMR pathway and the role of MMR proteins in cancer susceptibility and ageing.
Collapse
Affiliation(s)
- Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
Kosinski J, Plotz G, Guarné A, Bujnicki JM, Friedhoff P. The PMS2 subunit of human MutLalpha contains a metal ion binding domain of the iron-dependent repressor protein family. J Mol Biol 2008; 382:610-27. [PMID: 18619468 DOI: 10.1016/j.jmb.2008.06.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/13/2008] [Accepted: 06/23/2008] [Indexed: 12/22/2022]
Abstract
DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLalpha, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLalpha heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLalpha. According to our model, this domain of MutLalpha comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLalpha is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLalpha. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLalpha in vitro.
Collapse
Affiliation(s)
- Jan Kosinski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
26
|
Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity. DNA Repair (Amst) 2008; 7:1262-75. [PMID: 18514590 DOI: 10.1016/j.dnarep.2008.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd(2+)) is a ubiquitous environmental pollutant and human carcinogen. The molecular basis of its toxicity remains unclear. Here, to identify the landscape of genes and cell functions involved in cadmium resistance, we have screened the Saccharomyces cerevisiae deletion collection for mutants sensitive to cadmium exposure. Among the 4866 ORFs tested, we identified 73 genes whose inactivation confers increased sensitivity to Cd(2+). Most were previously unknown to play a role in cadmium tolerance and we observed little correlation between the cadmium sensitivity of a gene deletant and the variation in the transcriptional activity of that gene in response to cadmium. These genes encode proteins involved in various functions: intracellular transport, stress response and gene expression. Analysis of the sensitive phenotype of our "Cd(2+)-sensitive mutant collection" to arsenite, cobalt, mercury and H(2)O(2) revealed 17 genes specifically involved in cadmium-induced response. Among them we found RAD27 and subsequently DNA2 which encode for proteins involved in DNA repair and replication. Analysis of the Cd(2+)-sensitivity of RAD27 (rad27-G67S) and DNA2 (dna2-1) separation of function alleles revealed that their activities necessary for Okazaki fragment processing are essential in conditions of cadmium exposure. Consistently, we observed that wild-type cells exposed to cadmium display an enhanced frequency of forward mutations to canavanine resistance and minisatellite destabilisation. Taken together these results provide a global picture of the genetic requirement for cadmium tolerance in yeast and strongly suggest that DNA replication, through the step of Okazaki fragment processing, is a target of cadmium toxicity.
Collapse
|
27
|
Phylogenetic fate mapping: theoretical and experimental studies applied to the development of mouse fibroblasts. Genetics 2008; 178:967-77. [PMID: 18245843 DOI: 10.1534/genetics.107.081018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations are an inevitable consequence of cell division. Similarly to how DNA sequence differences allow inferring evolutionary relationships between organisms, we and others have recently demonstrated how somatic mutations may be exploited for phylogenetically reconstructing lineages of individual cells during development in multicellular organisms. However, a problem with such "phylogenetic fate maps" is that they cannot be verified experimentally; distinguishing actual lineages within clonal populations requires direct observation of cell growth, as was used to construct the fate map of Caenorhabditis elegans, but is not possible in higher organisms. Here we employ computer simulation of mitotic cell division to determine how factors such as the quantity of cells, mutation rate, and the number of examined marker sequences contribute to fidelity of phylogenetic fate maps and to explore statistical methods for assessing accuracy. To experimentally evaluate these factors, as well as for the purpose of investigating the developmental origins of connective tissue, we have produced a lineage map of fibroblasts harvested from various organs of an adult mouse. Statistical analysis demonstrates that the inferred relationships between cells in the phylogenetic fate map reflect biological information regarding the origin of fibroblasts and is suggestive of cell migration during mesenchymal development.
Collapse
|
28
|
Pacheco CC, Passos JF, Castro AR, Moradas-Ferreira P, De Marco P. Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12. Arch Microbiol 2007; 189:271-8. [PMID: 17968530 DOI: 10.1007/s00203-007-0316-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/09/2007] [Accepted: 10/15/2007] [Indexed: 11/26/2022]
Abstract
Cadmium is a widespread pollutant that has been associated with oxidative stress, but the mechanism behind this effect in prokaryotes is still unclear. In this work, we exposed two glutathione deficient mutants (DeltagshA and DeltagshB) and one respiration deficient mutant (DeltaubiE) to a sublethal concentration of cadmium. The glutathione mutants show a similar increase in reactive oxygen species as the wild type. Experiments performed using the DeltaubiE strain showed that this mutant is more resistant to cadmium ions and that Cd-induced reactive oxygen species levels were not altered. In the light of these facts, we conclude that the interference of cadmium with the respiratory chain is the cause of the oxidative stress induced by this metal and that, contrary to previously proposed models, the reactive oxygen species increase is not due to glutathione depletion, although this peptide is crucial for cadmium detoxification.
