1
|
Shen J, Du Y, Shen Y, Kang N, Fan Z, Fang Z, Yang B, Wang J, Li B. Integrated Metabolomics and Transcriptomics Analyses Identify Key Amino Acid Metabolic Mechanisms in Lacticaseibacillus paracasei SMN-LBK. Foods 2025; 14:730. [PMID: 40077433 PMCID: PMC11899468 DOI: 10.3390/foods14050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
During lactobacillus fermentation, the types of proteins in the fermentation substrate significantly influence the characteristics of the fermented product. Proteins are composed of various amino acids. Consequently, investigating the metabolic mechanisms of key amino acids during lactic acid bacteria fermentation is important for improving their application in the food industry. In this study, the growth of Lacticaseibacillus paracasei SMN-LBK was significantly inhibited following glutamate and arginine deficiency (p < 0.05). Genomic analysis and in vitro addition assays showed that α-ketoglutarate (OXO), as a precursor of glutamate, significantly eliminated growth inhibition of SMN-LBK (p < 0.05). Meanwhile, the inhibition of SMN-LBK growth following arginine deficiency may be linked to glutamate. Metabolomics analysis illustrated that glutamate and arginine deficiencies mainly affected the carbohydrate and amino acid metabolic pathways of SMN-LBK, especially the pentose phosphate pathway, alanine, glutamate and aspartate metabolism, and arginine metabolism. Transcriptomics analysis further identified glutamate and arginine deficiencies affecting carbohydrate and amino acid metabolism, specifically the glutamate metabolism, pentose phosphate pathway, and glycolysis/gluconeogenesis, involving key genes such as pfkA, gapA, ldh, argG, argE, and argH. Elucidating the molecular mechanisms of key amino acids in SMN-LBK will provide a theoretical foundation for understanding the differential fermentation of various proteins by lactic acid bacteria.
Collapse
Affiliation(s)
- Jie Shen
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (J.S.); (Y.D.); (Y.S.); (N.K.); (Z.F.); (Z.F.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yuyu Du
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (J.S.); (Y.D.); (Y.S.); (N.K.); (Z.F.); (Z.F.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yuechenfei Shen
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (J.S.); (Y.D.); (Y.S.); (N.K.); (Z.F.); (Z.F.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Ning Kang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (J.S.); (Y.D.); (Y.S.); (N.K.); (Z.F.); (Z.F.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhexin Fan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (J.S.); (Y.D.); (Y.S.); (N.K.); (Z.F.); (Z.F.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi 832000, China
- Engineering Research Center of Camel Milk of Xinjiang, Ili 835100, China
| | - Zhifeng Fang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (J.S.); (Y.D.); (Y.S.); (N.K.); (Z.F.); (Z.F.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi 832000, China
- Engineering Research Center of Camel Milk of Xinjiang, Ili 835100, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Jiancheng Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (J.S.); (Y.D.); (Y.S.); (N.K.); (Z.F.); (Z.F.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Baokun Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (J.S.); (Y.D.); (Y.S.); (N.K.); (Z.F.); (Z.F.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi 832000, China
- Engineering Research Center of Camel Milk of Xinjiang, Ili 835100, China
| |
Collapse
|
2
|
Nielipinski M, Pietrzyk-Brzezinska AJ, Wlodawer A, Sekula B. Structural analysis and molecular substrate recognition properties of Arabidopsis thaliana ornithine transcarbamylase, the molecular target of phaseolotoxin produced by Pseudomonas syringae. FRONTIERS IN PLANT SCIENCE 2023; 14:1297956. [PMID: 38179474 PMCID: PMC10765591 DOI: 10.3389/fpls.2023.1297956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024]
Abstract
Halo blight is a plant disease that leads to a significant decrease in the yield of common bean crops and kiwi fruits. The infection is caused by Pseudomonas syringae pathovars that produce phaseolotoxin, an antimetabolite which targets arginine metabolism, particularly by inhibition of ornithine transcarbamylase (OTC). OTC is responsible for production of citrulline from ornithine and carbamoyl phosphate. Here we present the first crystal structures of the plant OTC from Arabidopsis thaliana (AtOTC). Structural analysis of AtOTC complexed with ornithine and carbamoyl phosphate reveals that OTC undergoes a significant structural transition when ornithine enters the active site, from the opened to the closed state. In this study we discuss the mode of OTC inhibition by phaseolotoxin, which seems to be able to act only on the fully opened active site. Once the toxin is proteolytically cleaved, it mimics the reaction transition state analogue to fit inside the fully closed active site of OTC. Additionally, we indicate the differences around the gate loop region which rationally explain the resistance of some bacterial OTCs to phaseolotoxin.
