1
|
Groth B, Lee YC, Huang CC, McDaniel M, Huang K, Lee LH, Lin SJ. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD + Metabolism with Phosphate Sensing in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24098047. [PMID: 37175754 PMCID: PMC10179157 DOI: 10.3390/ijms24098047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical cofactor essential for various cellular processes. Abnormalities in NAD+ metabolism have also been associated with a number of metabolic disorders. The regulation and interconnection of NAD+ metabolic pathways are not yet completely understood. By employing an NAD+ intermediate-specific genetic system established in the model organism S. cerevisiae, we show that histone deacetylases (HDACs) Hst1 and Rpd3 link the regulation of the de novo NAD+ metabolism-mediating BNA genes with certain aspects of the phosphate (Pi)-sensing PHO pathway. Our genetic and gene expression studies suggest that the Bas1-Pho2 and Pho2-Pho4 transcription activator complexes play a role in this co-regulation. Our results suggest a model in which competition for Pho2 usage between the BNA-activating Bas1-Pho2 complex and the PHO-activating Pho2-Pho4 complex helps balance de novo activity with PHO activity in response to NAD+ or phosphate depletion. Interestingly, both the Bas1-Pho2 and Pho2-Pho4 complexes appear to also regulate the expression of the salvage-mediating PNC1 gene negatively. These results suggest a mechanism for the inverse regulation between the NAD+ salvage pathways and the de novo pathway observed in our genetic models. Our findings help provide a molecular basis for the complex interplay of two different aspects of cellular metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yi-Ching Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Matilda McDaniel
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Katie Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Lan-Hsuan Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Nucleosome Remodeling at the Yeast PHO8 and PHO84 Promoters without the Putatively Essential SWI/SNF Remodeler. Int J Mol Sci 2023; 24:ijms24054949. [PMID: 36902382 PMCID: PMC10003099 DOI: 10.3390/ijms24054949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
Chromatin remodeling by ATP-dependent remodeling enzymes is crucial for all genomic processes, like transcription or replication. Eukaryotes harbor many remodeler types, and it is unclear why a given chromatin transition requires more or less stringently one or several remodelers. As a classical example, removal of budding yeast PHO8 and PHO84 promoter nucleosomes upon physiological gene induction by phosphate starvation essentially requires the SWI/SNF remodeling complex. This dependency on SWI/SNF may indicate specificity in remodeler recruitment, in recognition of nucleosomes as remodeling substrate or in remodeling outcome. By in vivo chromatin analyses of wild type and mutant yeast under various PHO regulon induction conditions, we found that overexpression of the remodeler-recruiting transactivator Pho4 allowed removal of PHO8 promoter nucleosomes without SWI/SNF. For PHO84 promoter nucleosome removal in the absence of SWI/SNF, an intranucleosomal Pho4 site, which likely altered the remodeling outcome via factor binding competition, was required in addition to such overexpression. Therefore, an essential remodeler requirement under physiological conditions need not reflect substrate specificity, but may reflect specific recruitment and/or remodeling outcomes.
Collapse
|
3
|
Novačić A, Beauvais V, Oskomić M, Štrbac L, Dantec AL, Rahmouni AR, Stuparević I. Yeast RNA exosome activity is necessary for maintaining cell wall stability through proper protein glycosylation. Mol Biol Cell 2021; 32:363-375. [PMID: 33439673 PMCID: PMC8098854 DOI: 10.1091/mbc.e20-08-0544-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 12/01/2022] Open
Abstract
Nuclear RNA exosome is the main 3'→5' RNA degradation and processing complex in eukaryotic cells and its dysregulation therefore impacts gene expression and viability. In this work we show that RNA exosome activity is necessary for maintaining cell wall stability in yeast Saccharomyces cerevisiae. While the essential RNA exosome catalytic subunit Dis3 provides exoribonuclease catalytic activity, the second catalytic subunit Rrp6 has a noncatalytic role in this process. RNA exosome cofactors Rrp47 and Air1/2 are also involved. RNA exosome mutants undergo osmoremedial cell lysis at high temperature or at physiological temperature upon treatment with cell wall stressors. Finally, we show that a defect in protein glycosylation is a major reason for cell wall instability of RNA exosome mutants. Genes encoding enzymes that act in the early steps of the protein glycosylation pathway are down-regulated at high temperature in cells lacking Rrp6 protein or Dis3 exoribonuclease activity and overexpression of the essential enzyme Psa1, that catalyzes synthesis of the mannosylation precursor, suppresses temperature sensitivity and aberrant morphology of these cells. Furthermore, this defect is connected to a temperature-dependent increase in accumulation of noncoding RNAs transcribed from loci of relevant glycosylation-related genes.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Valentin Beauvais
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Marina Oskomić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Lucija Štrbac
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Aurélia Le Dantec
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
5
|
Abstract
Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field.