Collapse
Affiliation(s)
- Catarina C Pacheco
- Grupo de Microbiologia Celular e Aplicada (MCA), IBMC, R. Campo Alegre, 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
29
|
Cao F, Zhou T, Simpson D, Zhou Y, Boyer J, Chen B, Jin T, Cordeiro-Stone M, Kaufmann W. p53-Dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts. Toxicol Appl Pharmacol 2007; 218:174-85. [PMID: 17174997 PMCID: PMC1864945 DOI: 10.1016/j.taap.2006.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 02/08/2023]
Abstract
This study focused on the activation of cell cycle checkpoint responses in diploid human fibroblasts that were treated with cadmium chloride and the potential roles of ATM and p53 signaling pathways in cadmium-induced responses. The alkaline comet assay indicated that cadmium caused a dose-dependent increase in DNA damage. Cells that were rendered p53-defective by expression of a dominant-negative p53 allele or knockdown of p53 mRNA were more resistant to cadmium-induced inactivation of colony formation than normal and ataxia telangiectasia (AT) cells. Synchronized fibroblasts in S were more sensitive to cadmium toxicity than cells in G1, suggesting that cadmium may target some element of DNA replication. Cadmium produced a dose- and time-dependent inhibition of DNA synthesis. An immediate inhibition was associated with severe delay in progression through S phase and a delayed inhibition seen 24 h after treatment was associated with accumulation of cells in G2. AT and normal cells displayed similar patterns of inhibition of DNA synthesis and G2 delay after treatment with cadmium, while p53-defective cells displayed significantly less of the delayed inhibition of DNA synthesis and accumulation in G2 post-treatment. Total p53 protein and ser15-phosphorylated p53 were induced by cadmium in normal and AT cells. The p53 transactivation target Gadd45alpha was induced in both p53-effective and p53-defective cells after 4 h cadmium treatment, and this was associated with an acute inhibition of mitosis. Cadmium produced a very unusual pattern of toxicity in human fibroblasts, inhibiting DNA replication and inducing p53-dependent growth arrest but without induction of p21(Cip1/Waf1) or activation of Chk1.
Collapse
Affiliation(s)
- Feng Cao
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Tong Zhou
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dennis Simpson
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yingchun Zhou
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jayne Boyer
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Bo Chen
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Taiyi Jin
- Department of Toxicology, School of Public Health, Medical Center of Fudan University, Shanghai, China
| | - Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - William Kaufmann
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
30
|
Abstract
Recent, surprising, and controversial discoveries have challenged conventional concepts regarding the origins and plasticity of stem cells, and their contributions to tissue regeneration, and highlight just how little is known about mammalian development in comparison to simpler model organisms. In the case of the transparent worm, Caenorhabditis elegans, Sulston and colleagues used a microscope to record the birth and death of every cell during its life, and the compilation of this "fate map" represents a milestone achievement of developmental biology. Determining a fate map for mammals or other higher organisms is more complicated because they are opaque, take a long time to mature, and have a tremendous number of cells. Consequently, fate mapping experiments have relied on tagging a progenitor cell with a dye or genetic marker in order to later identify its descendants. This approach, however, extracts little information because it demonstrates that a population of cells, all having inherited the same label, shares a common ancestor, but it does not reveal how cells in that population are related to one another. To avoid that problem, as well as technical limitations of current methods for mapping cell fate, we, and others, have developed a new strategy for retrospectively deriving cell fate maps by using phylogenetics to infer the order in which somatic mutations have arisen in the genomes of individual cells during development in multicellular organisms. DNA replication inevitably introduces mutations, particularly at repetitive sequences, every time a cell divides. It is thus possible to deduce the history of cell divisions by cataloging somatic mutations and phylogenetically reconstructing cell lineage. This approach has the potential to produce a complete mammalian cell fate map that, in principle, could describe the developmental lineage of any cell and help resolve outstanding questions of stem cell biology, tissue repair and maintenance, and aging.
Collapse
Affiliation(s)
- Stephen J Salipante
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
31
|
Abstract
During the annual Ramazzini Days, the Mayor of Carpi confers the Ramazzini Award on scientists deemed by the Collegium Ramazzini to have made outstanding contributions to furthering the aims of Bernardino Ramazzini in safeguarding public health. Dr. Lorenzo Tomatis was the Ramazzini Award recipient in 2005, and the presentation of the award was a highlight of the Symposium. The Ramazzini Lecture given by Dr. Tomatis follows.