Collapse
Affiliation(s)
- Maciej Nielipinski
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Agnieszka J. Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD, United States
| | - Bartosz Sekula
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
3
|
Shen X, Li X, Jia C, Li J, Chen S, Gao B, Liang W, Zhang L. HPLC-MS-based untargeted metabolomic analysis of differential plasma metabolites and their associated metabolic pathways in reproductively anosmic black porgy, Acanthopagrus schlegelii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101071. [PMID: 36931130 DOI: 10.1016/j.cbd.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Olfaction, a universal form of chemical communication, is a powerful channel for animals to obtain social and environmental cues. The mechanisms by which fish olfaction affects reproduction, breeding and disease control are not yet clear. To evaluate metabolites profiles, plasma from anosmic and control black porgy during reproduction was analyzed by non-targeted metabolomics using ultra high-performance liquid chromatography-mass spectrometry and multivariate statistical analysis techniques, including principal component analysis and orthogonal partial least squares discriminant analysis. The metabolite profiles of anosmia and control groups were found to be significantly separated. Ten different differential metabolites, mainly including amino acids, such as isoleucine and methionine, and lipids, such as phosphatidylserine, were screened based on the combined analysis of variable importance in the projection and p values. In addition, six key differential metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes and enriched for four metabolic pathways including the citrate acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, and arginine synthesis. The TCA cycle enhances fertility through the reduction of pyruvate kinase, and intermediate derivatives (acetyl CoA, malonyl CoA) act as signaling factors that regulate immune cell function. The tyrosine cycle can indirectly participate and promote reproduction in black porgy through melanin-concentrating hormone. Arginine and proline metabolism can promote reproduction by promoting growth hormone and enhance immunity in anosmic black porgy by stimulating T lymphocytes. Our metabolomic study revealed that anosmia in black porgy played an active role in immunity and reproduction and provided theoretical support for breeding and disease control.
Collapse
Affiliation(s)
- Xing Shen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Chaofeng Jia
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuyin Chen
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Bo Gao
- Aquaculture and Genetic Breeding Laboratory, Marine Fisheries Research Institute of Jiangsu Province, Nantong, China
| | - Wenke Liang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Sagawa CHD, Assis RDAB, Zaini PA, Saxe H, Wilmarth PA, Salemi M, Phinney BS, Dandekar AM. De Novo Arginine Synthesis Is Required for Full Virulence of Xanthomonas arboricola pv. juglandis During Walnut Bacterial Blight Disease. PHYTOPATHOLOGY 2022; 112:1500-1512. [PMID: 34941365 DOI: 10.1094/phyto-07-21-0302-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Walnut blight (WB) disease caused by Xanthomonas arboricola pv. juglandis (Xaj) threatens orchards worldwide. Nitrogen metabolism in this bacterial pathogen is dependent on arginine, a nitrogen-enriched amino acid that can either be synthesized or provided by the plant host. The arginine biosynthetic pathway uses argininosuccinate synthase (argG), associated with increased bacterial virulence. We examined the effects of bacterial arginine and nitrogen metabolism on the plant response during WB by proteomic analysis of the mutant strain Xaj argG-. Phenotypically, the mutant strain produced 42% fewer symptoms and survived in the plant tissue with 2.5-fold reduced growth compared with wild type, while showing itself to be auxotrophic for arginine in vitro. Proteomic analysis of infected tissue enabled the profiling of 676 Xaj proteins and 3,296 walnut proteins using isobaric labeling in a data-dependent acquisition approach. Comparative analysis of differentially expressed proteins revealed distinct plant responses. Xaj wild type (WT) triggered processes of catabolism and oxidative stress in the host under observed disease symptoms, while most of the host biosynthetic processes triggered by Xaj WT were inhibited during Xaj argG- infection. Overall, the Xaj proteins revealed a drastic shift in carbon and energy management induced by disruption of nitrogen metabolism while the top differentially expressed proteins included a Fis transcriptional regulator and a peptidyl-prolyl isomerase. Our results show the critical role of de novo arginine biosynthesis to sustain virulence and minimal growth during WB. This study is timely and critical as copper-based control methods are losing their effectiveness, and new sustainable methods are urgently needed in orchard environments.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Cíntia H D Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Renata de A B Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Houston Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, U.S.A
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, U.S.A
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, U.S.A
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
5
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
6
|
Bürger M, Chory J. Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones. Commun Biol 2018; 1:217. [PMID: 30534609 PMCID: PMC6281622 DOI: 10.1038/s42003-018-0214-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Deacetylation is the removal of an acetyl group and occurs on a plethora of targets and for a wide range of biological reasons. Several pathogens deacetylate their surface carbohydrates to evade immune response or to support biofilm formation. Furthermore, dynamic acetylation/deacetylation cycles govern processes from chromatin remodeling to posttranslational modifications that compete with phosphorylation. Acetylation usually occurs on nitrogen and oxygen atoms and are referred to as N- and O-acetylation, respectively. This review discusses the structural prerequisites that enzymes must have to catalyze the deacetylation reaction, and how they adapted by formation of specific substrate and metal binding sites.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
7
|
Jarmolinska AI, Perlinska AP, Runkel R, Trefz B, Ginn HM, Virnau P, Sulkowska JI. Proteins' Knotty Problems. J Mol Biol 2018; 431:244-257. [PMID: 30391297 DOI: 10.1016/j.jmb.2018.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Knots in proteins are increasingly being recognized as an important structural concept, and the folding of these peculiar structures still poses considerable challenges. From a functional point of view, most protein knots discovered so far are either enzymes or DNA-binding proteins. Our comprehensive topological analysis of the Protein Data Bank reveals several novel structures including knotted mitochondrial proteins and the most deeply embedded protein knot discovered so far. For the latter, we propose a novel folding pathway based on the idea that a loose knot forms at a terminus and slides to its native position. For the mitochondrial proteins, we discuss the folding problem from the perspective of transport and suggest that they fold inside the mitochondria. We also discuss the evolutionary origin of a novel class of knotted membrane proteins and argue that a novel knotted DNA-binding protein constitutes a new fold. Finally, we have also discovered a knot in an artificially designed protein structure.