Collapse
|
6
|
Brown CR, Mao C, Falkovskaia E, Law JK, Boeger H. In vivo role for the chromatin-remodeling enzyme SWI/SNF in the removal of promoter nucleosomes by disassembly rather than sliding. J Biol Chem 2011; 286:40556-65. [PMID: 21979950 DOI: 10.1074/jbc.m111.289918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of in vivo chromatin remodeling at the PHO5 promoter of yeast led to the conclusion that remodeling removes nucleosomes from the promoter by disassembly rather than sliding away from the promoter. The catalytic activities required for nucleosome disassembly remain unknown. Transcriptional activation of the yeast PHO8 gene was found to depend on the chromatin-remodeling complex SWI/SNF, whereas activation of PHO5 was not. Here, we show that PHO8 gene circles formed in vivo lose nucleosomes upon PHO8 induction, indicative of nucleosome removal by disassembly. Our quantitative analysis of expression noise and chromatin-remodeling data indicates that the dynamics of continual nucleosome removal and reformation at the activated promoters of PHO5 and PHO8 are closely similar. In contrast to PHO5, however, activator-stimulated transcription of PHO8 appears to be limited mostly to the acceleration of promoter nucleosome disassembly with little or no acceleration of promoter transitions following nucleosome disassembly, accounting for the markedly lower expression level of PHO8.
Collapse
Affiliation(s)
- Christopher R Brown
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
7
|
Mao C, Brown CR, Falkovskaia E, Dong S, Hrabeta-Robinson E, Wenger L, Boeger H. Quantitative analysis of the transcription control mechanism. Mol Syst Biol 2011; 6:431. [PMID: 21081924 PMCID: PMC3010110 DOI: 10.1038/msb.2010.83] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/27/2010] [Indexed: 01/01/2023] Open
Abstract
Activated PHO5 promoter chromatin at steady state represents a statistical ensemble of distinct structures. The extent of promoter nucleosome loss depends on the strength of the transcriptional activator of PHO5, indicative of continuous disassembly and reassembly of nucleosomes at the induced promoter. PHO5 promoter nucleosome loss and expression are exponentially related, pointing at two or more steps of the expression process that are activator controlled. The intrinsic noise profile of PHO5 expression permits quantitative distinction between alternative regulatory architectures. The assumption of two activator-controlled steps, promoter nucleosome removal and assembly of the transcription machinery, is necessary and sufficient to account for the quantitative relationship between PHO5 expression, intrinsic noise, and promoter nucleosome loss.