Collapse
Affiliation(s)
- Lorenzo Tomatis
- International Society of Doctors for the Environment, Arezzo, Italy.
| |
Collapse
|
32
|
Jascur T, Boland CR. Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 2006; 119:2030-5. [PMID: 16804905 DOI: 10.1002/ijc.22023] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA mismatch repair (MMR) is one of the several enzyme systems involved in DNA homeostasis. DNA MMR is involved in the repair of specific types of errors that occur during new DNA synthesis; loss of this system leads to an accelerated accumulation of potential mutations, and predisposes to certain types of cancers. Germline mutations in some of the DNA MMR genes cause the hereditary cancer predisposition, Lynch syndrome. This review addresses advances in the biochemistry of DNA MMR and its relationship to carcinogenesis.
Collapse
Affiliation(s)
- Thomas Jascur
- Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246, USA.
| | | |
Collapse
|
33
|
Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006; 88:1549-59. [PMID: 17070979 DOI: 10.1016/j.biochi.2006.10.001] [Citation(s) in RCA: 629] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 10/02/2006] [Indexed: 02/02/2023]
Abstract
Cadmium is an important toxic environmental heavy metal. Occupational and environmental pollution with cadmium results mainly from mining, metallurgy industry and manufactures of nickel-cadmium batteries, pigments and plastic stabilizers. Important sources of human intoxication are cigarette smoke as well as food, water and air contaminations. In humans, cadmium exposures have been associated with cancers of the prostate, lungs and testes. Acute exposures are responsible for damage to these organs. Chronic intoxication is associated with obstructive airway disease, emphysema, irreversible renal failure, bone disorders and immuno-suppression. At the cellular level, cadmium affects proliferation, differentiation and causes apoptosis. It has been classified as a carcinogen by the International Agency for Research on Cancer (IARC). However, it is weakly genotoxic. Indirect effects of cadmium provoke generation of reactive oxygen species (ROS) and DNA damage. Cadmium modulates also gene expression and signal transduction, reduces activities of proteins involved in antioxidant defenses. Several studies have shown that it interferes with DNA repair. The present review focuses on the effects of cadmium in mammalian cells with special emphasis on the induction of damage to DNA, membranes and proteins, the inhibition of different types of DNA repair and the induction of apoptosis. Current data and hypotheses on the mechanisms involved in cadmium genotoxicity and carcinogenesis are outlined.
Collapse
Affiliation(s)
- G Bertin
- Institut Curie-UMR 2027 CNRS Génotoxicologie et cycle cellulaire, LCR V28 du CEA, centre universitaire, 91405 Orsay cedex, France
| | | |
Collapse
|
34
|
Slebos RJC, Li M, Evjen AN, Coffa J, Shyr Y, Yarbrough WG. Mutagenic effect of cadmium on tetranucleotide repeats in human cells. Mutat Res 2006; 602:92-9. [PMID: 16989872 DOI: 10.1016/j.mrfmmm.2006.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/10/2006] [Accepted: 08/12/2006] [Indexed: 11/24/2022]
Abstract
Cadmium is a human carcinogen that affects cell proliferation, apoptosis and DNA repair processes that are all important to carcinogenesis. We previously demonstrated that cadmium inhibits DNA mismatch repair (MMR) in yeast cells and in human cell-free extracts (H.W. Jin, A.B. Clark, R.J.C. Slebos, H. Al-Refai, J.A. Taylor, T.A. Kunkel, M.A. Resnick, D.A. Gordenin, Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet. 34 (3) (2003) 326-329), but cadmium also inhibits DNA excision repair. For this study, we selected a panel of three hypermutable tetranucleotide markers (MycL1, D7S1482 and DXS981) and studied their suitability as readout for the mutagenic effects of cadmium. We used a clonal derivative of the human fibrosarcoma cell line HT1080 to assess mutation levels in microsatellites after cadmium and/or N-methyl-N-nitro-N-nitrosoguanidine (MNNG) exposure to study effects of cadmium in the presence or absence of base damage. Mutations were measured in clonally expanded cells obtained by limiting dilution after exposure to zero dose, 0.5 microM cadmium, 5 nM MNNG or a combination of 0.5 microM cadmium and 5 nM MNNG. Exposure of HT1080-C1 to cadmium led to statistically significant increases in microsatellite mutations, either with or without concurrent exposure to MNNG. A majority of the observed mutant molecules involved 4-nucleotide shifts consistent with DNA slippage mutations that are normally repaired by MMR. These results provide evidence for the mutagenic effects of low, environmentally relevant levels of cadmium in intact human cells and suggest that inhibition of DNA repair is involved.