Collapse
Affiliation(s)
- Aleksandra I Jarmolinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Banacha 2c, 02-097 Warsaw, Poland
| | - Agata P Perlinska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Banacha 2c, 02-097 Warsaw, Poland
| | - Robert Runkel
- Department of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Benjamin Trefz
- Department of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany; Graduate School Material Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Helen M Ginn
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Virnau
- Department of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
8
|
Comparative folding analyses of unknotted versus trefoil-knotted ornithine transcarbamylases suggest stabilizing effects of protein knots. Biochem Biophys Res Commun 2018; 503:822-829. [DOI: 10.1016/j.bbrc.2018.06.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
|
9
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
10
|
Lim NCH, Jackson SE. Molecular knots in biology and chemistry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:354101. [PMID: 26291690 DOI: 10.1088/0953-8984/27/35/354101] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules.
Collapse
Affiliation(s)
- Nicole C H Lim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam
| | | |
Collapse
|
11
|
Shi D, Allewell NM, Tuchman M. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases. Int J Mol Sci 2015; 16:18836-64. [PMID: 26274952 PMCID: PMC4581275 DOI: 10.3390/ijms160818836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase) and ornithine transcarbamylase (OTCase), are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-l-ornithine transcarbamylase (AOTCase), N-succinyl-l-ornithine transcarbamylase (SOTCase), ygeW encoded transcarbamylase (YTCase) and putrescine transcarbamylase (PTCase) have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase), l-2,4-diaminobutyrate transcarbamylase (DBTCase) and ureidoglycine transcarbamylase (UGTCase), demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| | - Norma M Allewell
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
- Department of Chemistry and Biochemistry, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
- Department of Integrative Systems Biology, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
12
|
The N-Acetylglutamate Synthase Family: Structures, Function and Mechanisms. Int J Mol Sci 2015; 16:13004-22. [PMID: 26068232 PMCID: PMC4490483 DOI: 10.3390/ijms160613004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/24/2015] [Accepted: 05/13/2015] [Indexed: 11/17/2022] Open
Abstract
N-acetylglutamate synthase (NAGS) catalyzes the production of N-acetylglutamate (NAG) from acetyl-CoA and l-glutamate. In microorganisms and plants, the enzyme functions in the arginine biosynthetic pathway, while in mammals, its major role is to produce the essential co-factor of carbamoyl phosphate synthetase 1 (CPS1) in the urea cycle. Recent work has shown that several different genes encode enzymes that can catalyze NAG formation. A bifunctional enzyme was identified in certain bacteria, which catalyzes both NAGS and N-acetylglutamate kinase (NAGK) activities, the first two steps of the arginine biosynthetic pathway. Interestingly, these bifunctional enzymes have higher sequence similarity to vertebrate NAGS than those of the classical (mono-functional) bacterial NAGS. Solving the structures for both classical bacterial NAGS and bifunctional vertebrate-like NAGS/K has advanced our insight into the regulation and catalytic mechanisms of NAGS, and the evolutionary relationship between the two NAGS groups.
Collapse
|
13
|
Lu L, Wu Y, Zuo L, Luo X, Large PJ. Intestinal microbiome and digoxin inactivation: meal plan for digoxin users? World J Microbiol Biotechnol 2013; 30:791-9. [PMID: 24105082 DOI: 10.1007/s11274-013-1507-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022]
Abstract
There is an increasing interest in the role of intestinal microbiome in human diseases and therapeutic agents' bioavailability, activity and toxicity. Epidemiological data show that the bioavailability of digoxin, a widely used agent for heart disease, varies among individuals. The inactivation of digoxin was found when it was incubated with gut bacterium Eggerthella lenta in vitro decades ago. However, the underlying mechanisms of digoxin inactivation are still unclear. A recent study using animal models uncovered this mystery, which suggested that arginine supplements might be a potential intervention in increasing digoxin activity by inhibiting the expression of cardiac glycoside reductase gene operons that inactivated digoxin. This perspective summarizes the connections among the intestinal microbiome, the digoxin inactivation, the metabolism of arginine. We also discuss several issues yet to be addressed in the future, making better strategies in the application of dietary arginine supplements for digoxin users.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA,
| | | | | | | | | |
Collapse
|
14
|
Abstract
Knotted proteins have recently received lots of attention due to their interesting topological novelty as well as its puzzling folding mechanisms. We previously published a pKNOT server, which provides a structural database of knotted proteins, analysis tools for detecting and analyzing knotted regions from structures as well as a Java-based 3D graphics viewer for visualizing knotted structures. However, there lacks a convenient platform performing similar tasks directly from ‘protein sequences’. In the current version of the web server, referred to as pKNOT v.2, we implement a homology modeling tool such that the server can now accept protein sequences in addition to 3D structures or Protein Data Bank (PDB) IDs and return knot analysis. In addition, we have updated the database of knotted proteins from the current PDB with a combination of automatic and manual procedure. We believe that the updated pKNOT server with its extended functionalities will provide better service to biologists interested in the research of knotted proteins. The pKNOT v.2 is available from http://pknot.life.nctu.edu.tw/.
