1
|
K C R, Cheng R, Zhou S, Lizarazo S, Smith DJ, Van Bortle K. Evidence of RNA polymerase III recruitment and transcription at protein-coding gene promoters. Mol Cell 2024; 84:4111-4124.e5. [PMID: 39393362 PMCID: PMC11560567 DOI: 10.1016/j.molcel.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/13/2024]
Abstract
The transcriptional interplay of human RNA polymerase I (RNA Pol I), RNA Pol II, and RNA Pol III remains largely uncharacterized due to limited integrative genomic analyses for all three enzymes. To address this gap, we applied a uniform framework to quantify global RNA Pol I, RNA Pol II, and RNA Pol III occupancies and identify both canonical and noncanonical patterns of gene localization. Most notably, our survey captures unexpected RNA Pol III recruitment at promoters of specific protein-coding genes. We show that such RNA Pol III-occupied promoters are enriched for small nascent RNAs terminating in a run of 4 Ts-a hallmark of RNA Pol III termination indicative of constrained RNA Pol III transcription. Taken further, RNA Pol III disruption generally reduces the expression of RNA Pol III-occupied protein-coding genes, suggesting RNA Pol III recruitment and transcription enhance RNA Pol II activity. These findings resemble analogous patterns of RNA Pol II activity at RNA Pol III-transcribed genes, altogether uncovering a reciprocal form of crosstalk between RNA Pol II and RNA Pol III.
Collapse
Affiliation(s)
- Rajendra K C
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruiying Cheng
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Su Y, Wu J, Chen W, Shan J, Chen D, Zhu G, Ge S, Liu Y. Spliceosomal snRNAs, the Essential Players in pre-mRNA Processing in Eukaryotic Nucleus: From Biogenesis to Functions and Spatiotemporal Characteristics. Adv Biol (Weinh) 2024; 8:e2400006. [PMID: 38797893 DOI: 10.1002/adbi.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Spliceosomal small nuclear RNAs (snRNAs) are a fundamental class of non-coding small RNAs abundant in the nucleoplasm of eukaryotic cells, playing a crucial role in splicing precursor messenger RNAs (pre-mRNAs). They are transcribed by DNA-dependent RNA polymerase II (Pol II) or III (Pol III), and undergo subsequent processing and 3' end cleavage to become mature snRNAs. Numerous protein factors are involved in the transcription initiation, elongation, termination, splicing, cellular localization, and terminal modification processes of snRNAs. The transcription and processing of snRNAs are regulated spatiotemporally by various mechanisms, and the homeostatic balance of snRNAs within cells is of great significance for the growth and development of organisms. snRNAs assemble with specific accessory proteins to form small nuclear ribonucleoprotein particles (snRNPs) that are the basal components of spliceosomes responsible for pre-mRNA maturation. This article provides an overview of the biological functions, biosynthesis, terminal structure, and tissue-specific regulation of snRNAs.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jiaming Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Junling Shan
- Department of basic medicine, Guangxi Medical University of Nursing College, Nanning, Guangxi, 530021, China
| | - Dan Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Guangyu Zhu
- Guangxi Medical University Hospital of Stomatology, Nanning, Guangxi, 530021, China
| | - Shengchao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
3
|
Mattijssen S, Kerkhofs K, Stephen J, Yang A, Han CG, Tadafumi Y, Iben JR, Mishra S, Sakhawala RM, Ranjan A, Gowda M, Gahl WA, Gu S, Malicdan MC, Maraia RJ. A POLR3B-variant reveals a Pol III transcriptome response dependent on La protein/SSB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577363. [PMID: 38410490 PMCID: PMC10896340 DOI: 10.1101/2024.02.05.577363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
