1
|
Saroj N, Shanker S, Serrano-Hernández E, Manjarrez-Gutiérrez G, Mondragón JA, Moreno-Martínez S, Jarillo-Luna RA, López-Sánchez P, Terrón JA. Expression of tryptophan hydroxylase in rat adrenal glands: Upregulation of TPH2 by chronic stress. Psychoneuroendocrinology 2025; 171:107219. [PMID: 39467477 DOI: 10.1016/j.psyneuen.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
It has been shown that chronic restraint stress (CRS) increases adrenal 5-HT levels and turnover through a mechanism that appears unrelated to tryptophan hydroxylase (TPH). In the present study we re-analyzed the effects of CRS (20 min/day) for 14 days relative to control (CTRL) conditions on TPH expression, distribution, and activity in rat adrenal glands. On day 15, adrenal glands were collected for TPH1 and TPH2 immunohistochemistry, Western blot, and RT-PCR; TPH activity was estimated by quantification of 5-hydroxytryptophan (5-HTP) and, indirectly, through measurement of 5-HT and 5-hydroxindolacetic acid (5-HIAA) levels and turnover (5-HIAA/5-HT ratio) by HPLC. TPH expression and activity in the dorsal raphe nucleus (DRN) were also determined for comparison. TPH1 and TPH2 immunostaining was observed in the adrenal medulla, and measurable levels of TPH1 and TPH2 protein and mRNA were detected in rat adrenal glands from CTRL animals. CRS exposure noticeably increased TPH2- but not THP1-immunostaining in the medulla and the outer adrenocortical areas of left (LAG) but not of right adrenal glands (RAG). In addition, CRS exposure increased TPH2 protein and mRNA levels in LAG; however, both measures decreased in DRN. Finally, CRS treatment produced an increase and a decrease of TPH activity and 5-HT turnover in LAG and DRN, respectively. Results indicate that TPH is indeed expressed in rat adrenal glands. Exposure to CRS upregulates TPH2 in LAG, while inducing downregulation of it in the DRN. Then, the increased levels of 5-HT in LAG from CRS-exposed animals likely results from TPH2-mediated synthesis.
Collapse
Affiliation(s)
- Neeshu Saroj
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Shiv Shanker
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Eduardo Serrano-Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Gabriel Manjarrez-Gutiérrez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - José-Antonio Mondragón
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología del IPN, Av. Acueducto, La Laguna Ticomán, CP 07340, Mexico
| | - Saidel Moreno-Martínez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México
| | - Rosa A Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - Pedro López-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón s/n, Casco de Sto. Tomás, Mexico
| | - José A Terrón
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, La Laguna Ticomán, CP 07360, México.
| |
Collapse
|
2
|
Sahmi F, Sahmi M, Gévry N, Sahadevan P, Allen BG, Price CA. A putative protein-RNA complex regulates posttranscriptional processing of cytochrome P450 aromatase (CYP19A1) in bovine granulosa cells. Mol Reprod Dev 2019; 86:1901-1908. [PMID: 31713287 DOI: 10.1002/mrd.23289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Follicle growth and granulosa cell health are dependent on the secretion of estradiol from granulosa cells. Estradiol is synthesized from androgen precursor by cytochrome P450 aromatase (CYP19A1), and in cattle CYP19A1 messenger RNA has a short half-life but a long (3.5 kb) 3'-untranslated region (3'UTR), suggesting that posttranscriptional regulation may be important for control of enzyme activity. We tested this hypothesis by inserting the CYP19A1 3'UTR and fragments thereof into a reporter vector between the end of the luciferase coding region and the polyadenylation signal. The full-length aromatase 3'UTR suppressed luciferase activity to 10% of control levels, and smaller fragments showed that this inhibitory activity lies between +926 and +1134 of the 3'UTR. Protein-RNA cross-linking experiments revealed that these 3'UTR fragments formed an RNA-protein complex of approximately 70 kDa that was present in granulosa cells but not in corpus luteum, lung, liver, kidney, pancreas, or bladder extracts. The RNA-binding activity was specific to the 3'UTR, as shown by competition experiments with unlabeled RNA, and was present only in 3'UTR constructs that inhibited luciferase activity. These data suggest that posttranscriptional regulation is an important component of the control of CYP19A1 expression and involves protein binding to a specific sequence in the 3'UTR.