The search for factors that interact with transcriptional activators has provided clues to the possible mechanisms of transcriptional regulation. However, the promiscuity of activator interactions has supported alternative regulatory hypotheses whose relative likelihood could not be assessed. A possible solution to the problem is suggested by recent theoretical work showing that the regulatory architecture of the gene expression process is reflected in the magnitude and frequency spectrum of steady-state fluctuations in gene expression (intrinsic noise). In this study, we analyzed promoter chromatin structure and the magnitude of intrinsic noise over a wide range of expression values for the PHO5 gene of yeast. We show that the relationship between gene expression and promoter nucleosome loss is exponential rather than linear, suggesting activator control of at least two steps of the expression process. Interpretation of our data with regard to a stochastic model of chromatin remodeling and gene expression allowed us to quantitatively distinguish between competing regulatory hypotheses, demonstrating the value of noise measurements for analysis of the gene regulatory mechanism. We show that the assumption of two activator-controlled steps, nucleosome removal and assembly of the transcription machinery, is necessary and sufficient to account for the quantitative relationship between our experimental observables. Gene transcription requires a sequence of promoter state transitions, including chromatin remodeling, assembly of the transcription machinery, and clearance of the promoter by RNA polymerase. The rate-limiting steps in this sequence are regulated by transcriptional activators that bind at specific promoter elements. As the transition kinetics of individual promoters cannot be observed, the identity of the activator-controlled steps has remained a matter of speculation. In this study, we investigated promoter chromatin structure, and the intrinsic noise of expression over a wide range of expression values for the PHO5 gene of yeast. Interpretation of our results with regard to a stochastic model of promoter chromatin remodeling and gene expression suggests that the regulatory architecture of the gene expression process is measurably reflected in its intrinsic noise profile. Our chromatin structure and noise analyses indicate that the activator of PHO5 transcription stimulates the rates of promoter nucleosome disassembly, and assembly of the transcription machinery after nucleosome removal, but no other rates of the expression process.
Collapse
Affiliation(s)
- Changhui Mao
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J 2011; 30:1277-88. [PMID: 21343911 DOI: 10.1038/emboj.2011.43] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/26/2011] [Indexed: 11/08/2022] Open
Abstract
Nucleosomes impede access to DNA. Therefore, nucleosome positioning is fundamental to genome regulation. Nevertheless, the molecular nucleosome positioning mechanisms are poorly understood. This is partly because in vitro reconstitution of in vivo-like nucleosome positions from purified components is mostly lacking, barring biochemical studies. Using a yeast extract in vitro reconstitution system that generates in vivo-like nucleosome patterns at S. cerevisiae loci, we find that the RSC chromatin remodelling enzyme is necessary for nucleosome positioning. This was previously suggested by genome-wide in vivo studies and is confirmed here in vivo for individual loci. Beyond the limitations of conditional mutants, we show biochemically that RSC functions directly, can be sufficient, but mostly relies on other factors to properly position nucleosomes. Strikingly, RSC could not be replaced by either the closely related SWI/SNF or the Isw2 remodelling enzyme. Thus, we pinpoint that nucleosome positioning specifically depends on the unique properties of the RSC complex.
Collapse
|
9
|
Stadlmayr G, Mecklenbräuker A, Rothmüller M, Maurer M, Sauer M, Mattanovich D, Gasser B. Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol 2010; 150:519-29. [DOI: 10.1016/j.jbiotec.2010.09.957] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 10/19/2022]
|
10
|
Ertel F, Dirac-Svejstrup AB, Hertel CB, Blaschke D, Svejstrup JQ, Korber P. In vitro reconstitution of PHO5 promoter chromatin remodeling points to a role for activator-nucleosome competition in vivo. Mol Cell Biol 2010; 30:4060-76. [PMID: 20566699 PMCID: PMC2916437 DOI: 10.1128/mcb.01399-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/01/2009] [Accepted: 06/09/2010] [Indexed: 11/20/2022] Open
Abstract
The yeast PHO5 promoter is a classical model for studying the role of chromatin in gene regulation. To enable biochemical dissection of the mechanism leading to PHO5 activation, we reconstituted the process in vitro. Positioned nucleosomes corresponding to the repressed PHO5 promoter state were assembled using a yeast extract-based in vitro system. Addition of the transactivator Pho4 yielded an extensive DNase I-hypersensitive site resembling induced PHO5 promoter chromatin. Importantly, this remodeling was energy dependent. In contrast, little or no chromatin remodeling was detected at the PHO8 or PHO84 promoter in this in vitro system. Only the PHO5 promoter harbors a high-affinity intranucleosomal Pho4 binding site (UASp) where Pho4 binding can compete with nucleosome formation, prompting us to test the importance of such competition for chromatin remodeling by analysis of UASp mutants in vivo. Indeed, the intranucleosomal location of the UASp element was critical, but not essential, for complete remodeling at the PHO5 promoter in vivo. Further, binding of just the Gal4 DNA binding domain to an intranucleosomal site could increase PHO5 promoter opening. These data establish an auxiliary role for DNA binding competition between Pho4 and histones in PHO5 promoter chromatin remodeling in vivo.