Collapse
Affiliation(s)
- Yan-Long Lai
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan, Republic of China
| | | | | |
Collapse
|
15
|
Shi D, Yu X, Zhao G, Ho J, Lu S, Allewell NM, Tuchman M. Crystal structure and biochemical properties of putrescine carbamoyltransferase from Enterococcus faecalis: Assembly, active site, and allosteric regulation. Proteins 2012; 80:1436-47. [PMID: 22328207 DOI: 10.1002/prot.24042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 11/09/2022]
Abstract
Putrescine carbamoyltransferase (PTCase) catalyzes the conversion of carbamoylputrescine to putrescine and carbamoyl phosphate (CP), a substrate of carbamate kinase (CK). The crystal structure of PTCase has been determined and refined at 3.2 Å resolution. The trimeric molecular structure of PTCase is similar to other carbamoyltransferases, including the catalytic subunit of aspartate carbamoyltransferase (ATCase) and ornithine carbamoyltransferase (OTCase). However, in contrast to other trimeric carbamoyltransferases, PTCase binds both CP and putrescine with Hill coefficients at saturating concentrations of the other substrate of 1.53 ± 0.03 and 1.80 ± 0.06, respectively. PTCase also has a unique structural feature: a long C-terminal helix that interacts with the adjacent subunit to enhance intersubunit interactions in the molecular trimer. The C-terminal helix appears to be essential for both formation of the functional trimer and catalytic activity, since truncated PTCase without the C-terminal helix aggregates and has only 3% of native catalytic activity. The active sites of PTCase and OTCase are similar, with the exception of the 240's loop. PTCase lacks the proline-rich sequence found in knotted carbamoyltransferases and is unknotted. A Blast search of all available genomes indicates that 35 bacteria, most of which are Gram-positive, have an agcB gene encoding PTCase located near the genes that encode agmatine deiminase and CK, consistent with the catabolic role of PTCase in the agmatine degradation pathway. Sequence comparisons indicate that the C-terminal helix identified in this PTCase structure will be found in all other PTCases identified, suggesting that it is the signature feature of the PTCase family of enzymes.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research and Department of Integrative Systems Biology, Children's National Medical Center, The George Washington University, Washington, District of Columbia 20010, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Improvement of l-Arginine Production by Overexpression of a Bifunctional Ornithine Acetyltransferase in Corynebacterium crenatum. Appl Biochem Biotechnol 2011; 165:845-55. [DOI: 10.1007/s12010-011-9302-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
17
|
Virnau P, Mallam A, Jackson S. Structures and folding pathways of topologically knotted proteins. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:033101. [PMID: 21406854 DOI: 10.1088/0953-8984/23/3/033101] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the last decade, a new class of proteins has emerged that contain a topological knot in their backbone. Although these structures are rare, they nevertheless challenge our understanding of protein folding. In this review, we provide a short overview of topologically knotted proteins with an emphasis on newly discovered structures. We discuss the current knowledge in the field, including recent developments in both experimental and computational studies that have shed light on how these intricate structures fold.
Collapse
Affiliation(s)
- Peter Virnau
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany.
| | | | | |
Collapse
|
18
|
Li Y, Yu X, Ho J, Fushman D, Allewell NM, Tuchman M, Shi D. Reversible post-translational carboxylation modulates the enzymatic activity of N-acetyl-L-ornithine transcarbamylase. Biochemistry 2010; 49:6887-95. [PMID: 20695527 PMCID: PMC2959125 DOI: 10.1021/bi1007386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acetyl-l-ornithine transcarbamylase (AOTCase), rather than ornithine transcarbamylase (OTCase), is the essential carbamylase enzyme in the arginine biosynthesis of several plant and human pathogens. The specificity of this unique enzyme provides a potential target for controlling the spread of these pathogens. Recently, several crystal structures of AOTCase from Xanthomonas campestris (xc) have been determined. In these structures, an unexplained electron density at the tip of the Lys302 side chain was observed. Using (13)C NMR spectroscopy, we show herein that Lys302 is post-translationally carboxylated. The structure of wild-type AOTCase in a complex with the bisubstrate analogue N(delta)-(phosphonoacetyl)-N(alpha)-acetyl-l-ornithine (PALAO) indicates that the carboxyl group on Lys302 forms a strong hydrogen bonding network with surrounding active site residues, Lys252, Ser253, His293, and Glu92 from the adjacent subunit either directly or via a water molecule. Furthermore, the carboxyl group is involved in binding N-acetyl-l-ornithine via a water molecule. Activity assays with the wild-type enzyme and several mutants demonstrate that the post-translational modification of lysine 302 has an important role in catalysis.