Collapse
Affiliation(s)
- Fatiha Sahmi
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.,Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Malha Sahmi
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.,Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada
| | - Nicolas Gévry
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pramod Sahadevan
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Bruce G Allen
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Christopher A Price
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
3
|
Zhang J, Koussih L, Shan L, Halayko AJ, Tliba O, Gounni AS. Glucocorticoids regulate pentraxin-3 expression in human airway smooth muscle cells. PLoS One 2019; 14:e0220772. [PMID: 31437159 PMCID: PMC6706008 DOI: 10.1371/journal.pone.0220772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Pentraxin-3 (PTX3) is a multifunctional protein involved in both innate and adaptive immunity. Glucocorticoid (GC) is the first-line therapy to mitigate airway inflammation in asthma. Previous pieces of evidence showed that GC has divergent effects on PTX3 production in various cell types. The molecular mechanisms controlling PTX3 expression in HASMC are, however, not yet characterized. In this study, we demonstrate that the synthetic GC, dexamethasone (DEX) increases the expression of PTX3 both at the protein and mRNA levels. We also found that such an effect of DEX was dependent on de novo protein synthesis and the GC receptor (GR). While DEX increases PTX3 mRNA stability, it did not affect its promoter activity. Interestingly, HASMC pre-treated with p42/p44 ERK inhibitor, but not with p38 or JNK-MAPK inhibitors, significantly interfered with DEX-induced PTX3 secretion. Taken together, our data suggest that GC regulates PTX3 expression in HASMC through transcriptional and post-transcriptional mechanisms in a GR and ERK-dependent manner.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Experimental Sciences, University of Saint Boniface, Winnipeg, Manitoba, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Pikman Y, Alexe G, Roti G, Conway AS, Furman A, Lee ES, Place AE, Kim S, Saran C, Modiste R, Weinstock DM, Harris M, Kung AL, Silverman LB, Stegmaier K. Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia. Clin Cancer Res 2016; 23:1012-1024. [PMID: 28151717 DOI: 10.1158/1078-0432.ccr-15-2869] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
Purpose: Although significant progress has been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), many patients will require additional therapy for relapsed/refractory disease. Cyclin D3 (CCND3) and CDK6 are highly expressed in T-ALL and have been effectively targeted in mutant NOTCH1-driven mouse models of this disease with a CDK4/6 small-molecule inhibitor. Combination therapy, however, will be needed for the successful treatment of human disease.Experimental Design: We performed preclinical drug testing using a panel of T-ALL cell lines first with LEE011, a CDK4/6 inhibitor, and next with the combination of LEE011 with a panel of drugs relevant to T-ALL treatment. We then tested the combination of LEE011 with dexamethasone or everolimus in three orthotopic mouse models and measured on-target drug activity.Results: We first determined that both NOTCH1-mutant and wild-type T-ALL are highly sensitive to pharmacologic inhibition of CDK4/6 when wild-type RB is expressed. Next, we determined that CDK4/6 inhibitors are antagonistic when used either concurrently or in sequence with many of the drugs used to treat relapsed T-ALL (methotrexate, mercaptopurine, asparaginase, and doxorubicin) but are synergistic with glucocorticoids, an mTOR inhibitor, and gamma secretase inhibitor. The combinations of LEE011 with the glucocorticoid dexamethasone or the mTOR inhibitor everolimus were tested in vivo and prolonged survival in three orthotopic mouse models of T-ALL. On-target activity was measured in peripheral blood and tissue of treated mice.Conclusions: We conclude that LEE011 is active in T-ALL and that combination therapy with corticosteroids and/or mTOR inhibitors warrants further investigation. Clin Cancer Res; 23(4); 1012-24. ©2016 AACRSee related commentary by Carroll et al., p. 873.
Collapse
Affiliation(s)
- Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Bioinformatics Graduate Program, Boston University, Boston, Massachusetts
| | - Giovanni Roti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Andrew Furman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Emily S Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Andrew E Place
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Sunkyu Kim
- Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
| | - Chitra Saran
- Novartis Institutes for BioMedical Research, Inc., Cambridge, Massachusetts
| | - Rebecca Modiste
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marian Harris
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Andrew L Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| |
Collapse
|
5
|
Kaufman OH, Marlow FL. Methods to study maternal regulation of germ cell specification in zebrafish. Methods Cell Biol 2016; 134:1-32. [PMID: 27312489 DOI: 10.1016/bs.mcb.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4-5h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology.
Collapse
Affiliation(s)
- O H Kaufman
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - F L Marlow
- Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Davis TE, Kis-Toth K, Szanto A, Tsokos GC. Glucocorticoids suppress T cell function by up-regulating microRNA-98. ACTA ACUST UNITED AC 2013; 65:1882-90. [PMID: 23575983 DOI: 10.1002/art.37966] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 04/02/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To identify microRNAs (miRNAs) in human T cells that can explain known antiinflammatory properties of steroids. METHODS Activated human CD4+ T cells from healthy donors were exposed to 1 μM methylprednisolone (MP) in vitro and then subjected to miRNA and messenger RNA microarray analyses. Changes in expression profiles were recorded. Using quantitative polymerase chain reaction (qPCR), flow cytometry, and enzyme-linked immunosorbent assay (ELISA), we confirmed the suppression of predicted targets, and through miRNA transfection experiments, we could suggest mechanistic links. RESULTS We identified numerous steroid-responsive genes and miRNAs-many known and some novel-including multiple previously unknown proinflammatory genes suppressed by MP. Further studies using qPCR, flow cytometry, and ELISA demonstrated that methylprednisolone increased the expression of miRNA-98 (miR-98) and suppressed the levels of predicted targets, including interleukin-13 and 3 tumor necrosis factor receptors (TNFRs): Fas, FasL, and TNFR superfamily member 1B. Forced expression of miR-98 in T cells resulted in suppression of the same targets. CONCLUSION The findings of this study demonstrate a link between miR-98 expression and the effects of MP and provide evidence suggesting that MP acts through miR-98 to inhibit specific proinflammatory targets. Identification of this antiinflammatory mechanism of glucocorticoids is important, since it may pave the way toward the elusive goal of dissociating adverse effects from therapeutic effects.
Collapse
Affiliation(s)
- Trevor E Davis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
7
|
Carey KT, Tan KH, Ng J, Liddicoat DR, Godfrey DI, Cole TJ. Nfil3 is a glucocorticoid-regulated gene required for glucocorticoid-induced apoptosis in male murine T cells. Endocrinology 2013; 154:1540-52. [PMID: 23425966 DOI: 10.1210/en.2012-1820] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucocorticoids (GCs) have essential roles in the regulation of development, integrated metabolism, and immune and neurological responses, and act primarily via the glucocorticoid receptor (GR). In most cells, GC treatment results in down-regulation of GR mRNA and protein levels via negative feedback mechanisms. However, in GC-treated thymocytes, GR protein levels are maintained at a high level, increasing sensitivity of thymocytes to GCs, resulting in apoptosis termed glucocorticoid-induced cell death (GICD). CD4(+)CD8(+) double-positive thymocytes and thymic natural killer T cells in particular are highly sensitive to GICD. Although GICD is exploited via the use of synthetic GC analogues in the treatment of hematopoietic malignancies, the intracellular molecular pathway of GICD is not well understood. To explore GICD in thymocytes, the authors performed whole genome expression microarray analysis in mouse GR exon 2 null vs wild-type thymus RNA 3 hours after dexamethasone treatment. Identified and validated direct GR targets included P21 and Bim, in addition to an important transcriptional regulator Nfil3, which previously has been associated with GICD and is essential for natural killer cell development in vivo. Immunostaining of NFIL3 in whole thymus localized NFIL3 primarily to the medullary region, and double labeling colocalized NFIL3 to apoptotic cells. In silico analysis revealed a putative GC response element 5 kb upstream of the Nfil3 promoter that is strongly conserved in the rat genome and was confirmed to bind GR by chromatin immunoprecipitation. The knockdown of Nfil3 mRNA levels to 20% of normal using specific small interfering RNAs abrogated GICD, indicating that NFIL3 is required for normal GICD in CTLL-2 T cells.