Collapse
Affiliation(s)
- Franziska Ertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - A. Barbara Dirac-Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Christina Bech Hertel
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Dorothea Blaschke
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Jesper Q. Svejstrup
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstr. 44, 80336 Munich, Germany, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
11
|
Abstract
Activated transcription in eukaryotes requires the aid of numerous co-factors to overcome the physical barriers chromatin poses to activation, bridge the gap between activators and polymerase, and ensure appropriate regulation. S. cerevisiae has long been a model organism for studying the role of co-activators in the steps leading up to gene activation. Detailed studies on the recruitment of these co-activators have been carried out for more than a dozen promoters. Taking a step back to survey these results, however, suggests that there are few generalizations that could be used to guide future studies of uncharacterized promoters.
Collapse
Affiliation(s)
- Rhiannon Biddick
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
| | | |
Collapse
|
12
|
Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability. Mol Cell Biol 2009; 29:2960-81. [PMID: 19307305 DOI: 10.1128/mcb.01054-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We showed previously that the strong PHO5 promoter is less dependent on chromatin cofactors than the weaker coregulated PHO8 promoter. In this study we asked if chromatin remodeling at the even stronger PHO84 promoter was correspondingly less cofactor dependent. The repressed PHO84 promoter showed a short hypersensitive region that was flanked upstream and downstream by a positioned nucleosome and contained two transactivator Pho4 sites. Promoter induction generated an extensive hypersensitive and histone-depleted region, yielding two more Pho4 sites accessible. This remodeling was strictly Pho4 dependent, strongly dependent on the remodelers Snf2 and Ino80 and on the histone acetyltransferase Gcn5, and more weakly on the acetyltransferase Rtt109. Importantly, remodeling of each of the two positioned nucleosomes required Snf2 and Ino80 to different degrees. Only remodeling of the upstream nucleosome was strictly dependent on Snf2. Further, remodeling of the upstream nucleosome was more dependent on Ino80 than remodeling of the downstream nucleosome. Both nucleosomes differed in their intrinsic stabilities as predicted in silico and measured in vitro. The causal relationship between the different nucleosome stabilities and the different cofactor requirements was shown by introducing destabilizing mutations in vivo. Therefore, chromatin cofactor requirements were determined by intrinsic nucleosome stabilities rather than correlated to promoter strength.
Collapse
|
13
|
Qiao W, Ellis C, Steffen J, Wu CY, Eide DJ. Zinc status and vacuolar zinc transporters control alkaline phosphatase accumulation and activity in Saccharomyces cerevisiae. Mol Microbiol 2009; 72:320-34. [PMID: 19298366 DOI: 10.1111/j.1365-2958.2009.06644.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Little is known about how metalloproteins in the secretory pathway obtain their metal ion cofactors. We used the Pho8 alkaline phosphatase of the yeast Saccharomyces cerevisiae to probe this process in vivo. We found that both Pho8 activity and protein accumulation are zinc-dependent and decrease in zinc-limited cells. Low Pho8 accumulation was the result of degradation by vacuolar proteases. Surprisingly, the protective effect of zinc on Pho8 stability was not solely due to Zn(2+) binding to the active-site ligands suggesting that the Pho8 protein is targeted for degradation in zinc-limited cells by another mechanism. Pho8 appears to be a rare example of a metalloprotein whose stability is regulated by its metal cofactor independently of active-site binding. We also assessed which zinc transporters are responsible for supplying zinc to Pho8. We found that the Zrc1 and Cot1 vacuolar zinc transporters play the major role while the Msc2/Zrg17 zinc transporter complex active in the endoplasmic reticulum is not involved. These results demonstrate that the vacuolar zinc transporters, previously implicated in metal detoxification, also deliver zinc to certain metalloproteins within intracellular compartments. These data suggest that Pho8 receives its metal cofactor in the vacuole rather than in earlier compartments of the secretory pathway.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
14
|