Collapse
Affiliation(s)
- Yongdong Li
- Research Center for Genetic Medicine and Department of Integrative Systems Biology, Children’s National Medical Center, The George Washington University, Washington, DC 20010, USA
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolin Yu
- Research Center for Genetic Medicine and Department of Integrative Systems Biology, Children’s National Medical Center, The George Washington University, Washington, DC 20010, USA
| | - Jeremy Ho
- Research Center for Genetic Medicine and Department of Integrative Systems Biology, Children’s National Medical Center, The George Washington University, Washington, DC 20010, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, College of Chemical and Life Sciences, University of Maryland, College Park, MD 20742, USA
| | - Norma M. Allewell
- Department of Chemistry and Biochemistry, College of Chemical and Life Sciences, University of Maryland, College Park, MD 20742, USA
| | - Mendel Tuchman
- Research Center for Genetic Medicine and Department of Integrative Systems Biology, Children’s National Medical Center, The George Washington University, Washington, DC 20010, USA
| | - Dashuang Shi
- Research Center for Genetic Medicine and Department of Integrative Systems Biology, Children’s National Medical Center, The George Washington University, Washington, DC 20010, USA
| |
Collapse
|
19
|
Abstract
Molecular dynamics studies within a coarse-grained, structure-based model were used on two similar proteins belonging to the transcarbamylase family to probe the effects of the knot in the native structure of a protein. The first protein, N-acetylornithine transcarbamylase, contains no knot, whereas human ormithine transcarbamylase contains a trefoil knot located deep within the sequence. In addition, we also analyzed a modified transferase with the knot removed by the appropriate change of a knot-making crossing of the protein chain. The studies of thermally and mechanically induced unfolding processes suggest a larger intrinsic stability of the protein with the knot.
Collapse
|
20
|
Caldara M, Dupont G, Leroy F, Goldbeter A, De Vuyst L, Cunin R. Arginine Biosynthesis in Escherichia coli. J Biol Chem 2008; 283:6347-58. [DOI: 10.1074/jbc.m705884200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Replacement of the Arginine Biosynthesis Operon in Xanthomonadales by Lateral Gene Transfer. J Mol Evol 2008; 66:266-75. [DOI: 10.1007/s00239-008-9082-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 07/23/2007] [Accepted: 01/25/2008] [Indexed: 11/30/2022]
|
22
|
Shi D, Yu X, Cabrera-Luque J, Chen TY, Roth L, Morizono H, Allewell NM, Tuchman M. A single mutation in the active site swaps the substrate specificity of N-acetyl-L-ornithine transcarbamylase and N-succinyl-L-ornithine transcarbamylase. Protein Sci 2007; 16:1689-99. [PMID: 17600144 PMCID: PMC2203365 DOI: 10.1110/ps.072919907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transcarbamylases catalyze the transfer of the carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate such as aspartate, ornithine, or putrescine. Previously, structural determination of a transcarbamylase from Xanthomonas campestris led to the discovery of a novel N-acetylornithine transcarbamylase (AOTCase) that catalyzes the carbamylation of N-acetylornithine. Recently, a novel N-succinylornithine transcarbamylase (SOTCase) from Bacteroides fragilis was identified. Structural comparisons of AOTCase from X. campestris and SOTCase from B. fragilis revealed that residue Glu92 (X. campestris numbering) plays a critical role in distinguishing AOTCase from SOTCase. Enzymatic assays of E92P, E92S, E92V, and E92A mutants of AOTCase demonstrate that each of these mutations converts the AOTCase to an SOTCase. Similarly, the P90E mutation in B. fragilis SOTCase (equivalent to E92 in X. campestris AOTCase) converts the SOTCase to AOTCase. Hence, a single amino acid substitution is sufficient to swap the substrate specificities of AOTCase and SOTCase. X-ray crystal structures of these mutants in complexes with CP and N-acetyl-L-norvaline (an analog of N-acetyl-L-ornithine) or N-succinyl-L-norvaline (an analog of N-succinyl-L-ornithine) substantiate this conversion. In addition to Glu92 (X. campestris numbering), other residues such as Asn185 and Lys30 in AOTCase, which are involved in binding substrates through bridging water molecules, help to define the substrate specificity of AOTCase. These results provide the correct annotation (AOTCase or SOTCase) for a set of the transcarbamylase-like proteins that have been erroneously annotated as ornithine transcarbamylase (OTCase, EC 2.1.3.3).
Collapse
Affiliation(s)
- Dashuang Shi
- Children's National Medical Center, The George Washington University, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Knotted proteins are more commonly observed in recent years due to the enormously growing number of structures in the Protein Data Bank (PDB). Studies show that the knot regions contribute to both ligand binding and enzyme activity in proteins such as the chromophore-binding domain of phytochrome, ketol–acid reductoisomerase or SpoU methyltransferase. However, there are still many misidentified knots published in the literature due to the absence of a convenient web tool available to the general biologists. Here, we present the first web server to detect the knots in proteins as well as provide information on knotted proteins in PDB—the protein KNOT (pKNOT) web server. In pKNOT, users can either input PDB ID or upload protein coordinates in the PDB format. The pKNOT web server will detect the knots in the protein using the Taylor's smoothing algorithm. All the detected knots can be visually inspected using a Java-based 3D graphics viewer. We believe that the pKNOT web server will be useful to both biologists in general and structural biologists in particular.