Collapse
Affiliation(s)
- Kirstyn T Carey
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Weng HY, Huang HL, Zhao PP, Zhou H, Qu LH. Translational repression of cyclin D3 by a stable G-quadruplex in its 5' UTR: implications for cell cycle regulation. RNA Biol 2012; 9:1099-109. [PMID: 22858673 DOI: 10.4161/rna.21210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cyclin D3 (CCND3) is one of the three D-type cyclins that regulate the G1/S phase transition of the cell cycle. Expression of CCND3 is observed in nearly all proliferating cells; however, the presence of high levels of CCND3 has been linked to a poor prognosis for several types of cancer. Therefore, further mechanistic studies on the regulation of CCND3 expression are urgently needed to provide therapeutic implications. In this study, we report that a conserved RNA G-quadruplex-forming sequence (hereafter CRQ), located in the 5' UTR of mammalian CCND3 mRNA, is able to fold into an extremely stable, intramolecular, parallel G-quadruplex in vitro. The CRQ G-quadruplex dramatically reduces the activity of a reporter gene in human cell lines, but it has little impact on its mRNA level, indicating a translational repression. Moreover, the CRQ sequence in its natural context inhibits translation of CCND3. Disruption of the G-quadruplex structure by G/U-mutation or deletion results in an elevated expression of CCND3 and an increased phosphorylation of Rb, a downstream target of CCND3, which promotes progression of cells through the G1 phase. Our results add to the growing understanding of the regulation of CCND3 expression and provide a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Heng-You Weng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
9
|
Chen GL, Miller GM. Advances in tryptophan hydroxylase-2 gene expression regulation: new insights into serotonin-stress interaction and clinical implications. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:152-71. [PMID: 22241550 PMCID: PMC3587664 DOI: 10.1002/ajmg.b.32023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) modulates the stress response by interacting with the hormonal hypothalamic-pituitary-adrenal (HPA) axis and neuronal sympathetic nervous system (SNS). Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in 5-HT biosynthesis, and the recent identification of a second, neuron-specific TPH isoform (TPH2) opened up a new area of research. While TPH2 genetic variance has been linked to numerous behavioral traits and disorders, findings on TPH2 gene expression have not only reinforced, but also provided new insights into, the long-recognized but not yet fully understood 5-HT-stress interaction. In this review, we summarize advances in TPH2 expression regulation and its relevance to the stress response and clinical implications. Particularly, based on findings on rhesus monkey TPH2 genetics and other relevant literature, we propose that: (i) upon activation of adrenal cortisol secretion, the cortisol surge induces TPH2 expression and de novo 5-HT synthesis; (ii) the induced 5-HT in turn inhibits cortisol secretion by modulating the adrenal sensitivity to ACTH via the suprachiasmatic nuclei (SCN)-SNS-adrenal system, such that it contributes to the feedback inhibition of cortisol production; (iii) basal TPH2 expression or 5-HT synthesis, as well as early-life experience, influence basal cortisol primarily via the hormonal HPA axis; and (iv) 5'- and 3'-regulatory polymorphisms of TPH2 may differentially influence the stress response, presumably due to their differential roles in gene expression regulation. Our increasing knowledge of TPH2 expression regulation not only helps us better understand the 5-HT-stress interaction and the pathophysiology of neuropsychiatric disorders, but also provides new strategies for the treatment of stress-associated diseases.
Collapse
Affiliation(s)
- Guo-Lin Chen
- Harvard Medical School, New England Primate Research Center, Division of Neuroscience, Southborough, MA 01772-9102, USA.
| | | |
Collapse
|
10
|
Wei-Chen Chen D, Lynch JT, Demonacos C, Krstic-Demonacos M, Schwartz JM. Quantitative analysis and modeling of glucocorticoid-controlled gene expression. Pharmacogenomics 2010; 11:1545-60. [DOI: 10.2217/pgs.10.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aims: Glucocorticoid hormones are used extensively in the clinic for the treatment of acute lymphoblastic leukemia. Despite intensive research, the molecular mechanisms of glucocorticoid receptor (GR)-mediated transcriptional events that lead to the induction of apoptosis of leukemia cells, as well as the causes for the development of resistance in leukemia patients, are not yet understood. It is thought that the B-cell lymphoma 2 family members that control apoptosis, including some of the GR target genes, may play an important role in deciding cell fate. In this report we have employed pathway modeling due to the recent discovery of its usefulness as a tool for improving understanding of the mechanisms of cellular signaling, and in discovering new therapeutic targets for the treatment of various diseases. Materials & methods: Detailed kinetics of GR autoregulation, as well as the kinetics of expression of its target genes and proteins Bcl-xL, Bim, Bmf and GILZ in glucocorticoid responsive and resistant leukemia cell lines were carried out. Subsequently in order to obtain further insight into the molecular mechanisms of GR signaling in this pathway a dynamic model of the induction of these genes and proteins by GR was constructed. Results: The simulations were in good agreement with the observed experimental data suggesting that Bim was induced between 6 and 10 h after the addition of the synthetic glucocorticoid dexamethasone, possibly through rapid glucocorticoid dependent modulation of an unknown factor. Simulations and experimental results also suggested that Bmf induction did not require novel protein synthesis, and is a potential direct GR target. Conclusion: This combination of experimental analysis and model development initiates a virtuous cycle enabling further data integration and model expansion, and constitutes a novel promising framework towards a global mechanistic understanding of GR function.