RNA polymerase III (Pol III, POLR3) synthesizes tRNAs and other small non-coding RNAs. Human POLR3 pathogenic variants cause a range of developmental disorders, recapitulated in part by mouse models, yet some aspects of POLR3 deficiency have not been explored. We characterized a human POLR3B:c.1625A>G;p.(Asn542Ser) disease variant that was found to cause mis-splicing of POLR3B. Genome-edited POLR3B1625A>G HEK293 cells acquired the mis-splicing with decreases in multiple POLR3 subunits and TFIIIB, although display auto-upregulation of the Pol III termination-reinitiation subunit POLR3E. La protein was increased relative to its abundant pre-tRNA ligands which bind via their U(n)U-3'-termini. Assays for cellular transcription revealed greater deficiencies for tRNA genes bearing terminators comprised of 4Ts than of ≥5Ts. La-knockdown decreased Pol III ncRNA expression unlinked to RNA stability. Consistent with these effects, small-RNAseq showed that POLR3B1625A>G and patient fibroblasts express more tRNA fragments (tRFs) derived from pre-tRNA 3'-trailers (tRF-1) than from mature-tRFs, and higher levels of multiple miRNAs, relative to control cells. The data indicate that decreased levels of Pol III transcripts can lead to functional excess of La protein which reshapes small ncRNA profiles revealing new depth in the Pol III system. Finally, patient cell RNA analysis uncovered a strategy for tRF-1/tRF-3 as POLR3-deficiency biomarkers.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kyra Kerkhofs
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joshi Stephen
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Acong Yang
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - Chen G. Han
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Yokoyama Tadafumi
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James R. Iben
- Molecular Genetics Core, NICHD, NIH, Bethesda, MD 20892, USA
| | - Saurabh Mishra
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rima M. Sakhawala
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amitabh Ranjan
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mamatha Gowda
- Department of Obstetrics & Gynaecology, Jawaharlal Institute of Post-Graduate Medical Education and Research, Puducherry, India
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Shuo Gu
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - May C. Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Richard J. Maraia
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Garg A, Sanchez AM, Miele M, Schwer B, Shuman S. Cellular responses to long-term phosphate starvation of fission yeast: Maf1 determines fate choice between quiescence and death associated with aberrant tRNA biogenesis. Nucleic Acids Res 2023; 51:3094-3115. [PMID: 36794724 PMCID: PMC10123115 DOI: 10.1093/nar/gkad063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors. Consistent with the transcriptome changes, proteome analysis highlighted global depletion of 102 ribosomal proteins. Concomitant with this ribosomal protein deficit, 28S and 18S rRNAs became vulnerable to site-specific cleavages that generated temporally stable rRNA fragments. The finding that Maf1, a repressor of RNA polymerase III transcription, was upregulated during phosphate starvation prompted a hypothesis that its activity might prolong lifespan of the quiescent cells by limiting production of tRNAs. Indeed, we found that deletion of maf1 results in precocious death of phosphate-starved cells via a distinctive starvation-induced pathway associated with tRNA overproduction and dysfunctional tRNA biogenesis.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ana M Sanchez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Matthew Miele
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Beate Schwer
- Correspondence may also be addressed to Beate Schwer. Tel: +1 212 746 6518;
| | - Stewart Shuman
- To whom correspondence should be addressed. Tel: +1 212 639 7145;
| |
Collapse
|
6
|
Xie J, Libri D, Porrua O. Mechanisms of eukaryotic transcription termination at a glance. J Cell Sci 2023; 136:286227. [PMID: 36594557 DOI: 10.1242/jcs.259873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcription termination is the final step of a transcription cycle, which induces the release of the transcript at the termination site and allows the recycling of the polymerase for the next round of transcription. Timely transcription termination is critical for avoiding interferences between neighbouring transcription units as well as conflicts between transcribing RNA polymerases (RNAPs) and other DNA-associated processes, such as replication or DNA repair. Understanding the mechanisms by which the very stable transcription elongation complex is dismantled is essential for appreciating how physiological gene expression is maintained and also how concurrent processes that occur synchronously on the DNA are coordinated. Although the strategies employed by the different classes of eukaryotic RNAPs are traditionally considered to be different, novel findings point to interesting commonalities. In this Cell Science at a Glance and the accompanying poster, we review the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.