Collapse
Affiliation(s)
- Yan-Long Lai
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Shih-Chung Yen
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Sung-Huan Yu
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Jenn-Kang Hwang
- Institute of Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan and Core Facility for Structural Bioinformatics, National Chiao Tung University, Hsinchu 30050, Taiwan
- *To whom correspondence should be addressed. +886-3-513-1337+886-3-572-9288
| |
Collapse
|
24
|
Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics 2007; 8:73. [PMID: 17338813 PMCID: PMC1829167 DOI: 10.1186/1471-2105-8-73] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 03/05/2007] [Indexed: 11/29/2022] Open
Abstract
Background SPOUT methyltransferases (MTases) are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080), and one (COG1756 represented by Nep1p) has been already implicated in RNA metabolism, but its biochemical function has been unknown. Based on the inference of orthologous and paralogous relationships between all SPOUT families we propose that the Last Universal Common Ancestor (LUCA) of all extant organisms contained at least three SPOUT members, ancestors of contemporary RNA MTases that carry out m1G, m3U, and 2'O-ribose methylation, respectively. In this work we also speculate on the origin of the knot and propose possible 'unknotted' ancestors. The results of our analysis provide a comprehensive 'roadmap' for experimental characterization of SPOUT MTases and interpretation of functional studies in the light of sequence-structure relationships.
Collapse
|
25
|
Xu Y, Labedan B, Glansdorff N. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol Mol Biol Rev 2007; 71:36-47. [PMID: 17347518 PMCID: PMC1847373 DOI: 10.1128/mmbr.00032-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major aspects of the pathway of de novo arginine biosynthesis via acetylated intermediates in microorganisms must be revised in light of recent enzymatic and genomic investigations. The enzyme N-acetylglutamate synthase (NAGS), which used to be considered responsible for the first committed step of the pathway, is present in a limited number of bacterial phyla only and is absent from Archaea. In many Bacteria, shorter proteins related to the Gcn5-related N-acetyltransferase family appear to acetylate l-glutamate; some are clearly similar to the C-terminal, acetyl-coenzyme A (CoA) binding domain of classical NAGS, while others are more distantly related. Short NAGSs can be single gene products, as in Mycobacterium spp. and Thermus spp., or fused to the enzyme catalyzing the last step of the pathway (argininosuccinase), as in members of the Alteromonas-Vibrio group. How these proteins bind glutamate remains to be determined. In some Bacteria, a bifunctional ornithine acetyltransferase (i.e., using both acetylornithine and acetyl-CoA as donors of the acetyl group) accounts for glutamate acetylation. In many Archaea, the enzyme responsible for glutamate acetylation remains elusive, but possible connections with a novel lysine biosynthetic pathway arose recently from genomic investigations. In some Proteobacteria (notably Xanthomonadaceae) and Bacteroidetes, the carbamoylation step of the pathway appears to involve N-acetylornithine or N-succinylornithine rather than ornithine. The product N-acetylcitrulline is deacetylated by an enzyme that is also involved in the provision of ornithine from acetylornithine; this is an important metabolic function, as ornithine itself can become essential as a source of other metabolites. This review insists on the biochemical and evolutionary implications of these findings.
Collapse
Affiliation(s)
- Ying Xu
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris Sud, Bâtiment 400, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
26
|
Virnau P, Mirny LA, Kardar M. Intricate knots in proteins: Function and evolution. PLoS Comput Biol 2006; 2:e122. [PMID: 16978047 PMCID: PMC1570178 DOI: 10.1371/journal.pcbi.0020122] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/28/2006] [Indexed: 11/19/2022] Open
Abstract
Our investigation of knotted structures in the Protein Data Bank reveals the most complicated knot discovered to date. We suggest that the occurrence of this knot in a human ubiquitin hydrolase might be related to the role of the enzyme in protein degradation. While knots are usually preserved among homologues, we also identify an exception in a transcarbamylase. This allows us to exemplify the function of knots in proteins and to suggest how they may have been created. Several protein structures incorporate a rather unusual structural feature: a knot in the polypeptide backbone. These knots are extremely rare, but their occurrence is likely connected to protein function in as yet unexplored fashion. The authors' analysis of the complete Protein Data Bank reveals several new knots that, along with previously discovered ones, may shed light on such connections. In particular, they identify the most complex knot discovered to date in a human protein, and suggest that its entangled topology protects it against unfolding and degradation. Knots in proteins are typically preserved across species and sometimes even across kingdoms. However, there is also one example of a knot in a protein that is not present in a closely related structure. The emergence of this particular knot is accompanied by a shift in the enzymatic function of the protein. It is suggested that the simple insertion of a short DNA fragment into the gene may suffice to cause this alteration of structure and function.