Collapse
Affiliation(s)
| | - James T Lynch
- School of Pharmacy & Pharmaceutical Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Constantinos Demonacos
- School of Pharmacy & Pharmaceutical Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
11
|
Hacker C, Valchanova R, Adams S, Munz B. ZFP36L1 is regulated by growth factors and cytokines in keratinocytes and influences their VEGF production. Growth Factors 2010; 28:178-90. [PMID: 20166898 DOI: 10.3109/08977190903578660] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Keratinocyte-derived growth factors and cytokines play an important role in epidermal homeostasis and particularly in cutaneous wound repair. Thus, we analyzed a potential role of the ZFP36/tristetraprolin family of zinc finger proteins, which are targets of these factors, but also regulate their production, in keratinocytes. We show that expression of ZFP36, ZFP36L1, and ZFP36L2 is induced by a broad variety of growth factors and cytokines, and by scratch wounding. Since ZFP36L1 is a modulator of vascular endothelium growth factor (VEGF) mRNA stability, we subsequently used siRNA technology to inhibit ZFP36L1 gene expression. Notably, this treatment resulted in prolonged maintenance of elevated VEGF levels in HaCaT keratinocytes upon epidermal growth factor stimulation of these cells. Taken together, our results suggest an important role of ZFP36L1 in wound healing.
Collapse
Affiliation(s)
- Christine Hacker
- Institute of Physiology, Charité - University Medicine Berlin, Arnimallee 22, D-14195, Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Huang HW, Bi W, Jenkins GN, Alcorn JL. Glucocorticoid regulation of human pulmonary surfactant protein-B mRNA stability involves the 3'-untranslated region. Am J Respir Cell Mol Biol 2007; 38:473-82. [PMID: 18006875 DOI: 10.1165/rcmb.2007-0303oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Expression of pulmonary surfactant, a complex mixture of lipids and proteins that acts to reduce alveolar surface tension, is developmentally regulated and restricted to lung alveolar type II cells. The hydrophobic protein surfactant protein-B (SP-B) is essential in surfactant function, and insufficient levels of SP-B result in severe respiratory dysfunction. Glucocorticoids accelerate fetal lung maturity and surfactant synthesis both experimentally and clinically. Glucocorticoids act transcriptionally and post-transcriptionally to increase steady-state levels of human SP-B mRNA; however, the mechanism(s) by which glucocorticoids act post-transcriptionally is unknown. We hypothesized that glucocorticoids act post-transcriptionally to increase SP-B mRNA stability via sequence-specific mRNA-protein interactions. We found that glucocorticoids increase SP-B mRNA stability in isolated human type II cells and in nonpulmonary cells, but do not alter mouse SP-B mRNA stability in a mouse type II cell line. Deletion analysis of an artificially-expressed SP-B mRNA indicates that the SP-B mRNA 3'-untranslated region (UTR) is necessary for stabilization, and the region involved can be restricted to a 126-nucleotide-long region near the SP-B coding sequence. RNA electrophoretic mobility shift assays indicate that cytosolic proteins bind to this region in the absence or presence of glucocorticoids. The formation of mRNA:protein complexes is not seen in other regions of the SP-B mRNA 3'-UTR. These results indicate that a specific 126-nucleotide region of human SP-B 3'-UTR is necessary for increased SP-B mRNA stability by glucocorticoids by a mechanism that is not lung cell specific and may involve mRNA-protein interactions.
Collapse
Affiliation(s)
- Helen W Huang
- Department of Pediatrics, University of Texas-Houston Medical School, 6431 Fannin, suite 3.222, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
13
|
Söderberg M, Raffalli-Mathieu F, Lang MA. Regulation of the murine inducible nitric oxide synthase gene by dexamethasone involves a heterogeneous nuclear ribonucleoprotein I (hnRNPI) dependent pathway. Mol Immunol 2007; 44:3204-10. [DOI: 10.1016/j.molimm.2007.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/20/2007] [Indexed: 10/23/2022]
|
14
|
Dhawan L, Liu B, Blaxall BC, Taubman MB. A novel role for the glucocorticoid receptor in the regulation of monocyte chemoattractant protein-1 mRNA stability. J Biol Chem 2007; 282:10146-52. [PMID: 17276989 DOI: 10.1074/jbc.m605925200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays an important role in attracting monocytes to sites of inflammation and is the dominant mediator of macrophage accumulation in atherosclerotic plaques. We have previously shown that glucocorticoids inhibit the secretion of MCP-1 in arterial smooth muscle cells (SMC) by markedly decreasing MCP-1 mRNA stability. We now report that the destabilization of MCP-1 mRNA is mediated by the glucocorticoid receptor (GR). The GR antagonist, RU486, blocked the effect of the glucocorticoid dexamethasone (Dex) on MCP-1 mRNA stability in SMC culture. Using a previously reported in vitro mRNA gel shift and stability assay, antibodies to the GR blocked the ability of cytoplasmic extracts from Dex-treated SMC to decay MCP-1 mRNA. Recombinant human GR (rhGR) bound in a concentration-dependent manner to in vitro transcribed MCP-1 mRNA, whereas other members of the steroid hormone receptor family did not. Binding of GR to MCP-1 mRNA was specific as it was not found to bind other mRNAs. Immunoprecipitation of GR in extracts from Dex-treated SMC followed by real-time reverse transcription-PCR demonstrated that endogenous GR was bound specifically to MCP-1 mRNA. The addition of exogenous rhGR blocked the ability of extracts from Dex-treated SMC to degrade MCP-1 mRNA, suggesting that exogenous rhGR can compete with an endogenous GR-containing degradative complex. These data suggest a novel role for the GR in binding to and facilitating mRNA degradation. These results provide novel insights into GR function and may provide a new approach to attenuate the inflammatory response mediated by MCP-1.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell-Free System/metabolism