Ishchuk OP, Dmytruk KV, Rohulya OV, Voronovsky AY, Abbas CA, Sibirny AA. Development of a promoter assay system for the flavinogenic yeast Candida famata based on the Kluyveromyces lactis β-galactosidase LAC4 reporter gene. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Hertel CB, Längst G, Hörz W, Korber P. Nucleosome stability at the yeast PHO5 and PHO8 promoters correlates with differential cofactor requirements for chromatin opening. Mol Cell Biol 2006; 25:10755-67. [PMID: 16314501 PMCID: PMC1316968 DOI: 10.1128/mcb.25.24.10755-10767.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coregulated PHO5 and PHO8 genes in Saccharomyces cerevisiae provide typical examples for the role of chromatin in promoter regulation. It has been a long-standing question why the cofactors Snf2 and Gcn5 are essential for full induction of PHO8 but dispensable for opening of the PHO5 promoter. We show that this discrepancy may result from different stabilities of the two promoter chromatin structures. To test this hypothesis, we used our recently established yeast extract in vitro chromatin assembly system, which generates the characteristic PHO5 promoter chromatin. Here we show that this system also assembles the native PHO8 promoter nucleosome pattern. Remarkably, the positioning information for both native patterns is specific to the yeast extract. Salt gradient dialysis or Drosophila embryo extract does not support proper nucleosome positioning unless supplemented with yeast extract. By competitive assemblies in the yeast extract system we show that the PHO8 promoter has greater nucleosome positioning power and that the properly positioned nucleosomes are more stable than those at the PHO5 promoter. Thus we provide evidence for the correlation of inherently more stable chromatin with stricter cofactor requirements.
Collapse
|
16
|
Korber P, Barbaric S, Luckenbach T, Schmid A, Schermer UJ, Blaschke D, Hörz W. The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J Biol Chem 2006; 281:5539-45. [PMID: 16407267 DOI: 10.1074/jbc.m513340200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression starts off from a largely obstructive chromatin substrate that has to be rendered accessible by regulated mechanisms of chromatin remodeling. The yeast PHO5 promoter is a well known example for the contribution of positioned nucleosomes to gene repression and for extensive chromatin remodeling in the course of gene induction. Recently, the mechanism of this remodeling process was shown to lead to the disassembly of promoter nucleosomes and the eviction of the constituent histones in trans. This finding called for a histone acceptor in trans and thus made histone chaperones likely to be involved in this process. In this study we have shown that the histone chaperone Asf1 increases the rate of histone eviction at the PHO5 promoter. In the absence of Asf1 histone eviction is delayed, but the final outcome of the chromatin transition is not affected. The same is true for the coregulated PHO8 promoter where induction also leads to histone eviction and where the rate of histone loss is reduced in asf1 strains as well, although less severely. Importantly, the final extent of chromatin remodeling is not affected. We have also presented evidence that Asf1 and the SWI/SNF chromatin remodeling complex work in distinct parallel but functionally overlapping pathways, i.e. they both contribute toward the same outcome without being mutually strictly dependent.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institut, Universität München, Schillerstrasse 44, 80336 Münich, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Agricola E, Verdone L, Xella B, Di Mauro E, Caserta M. Common Chromatin Architecture, Common Chromatin Remodeling, and Common Transcription Kinetics of Adr1-Dependent Genes inSaccharomyces cerevisiae†. Biochemistry 2004; 43:8878-84. [PMID: 15236596 DOI: 10.1021/bi049577+] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chromatin structure of several Saccharomyces cerevisiae ADR1-dependent genes was comparatively analyzed in vivo in order to evaluate the role of promoter architecture in transcriptional control. In repressing conditions (high glucose) a nucleosome particle always obstructs the TATA box, immediately adjacent to an upstream-located nucleosome-free region containing a cluster of Adr1 binding sites. Upon derepression the TATA box-containing nucleosome is destabilized according to a mechanism shared by all of the genes studied. The transcription factor Adr1 is always required for the observed chromatin remodeling. mRNA accumulation of all of the genes analyzed is strongly delayed in the absence of the acetyltransferase Gcn5 and is decreased in the presence of a temperature-sensitive Esa1 mutant. The results suggest that a defined promoter chromatin structure, controlled by DNA conformational features, is relevant for the activation of coregulated genes.