Collapse
Affiliation(s)
- Peter Virnau
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| | | | | |
Collapse
|
27
|
Shi D, Yu X, Roth L, Tuchman M, Allewell NM. Structure of a novel N-acetyl-L-citrulline deacetylase from Xanthomonas campestris. Biophys Chem 2006; 126:86-93. [PMID: 16750290 DOI: 10.1016/j.bpc.2006.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
The structure of a novel acetylcitrulline deacetylase from the plant pathogen Xanthomonas campestris has been solved by multiple-wavelength anomalous dispersion (MAD) using crystals grown from selenomethionine-substituted protein and refined at 1.75 A resolution. The asymmetric unit of the crystal contains one monomer consisting of two domains, a catalytic domain and a dimerization domain. The catalytic domain is able to bind a single Co(II) ion at the active site with no change in conformation. The dimerization domain forms an interface between two monomers related by a crystallographic two-fold symmetry axis. The interface is maintained by hydrophobic interactions between helices and hydrogen bonding between two beta strands that form a continuous beta sheet across the dimer interface. Because the dimers are also related by two-fold crystallographic axes, they pack together across the crystal via the dimerization domain, suggesting that higher order oligomers may form in solution. The polypeptide fold of the monomer is similar to the fold of Pseudomonas sp. carboxypeptidase G2 and Neisseria meningitidis succinyl diaminopimelate desuccinylase. Structural comparison among these enzymes allowed modeling of substrate binding and suggests a possible catalytic mechanism, in which Glu130 functions as a bifunctional general acid-base catalyst and the metal ion polarizes the carbonyl of the acetyl group.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC 20010-2970, USA.
| | | | | | | | | |
Collapse
|
28
|
Shi D, Yu X, Roth L, Morizono H, Tuchman M, Allewell NM. Structures ofN-acetylornithine transcarbamoylase fromXanthomonas campestriscomplexed with substrates and substrate analogs imply mechanisms for substrate binding and catalysis. Proteins 2006; 64:532-42. [PMID: 16741992 DOI: 10.1002/prot.21013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-acetyl-L-ornithine transcarbamoylase (AOTCase) is a new member of the transcarbamoylase superfamily that is essential for arginine biosynthesis in several eubacteria. We report here crystal structures of the binary complexes of AOTCase with its substrates, carbamoyl phosphate (CP) or N-acetyl-L-ornithine (AORN), and the ternary complex with CP and N-acetyl-L-norvaline. Comparison of these structures demonstrates that the substrate-binding mechanism of this novel transcarbamoylase is different from those of aspartate and ornithine transcarbamoylases, both of which show ordered substrate binding with large domain movements. CP and AORN bind to AOTCase independently, and the main conformational change upon substrate binding is ordering of the 80's loop, with a small domain closure around the active site and little movement of the 240's loop. The structures of the complexes provide insight into the mode of substrate binding and the mechanism of the transcarbamoylation reaction.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's National Medical Center, Washington, DC 20010-2970, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Shi D, Morizono H, Cabrera-Luque J, Yu X, Roth L, Malamy MH, Allewell NM, Tuchman M. Structure and catalytic mechanism of a novel N-succinyl-L-ornithine transcarbamylase in arginine biosynthesis of Bacteroides fragilis. J Biol Chem 2006; 281:20623-31. [PMID: 16704984 DOI: 10.1074/jbc.m601229200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Bacteroides fragilis gene (argF'(bf)), the disruption of which renders the bacterium auxotrophic for arginine, was expressed and its recombinant protein purified and studied. The novel protein catalyzes the carbamylation of N-succinyl-L-ornithine but not L-ornithine or N-acetyl-L-ornithine, forming N-succinyl-L-citrulline. Crystal structures of this novel transcarbamylase complexed with carbamyl phosphate and N-succinyl-L-norvaline, as well as sulfate and N-succinyl-L-norvaline have been determined and refined to 2.9 and 2.8 A resolution, respectively. They provide structural evidence that this protein is a novel N-succinyl-L-ornithine transcarbamylase. The data provided herein suggest that B. fragilis uses N-succinyl-L-ornithine rather than N-acetyl-L-ornithine for de novo arginine biosynthesis and therefore that this pathway in Bacteroides is different from the canonical arginine biosynthetic pathway of most organisms. Comparison of the structures of the new protein with those recently reported for N-acetyl-L-ornithine transcarbamylase indicates that amino acid residue 90 (B. fragilis numbering) plays an important role in conferring substrate specificity for N-succinyl-L-ornithine versus N-acetyl-L-ornithine. Movement of the 120 loop upon substrate binding occurs in N-succinyl-L-ornithine transcarbamylase, while movement of the 80 loop and significant domain closure take place as in other transcarbamylases. These findings provide new information on the putative role of succinylated intermediates in arginine biosynthesis and on the evolution of transcarbamylases.
Collapse
Affiliation(s)
- Dashuang Shi
- Children's Research Institute, Children's National Medical Center, George Washington University, Washington, D. C. 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Morizono H, Cabrera-Luque J, Shi D, Gallegos R, Yamaguchi S, Yu X, Allewell NM, Malamy MH, Tuchman M. Acetylornithine transcarbamylase: a novel enzyme in arginine biosynthesis. J Bacteriol 2006; 188:2974-82. [PMID: 16585758 PMCID: PMC1446984 DOI: 10.1128/jb.188.8.2974-2982.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ornithine transcarbamylase is a highly conserved enzyme in arginine biosynthesis and the urea cycle. In Xanthomonas campestris, the protein annotated as ornithine transcarbamylase, and encoded by the argF gene, is unable to synthesize citrulline directly from ornithine. We cloned and overexpressed this X. campestris gene in Escherichia coli and show that it catalyzes the formation of N-acetyl-L-citrulline from N-acetyl-L-ornithine and carbamyl phosphate. We now designate this enzyme as an acetylornithine transcarbamylase. The K(m) values for N-acetylornithine and carbamyl phosphate were 1.05 mM and 0.01 mM, respectively. Additional putative transcarbamylases that might also be misannotated were found in the genomes of members of other xanthomonads, Cytophaga, and Bacteroidetes as well as in DNA sequences of bacteria from environmental isolates. It appears that these different paths for arginine biosynthesis arose very early in evolution and that the canonical ornithine transcarbamylase-dependent pathway became the prevalent form. A potent inhibitor, N(alpha)-acetyl-N(delta)-phosphonoacetyl-L-ornithine, was synthesized and showed a midpoint of inhibition at approximately 22 nM; this compound may prove to be a useful starting point for designing inhibitors specific to this novel family of transcarbamylases.