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Dexamethasone/pharmacology
- Hormone Antagonists/pharmacology
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Male
- Mifepristone/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA Stability/drug effects
- RNA Stability/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Glucocorticoid/agonists
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
Collapse
Affiliation(s)
- Latika Dhawan
- Cardiovascular Research Institute, University of Rochester, Rochester, New York 14620, USA
| | | | | | | |
Collapse
|
15
|
Engedal N, Gjevik T, Blomhoff R, Blomhoff HK. All-trans retinoic acid stimulates IL-2-mediated proliferation of human T lymphocytes: early induction of cyclin D3. THE JOURNAL OF IMMUNOLOGY 2006; 177:2851-61. [PMID: 16920920 DOI: 10.4049/jimmunol.177.5.2851] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitamin A is established as an important immune regulator, but the mechanisms whereby vitamin A regulates T cell biology are poorly defined. In this study, we show that an active metabolite of vitamin A, all-trans retinoic acid (RA), potently stimulates T cell proliferation by modulating IL-2-mediated signaling downstream of IL-2R and independent of the induction of IL-2. Thus, at concentrations as low as 0.1 nM, RA enhanced the division of normal human T lymphocytes that were simultaneously stimulated with anti-CD3 mAbs and saturating concentrations of IL-2. At the optimal concentration of RA (50 nM), a 3-fold increase in T cell proliferation was observed. The induced proliferation was preceded by increased phosphorylation of the retinoblastoma protein and enhanced G1- to S-phase progression. Interestingly, the promitogenic effect of RA was found to be particularly directed toward increased expression of cyclin D3 at both the mRNA and protein level. Furthermore, the stimulatory effect of RA on cyclin D3 expression as well as on cell proliferation was completely abolished in the presence of the JAK inhibitor AG-490 or blocking IL-2R alpha mAbs, and RA also enhanced cyclin D3 expression and T cell proliferation in the presence of IL-2 alone. Finally, we showed that the proliferative effect of RA was mimicked by agonists of the retinoic acid receptor (RAR) and completely inhibited by a RAR-selective antagonist. In conclusion, our results indicate that RA, via RAR, stimulates IL-2-induced signaling in a JAK-dependent manner to enhance cyclin D3 expression and thereby promote T cell proliferation.
Collapse
Affiliation(s)
- Nikolai Engedal
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
16
|
Ayaori M, Sawada S, Yonemura A, Iwamoto N, Ogura M, Tanaka N, Nakaya K, Kusuhara M, Nakamura H, Ohsuzu F. Glucocorticoid receptor regulates ATP-binding cassette transporter-A1 expression and apolipoprotein-mediated cholesterol efflux from macrophages. Arterioscler Thromb Vasc Biol 2005; 26:163-8. [PMID: 16254209 DOI: 10.1161/01.atv.0000193513.29074.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The ATP-binding cassette transporter-A1 (ABCA1) regulates cholesterol efflux from cells and is involved in high-density lipoprotein metabolism and atherogenesis. The objective of this study was to investigate the effect of dexamethasone (Dex) and other glucocorticoid receptor (GR) ligands on apolipoprotein AI-mediated cholesterol efflux from macrophages and ABCA1 expression in them. METHODS AND RESULTS Dex, a GR agonist, decreased ABCA1 mRNA levels in a dose- and time-dependent fashion, and RU486, a GR antagonist, reversed the inhibitory effect of Dex. The effects of Dex and RU486 on ABCA1 protein levels and apolipoprotein AI-mediated cholesterol efflux from the macrophages were consistent with these changes in mRNA levels. Transfected RAW264.7, together with a human ABCA1 promoter-luciferase construct, inhibited transcriptional activity by Dex and overexpression of human GR. Transrepression by GR was not mediated by liver X receptor (LXR), because there were no differences in the effects of the GR ligands on promoter activity between a reporter construct with mutations at the LXR binding site and one without the mutations, and no changes were brought about in ABCG1 and ABCG4 expression by GR ligands. CONCLUSIONS Our results showed that GR ligands affected ABCA1 expression and cholesterol efflux from macrophages, which are regulated by GR through a LXR-independent mechanism.
Collapse
Affiliation(s)
- Makoto Ayaori
- First Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hughes TA, Brady HJM. E2F1 up-regulates the expression of the tumour suppressor axin2 both by activation of transcription and by mRNA stabilisation. Biochem Biophys Res Commun 2005; 329:1267-74. [PMID: 15766563 DOI: 10.1016/j.bbrc.2005.02.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 12/31/2022]
Abstract
Axin2 is a negative regulator of Wnt/beta-catenin signalling with roles in early development and tumour suppression. Axin2 is induced by E2F1 and therefore acts as a point of cross-talk between the pRb/E2F and Wnt/beta-catenin pathways: two of the most frequently deregulated pathways in human cancers. In this study, we show that E2F1 up-regulates axin2 by two independent mechanisms. The human axin2 gene allows transcription of messages with three different 5' untranslated regions and in the first mechanism E2F1 directly activates the transcription of only one of these species by acting at canonical E2F binding sites. Second, E2F1 induces stabilisation of axin2 mRNAs. We discuss this regulation with respect to other known E2F targets.