Collapse
Affiliation(s)
- Eleonora Agricola
- Fondazione Istituto Pasteur-Fondazione Cenci Bolognetti, c/o Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, 185 Rome, Italy
| | | | | | | | | |
Collapse
|
18
|
Nourani A, Utley RT, Allard S, Côté J. Recruitment of the NuA4 complex poises the PHO5 promoter for chromatin remodeling and activation. EMBO J 2004; 23:2597-607. [PMID: 15175650 PMCID: PMC449761 DOI: 10.1038/sj.emboj.7600230] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 04/15/2004] [Indexed: 01/08/2023] Open
Abstract
The remodeling of the promoter chromatin structure is a key event for the induction of the PHO5 gene. Two DNA-binding proteins Pho2 and Pho4 are critical for this step. We found that the NuA4 histone acetyltransferase complex is essential for PHO5 transcriptional induction without affecting Pho4 translocation upon phosphate starvation. Our data also indicate that NuA4 is critical for the chromatin remodeling event that occurs over the PHO5 promoter prior to activation. Using Chromatin IP analysis, we found that Esa1-dependent histone H4 acetylation at the PHO5 promoter correlates with specific recruitment of the NuA4 complex to this locus under repressing conditions. We demonstrate that the homeodomain transcriptional activator Pho2 is responsible for this recruitment in vivo and interacts directly with the NuA4 complex. Finally, we show that Pho4 is unable to bind the PHO5 promoter without prior action of NuA4. These results indicate that, before induction, NuA4 complex recruitment by Pho2 is an essential event that presets the PHO5 promoter for subsequent binding by Pho4, chromatin remodeling and transcription.
Collapse
Affiliation(s)
- Amine Nourani
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Rhea T Utley
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Stéphane Allard
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Canada
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), 9 McMahon Street, Quebec City, QC G1R 2J6 Canada. Tel: +1 418 525 4444; ext. 15545; Fax: +1 418 691 5439; E-mail:
| |
Collapse
|
19
|
Bird AJ, Blankman E, Stillman DJ, Eide DJ, Winge DR. The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2. EMBO J 2004; 23:1123-32. [PMID: 14976557 PMCID: PMC380977 DOI: 10.1038/sj.emboj.7600122] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022] Open
Abstract
The zinc-responsive transcriptional activator Zap1 regulates the expression of both high- and low-affinity zinc uptake permeases encoded by the ZRT1 and ZRT2 genes. Zap1 mediates this response by binding to zinc-responsive elements (ZREs) located within the promoter regions of each gene. ZRT2 has a remarkably different expression profile in response to zinc compared to ZRT1. While ZRT1 is maximally induced during zinc limitation, ZRT2 is repressed in low zinc but remains induced upon zinc supplementation. In this study, we determined the mechanism underlying this paradoxical Zap1-dependent regulation of ZRT2. We demonstrate that a nonconsensus ZRE (ZRT2 ZRE3), which overlaps with one of the ZRT2 transcriptional start sites, is essential for repression of ZRT2 in low zinc and that Zap1 binds to ZRT2 ZRE3 with a low affinity. The low-affinity ZRE is also essential for the ZRT2 expression profile. These results indicate that the unusual pattern of ZRT2 regulation among Zap1 target genes involves the antagonistic effect of Zap1 binding to a low-affinity ZRE repressor site and high-affinity ZREs required for activation.