Collapse
Affiliation(s)
- Hiroki Morizono
- Children's Research Institute, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lu CD. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol 2006; 70:261-72. [PMID: 16432742 DOI: 10.1007/s00253-005-0308-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/13/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
L-arginine is produced by bacterial fermentation and is consumed in food flavoring and pharmaceutical industries. A better understanding of arginine metabolism in bacteria could be beneficial for a rational design of recombinant L-arginine producers by genetic engineering. This mini-review illustrated the current status of genes and enzymes for arginine metabolism, including biosynthetic pathways, catabolic pathways, uptake and excretion systems, and regulation. The linkage of polyamine and glutamate metabolism to the arginine network was also discussed, followed by a perspective view on how to construct arginine overproducing strains of bacteria with increasing biosynthesis and excretion and decreasing catabolism and uptake.
Collapse
Affiliation(s)
- Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
32
|
Xu Y, Glansdorff N, Labedan B. Bioinformatic analysis of an unusual gene-enzyme relationship in the arginine biosynthetic pathway among marine gamma proteobacteria: implications concerning the formation of N-acetylated intermediates in prokaryotes. BMC Genomics 2006; 7:4. [PMID: 16409639 PMCID: PMC1382215 DOI: 10.1186/1471-2164-7-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 01/12/2006] [Indexed: 12/04/2022] Open
Abstract
Background The N-acetylation of L-glutamate is regarded as a universal metabolic strategy to commit glutamate towards arginine biosynthesis. Until recently, this reaction was thought to be catalyzed by either of two enzymes: (i) the classical N-acetylglutamate synthase (NAGS, gene argA) first characterized in Escherichia coli and Pseudomonas aeruginosa several decades ago and also present in vertebrates, or (ii) the bifunctional version of ornithine acetyltransferase (OAT, gene argJ) present in Bacteria, Archaea and many Eukaryotes. This paper focuses on a new and surprising aspect of glutamate acetylation. We recently showed that in Moritella abyssi and M. profunda, two marine gamma proteobacteria, the gene for the last enzyme in arginine biosynthesis (argH) is fused to a short sequence that corresponds to the C-terminal, N-acetyltransferase-encoding domain of NAGS and is able to complement an argA mutant of E. coli. Very recently, other authors identified in Mycobacterium tuberculosis an independent gene corresponding to this short C-terminal domain and coding for a new type of NAGS. We have investigated the two prokaryotic Domains for patterns of gene-enzyme relationships in the first committed step of arginine biosynthesis. Results The argH-A fusion, designated argH(A), and discovered in Moritella was found to be present in (and confined to) marine gamma proteobacteria of the Alteromonas- and Vibrio-like group. Most of them have a classical NAGS with the exception of Idiomarina loihiensis and Pseudoalteromonas haloplanktis which nevertheless can grow in the absence of arginine and therefore appear to rely on the arg(A) sequence for arginine biosynthesis. Screening prokaryotic genomes for virtual argH-X 'fusions' where X stands for a homologue of arg(A), we retrieved a large number of Bacteria and several Archaea, all of them devoid of a classical NAGS. In the case of Thermus thermophilus and Deinococcus radiodurans, the arg(A)-like sequence clusters with argH in an operon-like fashion. In this group of sequences, we find the short novel NAGS of the type identified in M. tuberculosis. Among these organisms, at least Thermus, Mycobacterium and Streptomyces species appear to rely on this short NAGS version for arginine biosynthesis. Conclusion The gene-enzyme relationship for the first committed step of arginine biosynthesis should now be considered in a new perspective. In addition to bifunctional OAT, nature appears to implement at least three alternatives for the acetylation of glutamate. It is possible to propose evolutionary relationships between them starting from the same ancestral N-acetyltransferase domain. In M. tuberculosis and many other bacteria, this domain evolved as an independent enzyme, whereas it fused either with a carbamate kinase fold to give the classical NAGS (as in E. coli) or with argH as in marine gamma proteobacteria. Moreover, there is an urgent need to clarify the current nomenclature since the same gene name argA has been used to designate structurally different entities. Clarifying the confusion would help to prevent erroneous genomic annotation.
Collapse
Affiliation(s)
- Ying Xu
- Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, New York 11794-5000, USA
| | - Nicolas Glansdorff
- Microbiology and Genetics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Bernard Labedan
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris Sud, Bâtiment 400, 91405 Orsay Cedex, France
| |
Collapse
|