Collapse
Affiliation(s)
- Thomas A Hughes
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, UK.
| | | |
Collapse
|
18
|
Ing NH. Steroid hormones regulate gene expression posttranscriptionally by altering the stabilities of messenger RNAs. Biol Reprod 2005; 72:1290-6. [PMID: 15728791 DOI: 10.1095/biolreprod.105.040014] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hormones exert powerful effects on reproductive physiology by regulating gene expression. Recent discoveries in hormone action emphasize that regulation of gene expression is not restricted to their alterations of the rate of gene transcription. On the contrary, hormonal effects on the stability of a specific mRNA can profoundly alter its steady-state concentration. The mRNAs encoding hormone receptors are commonly regulated by their own hormones to create autoregulatory feedback loops. Negative and positive autoregulatory feedback loops serve to limit or augment hormonal responses, respectively. After introducing the topics of mRNA degradation and regulated stability, this review focuses on steroid hormone effects on mRNA stabilities. Autoregulation of the mRNAs encoding estrogen, progesterone, androgen, and glucocorticoid receptors by the steroid hormones in reproductive tissues is discussed. In addition, steroid hormone effects on the stabilities of many other mRNAs that are important to reproductive biology are reviewed. These include mRNAs that encode gonadotropin hormones, integrins, growth factors, and inflammatory response proteins. Through these posttranscriptional effects, steroid hormones impact the expression of a large population of genes. Studies of the molecular mechanisms of hormonally regulated mRNA stabilities continue to identify critical mRNA sequence elements and their interactions with proteins. Increased understanding of how hormones affect mRNA stability may yield novel approaches to the therapeutic control of hormone effects, including those essential to reproductive physiology in animals.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA.
| |
Collapse
|
19
|
Regulation of vasopressin gene expression by cAMP and glucocorticoids in parvocellular neurons of the paraventricular nucleus in rat hypothalamic organotypic cultures. J Neurosci 2003. [PMID: 14614081 DOI: 10.1523/jneurosci.23-32-10231.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Arginine vasopressin (AVP) in the parvocellular neurons of the paraventricular nucleus (PVN) is known to play an important role in the hypothalamo-pituitary-adrenal axis. In the present study, we examined how cAMP and glucocorticoids regulate AVP gene expression in the parvocellular neurons of the PVN in rat hypothalamic organotypic cultures with in situ hybridization. AVP heteronuclear (hn) RNA, an indicator for gene transcription, was induced in the PVN with incubation of forskolin as reported previously, and AVP mRNA was increased by forskolin in the presence of the gene transcription inhibitor 5,6-dichloro-1-D-ribofuranosylbenzimidazole (DRB). These data indicate that cAMP could increase not only gene transcription but also mRNA stability. Dexamethasone treatment, in contrast, significantly decreased AVP mRNA expression levels in the PVN, but this inhibitory action was abolished in the presence of DRB or the sodium channel blocker tetrodotoxin (TTX). However, when the hypothalamic slices were treated with forskolin, dexamethasone decreased AVP mRNA expression even in the presence of DRB and/or TTX. Furthermore, AVP hnRNA expression induced by forskolin was attenuated by dexamethasone treatment in the presence of TTX. These data indicate that dexamethasone could act on AVP cells independently of action potentials to decrease mRNA stability and to suppress AVP gene transcription during stimulation by cAMP. Thus, it was demonstrated that: (1) cAMP upregulates AVP gene transcriptionally and post-transcriptionally, (2) the mode of action of glucocorticoids was dependent on whether the cells were stimulated by cAMP, and (3) the interactions between cAMP and glucocorticoids encompass both gene transcription and mRNA stability.
Collapse
|
20
|
Piatelli MJ, Tanguay D, Rothstein TL, Chiles TC. Cell cycle control mechanisms in B-1 and B-2 lymphoid subsets. Immunol Res 2003; 27:31-52. [PMID: 12637767 DOI: 10.1385/ir:27:1:31] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An effective humoral response requires that a given B lymphocyte population express a repertoire of receptors capable of recognizing a distinct array of antigens, while at the same time disregarding self-antigens. Mature B cells interacting with antigen via their B cell antigen receptors (BCRs) enter G(1) phase of the cell cycle and, depending on the strength of the signal, can commit to S phase entry. Input from co-receptors, which may function to either enhance or inhibit BCR signals, also influence the decision to proliferate. We review herein recent advances in the biochemistry of G(1)-cyclin holoenzymes that function to integrate BCR-coupled signaling pathways to the phosphorylation (and inactivation) of the retinoblastoma gene product (pRb) in splenic B lymphocytes (B-2 cells). We also highlight differences in the control of G(1)-to-S phase progression between B-2 cells and peritoneal CD5+ B cells (B-1 cells).
Collapse
|
21
|
De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24:488-522. [PMID: 12920152 DOI: 10.1210/er.2002-0006] [Citation(s) in RCA: 635] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory response is a highly regulated physiological process that is critically important for homeostasis. A precise physiological control of inflammation allows a timely reaction to invading pathogens or to other insults without causing overreaction liable to damage the host. The cellular signaling pathways identified as important regulators of inflammation are the signal transduction cascades mediated by the nuclear factor-kappaB and the activator protein-1, which can both be modulated by glucocorticoids. Their use in the clinic includes treatment of rheumatoid arthritis, asthma, allograft rejection, and allergic skin diseases. Although glucocorticoids have been widely used since the late 1940s, the molecular mechanisms responsible for their antiinflammatory activity are still under investigation. The various molecular pathways proposed so far are discussed in more detail.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Department of Molecular Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | |
Collapse
|
22
|
Glisovic T, Söderberg M, Christian K, Lang M, Raffalli-Mathieu F. Interplay between transcriptional and post-transcriptional regulation of Cyp2a5 expression. Biochem Pharmacol 2003; 65:1653-61. [PMID: 12754101 DOI: 10.1016/s0006-2952(03)00118-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cytochrome P450 (Cyp) 2a5 gene can be upregulated transcriptionally or by mRNA stabilization. The heterogeneous nuclear ribonucleoprotein (hnRNP) A1 interacting with the CYP2A5 mRNA has been shown to be a key post-transcriptional regulator of the Cyp2a5 gene. The aim of this study was to investigate if the transcriptional and post-transcriptional steps of Cyp2a5 expression are linked. This was done by modifying the transcription rate with transcriptional inducers (phenobarbital and cyclic AMP) and inhibitors (actinomycin D and 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole) and analyzing the effects upon post-transcriptional events. We found that inhibition of transcription led to relocalization of hnRNP A1 from the nucleus to the cytoplasm, to its strongly increased binding to the cytoplasmic CYP2A5 mRNA and to CYP2A5 mRNA stabilization. In contrast, stimulated transcription resulted in increased binding of nuclear hnRNP A1 to the Cyp2a5 promoter, and overexpression of hnRNP A1 led to stimulated transcription of a Cyp2a5 promoter-driven luciferase recombinant. This strongly suggests that the transcriptional and post-transcriptional stages of Cyp2a5 expression are interrelated and that the nucleocytoplasmic shuttling hnRNP A1 may coordinate these different steps.