Collapse
Affiliation(s)
- Amanda J Bird
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Elizabeth Blankman
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | - David J Eide
- Department of Nutritional Sciences, University of Missouri-Columbia, Columbia, MI, USA
| | - Dennis R Winge
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
- Departments of Medicine and Biochemistry, University of Utah, Health Sciences Center, Salt Lake City, UT 84132, USA. Tel.: +1 801 585 5103; Fax: +1 801 585 5469; E-mail:
| |
Collapse
|
20
|
Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 2003; 43:225-44. [PMID: 12740714 DOI: 10.1007/s00294-003-0400-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2003] [Revised: 04/05/2003] [Accepted: 04/08/2003] [Indexed: 01/08/2023]
Abstract
Membrane transport systems active in cellular inorganic phosphate (P(i)) acquisition play a key role in maintaining cellular P(i) homeostasis, independent of whether the cell is a unicellular microorganism or is contained in the tissue of a higher eukaryotic organism. Since unicellular eukaryotes such as yeast interact directly with the nutritious environment, regulation of P(i) transport is maintained solely by transduction of nutrient signals across the plasma membrane. The individual yeast cell thus recognizes nutrients that can act as both signals and sustenance. The present review provides an overview of P(i) acquisition via the plasma membrane P(i) transporters of Saccharomyces cerevisiae and the regulation of internal P(i) stores under the prevailing P(i) status.
Collapse
Affiliation(s)
- Bengt L Persson
- Department of Chemistry and Biomedical Science, Kalmar University, P.O. Box 905, 39182, Kalmar, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Carvin CD, Dhasarathy A, Friesenhahn LB, Jessen WJ, Kladde MP. Targeted cytosine methylation for in vivo detection of protein-DNA interactions. Proc Natl Acad Sci U S A 2003; 100:7743-8. [PMID: 12808133 PMCID: PMC164658 DOI: 10.1073/pnas.1332672100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We report a technique, named targeted gene methylation (TAGM), for identifying in vivo protein-binding sites in chromatin. M.CviPI, a cytosine-5 DNA methyltransferase recognizing GC sites, is fused to a DNA-binding factor enabling simultaneous detection of targeted methylation, factor footprints, and chromatin structural changes by bisulfite genomic sequencing. Using TAGM with the yeast transactivator Pho4, methylation enrichments of up to 34- fold occur proximal to native Pho4-binding sites. Additionally, significant selective targeting of methylation is observed several hundred nucleotides away, suggesting the detection of long-range interactions due to higher-order chromatin structure. In contrast, at an extragenic locus lacking Pho4-binding sites, methylation levels are at the detection limit at early times after Pho4 transactivation. Notably, substantial amounts of methylation are targeted by Pho4-M.CviPI under repressive conditions when most of the transactivator is excluded from the nucleus. Thus, TAGM enables rapid detection of DNA-protein interactions even at low occupancies and has potential for identifying factor targets at the genome-wide level. Extension of TAGM from yeast to vertebrates, which use methylation to initiate and propagate repressed chromatin, could also provide a valuable strategy for heritable inactivation of gene expression.
Collapse
Affiliation(s)
- Christopher D Carvin
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | | | | | |
Collapse
|
22
|
Moreau JL, Lee M, Mahachi N, Vary J, Mellor J, Tsukiyama T, Goding CR. Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Mol Cell 2003; 11:1609-20. [PMID: 12820973 DOI: 10.1016/s1097-2765(03)00184-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Regulated binding of TBP to a promoter is a key event in transcriptional regulation. We show here that on glucose depletion, the S. cerevisiae Isw1 chromatin remodeling complex is required for the displacement of TBP from the PHO8 promoter. Displacement of TBP also requires the sequence-specific bHLH-LZ factor Cbf1p that targets Isw1p to the PHO8 UAS. Cbf1p- and Isw1p-dependent displacement of TBP is also observed at the PHO84 promoter, but not at the ADH1 promoter, where loss of TBP is Cbf1p- and Isw1p independent. The results point to a promoter-specific Isw1p-dependent mechanism for targeted regulation of basal transcription by displacement of TBP from a promoter.