Collapse
Affiliation(s)
- Robbert J C Slebos
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wang P, Guliaev AB, Hang B. Metal inhibition of human N-methylpurine-DNA glycosylase activity in base excision repair. Toxicol Lett 2006; 166:237-47. [PMID: 16938414 DOI: 10.1016/j.toxlet.2006.06.647] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/20/2006] [Accepted: 06/20/2006] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd2+), nickel (Ni2+) and cobalt (Co2+) are human and/or animal carcinogens. Zinc (Zn2+) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd2+, Ni2+, and Zn2+ can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (varepsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1,000 microM, both Cd2+ and Zn2+ showed metal-dependent inhibition of the MPG catalytic activity. Ni2+ also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co2+ and Mg2+ did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the varepsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd2+, Zn2+, and Ni2+ at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn2+ showed that the MPG active site has a potential binding site for Zn2+, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.
Collapse
Affiliation(s)
- Ping Wang
- Department of Molecular Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
36
|
Murphy K, Darmawan H, Schultz A, Fidalgo da Silva E, Reha-Krantz LJ. A method to select for mutator DNA polymerase deltas in Saccharomyces cerevisiae. Genome 2006; 49:403-10. [PMID: 16699561 DOI: 10.1139/g05-106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proofreading DNA polymerases share common short peptide motifs that bind Mg(2+) in the exonuclease active center; however, hydrolysis rates are not the same for all of the enzymes, which indicates that there are functional and likely structural differences outside of the conserved residues. Since structural information is available for only a few proofreading DNA polymerases, we developed a genetic selection method to identify mutant alleles of the POL3 gene in Saccharomyces cerevisiae, which encode DNA polymerase delta mutants that replicate DNA with reduced fidelity. The selection procedure is based on genetic methods used to identify "mutator" DNA polymerases in bacteriophage T4. New yeast DNA polymerase delta mutants were identified, but some mutants expected from studies of the phage T4 DNA polymerase were not detected. This would indicate that there may be important differences in the proofreading pathways catalyzed by the two DNA polymerases.
Collapse
Affiliation(s)
- Kelly Murphy
- Department of Biological Sciences, CW405 BioSciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | | | | | |
Collapse
|
37
|
Giaginis C, Gatzidou E, Theocharis S. DNA repair systems as targets of cadmium toxicity. Toxicol Appl Pharmacol 2006; 213:282-90. [PMID: 16677676 DOI: 10.1016/j.taap.2006.03.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/19/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
Cadmium (Cd) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. Recent evidence suggests that proteins participating in the DNA repair systems, especially in excision and mismatch repair, are sensitive targets of Cd toxicity. Cd by interfering and inhibiting these DNA repair processes might contribute to increased risk for tumor formation in humans. In the present review, the information available on the interference of Cd with DNA repair systems and their inhibition is summarized. These actions could possibly explain the indirect contribution of Cd to mutagenic effects and/or carcinogenicity.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, University of Athens, Medical School, 75 M. Asias str., Goudi, GR11527 Athens, Greece
| | | | | |
Collapse
|
38
|
Peterson-Roth E, Reynolds M, Quievryn G, Zhitkovich A. Mismatch repair proteins are activators of toxic responses to chromium-DNA damage. Mol Cell Biol 2005; 25:3596-607. [PMID: 15831465 PMCID: PMC1084304 DOI: 10.1128/mcb.25.9.3596-3607.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromium(VI) is a toxic and carcinogenic metal that causes the formation of DNA phosphate-based adducts. Cr-DNA adducts are genotoxic in human cells, although they do not block replication in vitro. Here, we report that induction of cytotoxicity in Cr(VI)-treated human colon cells and mouse embryonic fibroblasts requires the presence of all major mismatch repair (MMR) proteins. Cr-DNA adducts lost their ability to block replication of Cr-modified plasmids in human colon cells lacking MLH1 protein. The presence of functional mismatch repair caused induction of p53-independent apoptosis associated with activation of caspases 2 and 7. Processing of Cr-DNA damage by mismatch repair resulted in the extensive formation of gamma-H2AX foci in G(2) phase, indicating generation of double-stranded breaks as secondary toxic lesions. Induction of gamma-H2AX foci was observed at 6 to 12 h postexposure, which was followed by activation of apoptosis in the absence of significant G(2) arrest. Our results demonstrate that mismatch repair system triggers toxic responses to Cr-DNA backbone modifications through stress mechanisms that are significantly different from those for other forms of DNA damage. Selection for Cr(VI) resistant, MMR-deficient cells may explain the very high frequency of lung cancers with microsatellite instability among chromate workers.
Collapse
Affiliation(s)
- Elizabeth Peterson-Roth
- Pathology and Laboratory Medicine, Brown University, 70 Ship St., Box G-E507, Providence, RI 02912, USA
| | | | | | | |
Collapse
|