Collapse
Affiliation(s)
- Tina Glisovic
- Division of Pharmaceutical Biochemistry, Uppsala Biomedical Centre, Uppsala University, Box 578, SE-751 23, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Wang G, Guo X, Floros J. Human SP-A 3'-UTR variants mediate differential gene expression in basal levels and in response to dexamethasone. Am J Physiol Lung Cell Mol Physiol 2003; 284:L738-48. [PMID: 12676764 DOI: 10.1152/ajplung.00375.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human surfactant protein A (SP-A) is encoded by two genes (SP-A1, SP-A2), and each is identified with several alleles. SP-A is involved in normal lung function, innate immunity, inflammatory processes, and is regulated by glucocorticoids. We investigated the role of 3'-untranslated region (UTR) of 10 SP-A variants on gene expression using transient transfection of 3'-UTR constructs in the human lung adenocarcinoma cell line NCI-H441. We found: 1) both basal mRNA and protein levels of the reporter gene of SP-A 3'-UTR constructs are significantly (P < 0.01) reduced compared with controls (vector pGL3 and surfactant protein B pGL3) and that differences exist among alleles; and 2) after dexamethasone (Dex) treatment (100 nM for 16 h), mRNA was reduced (31-51%). Seven alleles showed a significant decrease (P < 0.05) in mRNA, and three did not. Reporter activity was also decreased, from 17% (1A(1)) to 38% (1A), with six alleles showing a significant decrease. The data indicate that the 3'-UTR of SP-As play a differential role in SP-A basal expression and in response to Dex. Therefore, a careful consideration of individual use of steroid treatment may be considered.
Collapse
Affiliation(s)
- Guirong Wang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
24
|
Rossetti G, Collinge M, Bender JR, Molteni R, Pardi R. Integrin-dependent regulation of gene expression in leukocytes. Immunol Rev 2002; 186:189-207. [PMID: 12234372 DOI: 10.1034/j.1600-065x.2002.18616.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to their role in strengthening intercellular adhesion, leukocyte integrins transduce signals which affect genetic programs, consequently defining cell phenotype and function. These signals can be independently sufficient, or can cooperate with other environmental stimuli to affect gene expression regulation. In the past several years, there has been an emergence of mechanistic data which contribute to our understanding of these critical integrin roles. In this review, we describe anchorage-dependent T lymphocyte proliferation and, in particular, how leukocyte integrin engagement overcomes the G1 to S cell cycle restriction point in antigen-activated T cells. The related role of alphaLbeta2 integrin (LFA-1) as a T cell co-stimulatory molecule is discussed. This includes defining mechanisms whereby LFA-1 engagement enhances transcriptional activation of numerous genes by regulating its association with transcription modulators such as JAB-1, and through interaction with other gene-activating signaling complexes such as JAK-STATs. Evidence is presented to support that leukocyte integrin engagement provides potent signals which stabilize otherwise labile activation mRNA transcripts, including those encoding cytokine and extracellular matrix degrading proteins. These integrin-dependent mechanisms, all described recently, play important roles in T cell differentiation and proliferation, immune surveillance and inflammatory responses.
Collapse
Affiliation(s)
- Grazisa Rossetti
- Unit of Leukocyte Biology, Department of Molecular Biology and Functional Genomics, Vita-Salute San Raffaele University School of Medicine, Milan, Italy
| | | | | | | | | |
Collapse
|
25
|
Schaaf MJM, Cidlowski JA. AUUUA motifs in the 3'UTR of human glucocorticoid receptor alpha and beta mRNA destabilize mRNA and decrease receptor protein expression. Steroids 2002; 67:627-36. [PMID: 11996936 DOI: 10.1016/s0039-128x(02)00015-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An association between a gene polymorphism of the human glucocorticoid receptor (hGR) gene and rheumatoid arthritis has recently been suggested. This polymorphism contains an A to G mutation in the 3'UTR of exon 9beta, which encodes the 3'UTR of the mRNA of the hGRbeta isoform. The hGRbeta isoform can act as a dominant negative inhibitor of hGRalpha, and therefore may contribute to glucocorticoid resistance. The A to G mutation is located in an AUUUA motif, which is known to destabilize mRNA. In the present study, the importance of the mutation in this AUUUA motif was further characterized and mutations in other AUUUA motifs in the 3'UTR of hGRbeta and hGRalpha mRNA were studied. hGRbeta and hGRalpha expression vectors, carrying mutations in one AUUUA motif or all AUUUA motifs were transiently transfected into COS-1 cells. Each transfected vector was analyzed for the mRNA expression level, the mRNA turnover rate and the protein expression level. The naturally occurring mutation in the 3'UTR of hGRbeta mRNA increased mRNA stability and protein expression. Mutation of two other AUUUA motifs in the 3'UTR of hGRbeta, or mutation of all four AUUUA motifs resulted in a similar effect. Mutation of the most 5' AUUUA motif did not alter hGRbeta mRNA expression or mRNA stability. Mutation of all 10 AUUUA motifs in the 3'UTR of hGRalpha mRNA increased hGRalpha mRNA expression and mRNA stability as well as expression of the receptor protein level. Thus, the naturally occurring mutation in an AUUUA motif in the 3'UTR of hGRbeta mRNA results not only in increased mRNA stability, but also in increased receptor protein expression, which may contribute to glucocorticoid resistance. A similar role is suggested for two other AUUUA motifs in the 3'UTR of hGRbeta mRNA and for the 10 AUUUA motifs that are present in the 3'UTR of hGRalpha.