Collapse
Affiliation(s)
- Jean-Luc Moreau
- Eukaryotic Transcription Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 OTL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Hurlstone AFL, Olave IA, Barker N, van Noort M, Clevers H. Cloning and characterization of hELD/OSA1, a novel BRG1 interacting protein. Biochem J 2002; 364:255-64. [PMID: 11988099 PMCID: PMC1222568 DOI: 10.1042/bj3640255] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A highly conserved multisubunit enzymic complex, SWI/SNF, participates in the regulation of eukaryote gene expression through its ability to remodel chromatin. While a single component of SWI/SNF, Swi2 or a related protein, can perform this function in vitro, the other components appear to modulate the activity and specificity of the complex in vivo. Here we describe the cloning of hELD/OSA1, a 189 KDa human homologue of Drosophila Eld/Osa protein, a constituent of Drosophila SWI/SNF. By comparing conserved peptide sequences in Eld/Osa homologues we define three domains common to all family members. A putative DNA binding domain, or ARID (AT-rich DNA-interacting domain), may function in targetting SWI/SNF to chromatin. Two other domains unique to Eld/Osa proteins, EHD1 and EHD2, map to the C-terminus. We show that EHD2 mediates binding to Brahma-related gene 1 (BRG1), a human homologue of yeast Swi2. EHD1 and EHD2 also appear capable of interacting with each other. Using an antibody raised against EHD2 of hELD/OSA1, we detected Eld/Osa1 in endogenous SWI/SNF complexes derived from mouse brain.
Collapse
Affiliation(s)
- Adam F L Hurlstone
- University Medical Centre Utrecht, Department of Immunology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Barbaric S, Walker J, Schmid A, Svejstrup J, Hörz W. Increasing the rate of chromatin remodeling and gene activation--a novel role for the histone acetyltransferase Gcn5. EMBO J 2001; 20:4944-51. [PMID: 11532958 PMCID: PMC125614 DOI: 10.1093/emboj/20.17.4944] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Histone acetyltransferases (HATs) such as Gcn5 play a role in transcriptional activation. However, the majority of constitutive genes show no requirement for GCN5, and even regulated genes, such as the yeast PHO5 gene, do not seem to be affected significantly by its absence under normal activation conditions. Here we show that even though the steady-state level of activated PHO5 transcription is not affected by deletion of GCN5, the rate of activation following phosphate starvation is significantly decreased. This delay in transcriptional activation is specifically due to slow chromatin remodeling of the PHO5 promoter, whereas the transmission of the phosphate starvation signal to the PHO5 promoter progresses at a normal rate. Chromatin remodeling is equally delayed in a galactose-inducible PHO5 promoter variant in which the Pho4 binding sites have been replaced by Gal4 binding sites. By contrast, activation of the GAL1 gene by galactose addition occurs with normal kinetics. Lack of the histone H4 N-termini leads to a similar delay in activation of the PHO5 promoter. These results indicate that one important contribution of HATs is to increase the rate of gene induction by accelerating chromatin remodeling, rather than to affect the final steady-state expression levels.
Collapse
Affiliation(s)
- S. Barbaric
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, 80336 München, Germany and
Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK Present address: Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia Corresponding author e-mail:
| | - J. Walker
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, 80336 München, Germany and
Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK Present address: Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia Corresponding author e-mail:
| | | | - J.Q. Svejstrup
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, 80336 München, Germany and
Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK Present address: Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia Corresponding author e-mail:
| | - W. Hörz
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, 80336 München, Germany and
Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, UK Present address: Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia Corresponding author e-mail:
| |
Collapse
|
25
|
Reinke H, Gregory PD, Hörz W. A transient histone hyperacetylation signal marks nucleosomes for remodeling at the PHO8 promoter in vivo. Mol Cell 2001; 7:529-38. [PMID: 11463378 DOI: 10.1016/s1097-2765(01)00200-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin remodeling of the yeast PHO8 promoter requires the SAGA histone acetyltransferase complex. We report here that SAGA is necessary and sufficient to establish an activator-dependent hyperacetylation peak over the PHO8 promoter that is restricted to those nucleosomes that are remodeled upon activation. This local hyperacetylated state is observed upon activation in the absence of the SWI/SNF complex when the remodeling process is frozen subsequent to activator binding. Hyperacetylation is lost, however, if remodeling is permitted to go to completion. Thus, a transient histone hyperacetylation signal is shown to be a prerequisite for, and determinant of, the domain of nucleosome remodeling in vivo.
Collapse
Affiliation(s)
- H Reinke
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | |
Collapse
|
26
|
|