Collapse
Affiliation(s)
- M J M Schaaf
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
26
|
Gille J, Reisinger K, Westphal-Varghese B, Kaufmann R. Decreased mRNA stability as a mechanism of glucocorticoid-mediated inhibition of vascular endothelial growth factor gene expression by cultured keratinocytes. J Invest Dermatol 2001; 117:1581-7. [PMID: 11886526 DOI: 10.1046/j.0022-202x.2001.01573.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidermal keratinocyte-derived overexpression of vascular endothelial growth factor has been functionally linked to increased density of tortuous and hyperpermeable dermal microvessels, representing a characteristic component of cutaneous inflammation. We hypothesized that potent anti-inflammatory properties of synthetic glucocorticoids are attributed in part to their interference with the regulated vascular endothelial growth factor expression by keratinocytes. As vascular endothelial growth factor is markedly upregulated by autocrine transforming growth factor alpha and paracrine hepatocyte growth factor/scatter factor expression, the effect of glucocorticoids on growth-factor-induced vascular endothelial growth factor production by primary and immortalized keratinocytes was examined. Glucocorticoids were shown to suppress vascular endothelial growth factor protein and mRNA expression in a concentration- and time-dependent fashion. In transcriptional activation studies, however, common 5'-regulatory regions of the vascular endothelial growth factor gene failed to confer inhibitory glucocorticoid effects. Instead, glucocorticoids were shown to increase vascular endothelial growth factor mRNA turnover, indicating that post-transcriptional modes of glucocorticoid action are employed to negatively regulate induced vascular endothelial growth factor expression. Together, these studies identify vascular endothelial growth factor upregulation by epidermal keratinocytes as a putative target of glucocorticoid action in cutaneous inflammation. Our data provide strong evidence that mRNA destabilization may represent a mechanism by which glucocorticoids inhibit growth-factor-regulated vascular endothelial growth factor gene expression by keratinocytes.
Collapse
Affiliation(s)
- J Gille
- Zentrum der Dermatologie, Klinikum der J. W. Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
27
|
Zhao F, Vilardi A, Neely RJ, Choi JK. Promotion of cell cycle progression by basic helix-loop-helix E2A. Mol Cell Biol 2001; 21:6346-57. [PMID: 11509675 PMCID: PMC87370 DOI: 10.1128/mcb.21.18.6346-6357.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Normal B-cell development requires the E2A gene and its encoded transcription factors E12 and E47. Current models predict that E2A promotes cell differentiation and inhibits G(1) cell cycle progression. The latter raises the conundrum of how B cells proliferate while expressing high levels of E2A protein. To study the relationship between E2A and cell proliferation, we established a tissue culture-based model in which the activity of E2A can be modulated in an inducible manner using E47R, an E47-estrogen fusion construct, and E47ERT, a dominant negative E47-estrogen fusion construct. The two constructs were subcloned into retroviral vectors and expressed in the human pre-B-cell line 697, the human myeloid progenitor cell line K562, and the murine fibroblastic cell line NIH 3T3. In both B cells and non-B cells, suppression of E2A activity by E47ERT inhibited G(1) progression and was associated with decreased expression of multiple cyclins including the G(1)-phase cyclin D2 and cyclin D3. Consistent with these findings, E2A null mice expressed decreased levels of cyclin D2 and cyclin D3 transcripts. In complementary experiments, ectopic expression of E47R promoted G(1) progression and was associated with increased levels of multiple cyclins, including cyclin D2 and cyclin D3. The induction of some cyclin transcripts occurred even in the absence of protein synthesis. We conclude that, in some cells, E2A can promote cell cycle progression, contrary to the present view that E2A inhibits G(1) progression.
Collapse
Affiliation(s)
- F Zhao
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The regulation of mRNA decay is a major control point in gene expression. The stability of a particular mRNA is controlled by specific interactions between its structural elements and RNA-binding proteins that can be general or mRNA-specific. Regulated mRNA stability is achieved through fluctuations in half-lives in response to developmental or environmental stimuli like nutrient levels, cytokines, hormones and temperature shifts as well as environmental stresses like hypoxia, hypocalcemia, viral infection, and tissue injury. Furthermore, in specific disorders like some forms of neoplasia, thalassemia and Alzheimer's disease, deregulated mRNA stability can lead to the aberrant accumulation of mRNAs and the proteins they encode. This review presents a discussion of some recently identified examples of regulated and deregulated mRNA stability in order to illustrate the diversity of genes regulated by alterations in the degradation rates of their mRNAs.
Collapse
Affiliation(s)
- J Guhaniyogi
- Department of Molecular Genetics and Microbiology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, 08854, Piscataway, NJ, USA
| | | |
Collapse
|
29
|
Lasa M, Brook M, Saklatvala J, Clark AR. Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol 2001; 21:771-80. [PMID: 11154265 PMCID: PMC86669 DOI: 10.1128/mcb.21.3.771-780.2001] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stability of cyclooxygenase 2 (Cox-2) mRNA is regulated positively by proinflammatory stimuli acting through mitogen-activated protein kinase (MAPK) p38 and negatively by anti-inflammatory glucocorticoids such as dexamethasone. A tetracycline-regulated reporter system was used to investigate mechanisms of regulation of Cox-2 mRNA stability. Dexamethasone was found to destabilize beta-globin-Cox-2 reporter mRNAs by inhibiting p38. This inhibition occurred at the level of p38 itself: stabilization of reporter mRNA by a kinase upstream of p38 was blocked by dexamethasone, while stabilization by a kinase downstream of p38 was insensitive to dexamethasone. Inhibition of p38 activity by dexamethasone was observed in a variety of cell types treated with different activating stimuli. Furthermore, inhibition of p38 was antagonized by the anti-glucocorticoid RU486 and was delayed and actinomycin D sensitive, suggesting that ongoing glucocorticoid receptor-dependent transcription is required.
Collapse
Affiliation(s)
- M Lasa
- Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, Hammersmith, London W6 8LH, United Kingdom
| | | | | | | |
Collapse
|