Collapse
Affiliation(s)
- Juanjuan Xie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Odil Porrua
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| |
Collapse
|
7
|
Xu H, Nakazawa T, Zhang Y, Oh M, Bao D, Kawauchi M, Sakamoto M, Honda Y. Introducing multiple-gene mutations in Pleurotus ostreatus using a polycistronic tRNA and CRISPR guide RNA strategy. FEMS Microbiol Lett 2022; 369:6776014. [PMID: 36302144 DOI: 10.1093/femsle/fnac102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 12/13/2022] Open
Abstract
The white-rot fungus Pleurotus ostreatus is an agaricomycete that is frequently used in molecular genetics studies as many useful tools are applicable to the fungus. In particular, efficient gene targeting using homologous recombination and CRISPR/Cas9 enables the introduction of a mutation in the gene of interest for functional analysis. Multiple genes encoding various lignocellulose-degrading enzymes are predicted to be present in the genome; therefore, analyses of multiple-gene mutants are required to elucidate the mechanisms underlying lignocellulose degradation by P. ostreatus. Conventional tools for generating multiple-gene mutations in P. ostreatus are laborious and time-consuming. Therefore, more efficient and practical methods are needed. In this study, we introduced CRISPR/Cas9-assisted multiple-gene mutations using a polycistronic tRNA and CRISPR guide RNA approach. The frequency (triple-gene mutation in fcy1, vp2, and 62347) was only 3.3% when a tetracistronic tRNA-sgRNA containing four different sgRNAs targeting fcy1, vp2, vp3, or 62347 was expressed. It increased to 20% (triple-gene mutation in vp1, vp2, and vp3) after a tricistronic tRNA-sgRNA was expressed with replaced/modulated promoter and tRNA sequences. This study demonstrated, for the first time, the applicability of a strategy to induce multiple-gene mutations in P. ostreatus in a transformation experiment.
Collapse
Affiliation(s)
- Haibo Xu
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yufan Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Minji Oh
- Mushroom division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Bisan-ro, Eumseong-gun, Chungcheongbuk-do 22709, Republic of Korea
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Lama L, Ryan K. Starting and stopping RNA polymerase III transcription on single-stranded DNA oligonucleotides. RNA (NEW YORK, N.Y.) 2022; 28:1315-1324. [PMID: 35853667 PMCID: PMC9479740 DOI: 10.1261/rna.078981.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Circularized single-stranded DNA oligonucleotides, or coligos, show promise as promoter-independent RNA polymerase III (Pol III) transcription templates for generating small RNA in human cells. Using a modified small RNA-seq method, we studied the sequence and secondary structure characteristics that determine Pol III initiation and termination on six coligo templates. The coligos each consisted of an imperfectly base-paired stem flanked by one larger and one smaller loop and were unrelated in sequence. Small RNA-seq data from Pol III coligo transcripts revealed a strong preference for initiating transcription within a 5-nucleotide (nt) window spanning the stem-larger loop junction (loop size 11-24 nt). Transcription in all cases proceeded into the stem rather than into the larger loop, indicating the junction is a site-specific, secondary structure-based Pol III transcription initiator. On average, 81% of sequencing reads showed initiation within this 5 nt junction region, with a template start site nucleotide preference of C > T >> A > G, and a requirement for a template purine at Tss-1. Termination was less precise than initiation and occurred in the larger loop at the same end of the stem where transcription initiated. Termination efficiency was on average 82% and was distributed among the first 11 single-stranded larger loop nt following the stem. The size heterogeneity of Pol III coligo transcripts is thus mainly due to 3' end heterogeneity, whereas the RNA 5' ends were more predictable and homogeneous. Transcription termination did not require an oligo dA template sequence, indicating that termination in this context may be mechanistically different than Pol III's normal gene-context termination. A stepwise model for coligo transcription by Pol III is proposed.
Collapse
Affiliation(s)
- Lodoe Lama
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, USA
- Biochemistry and Chemistry Ph.D. Programs, The City University of New York Graduate Center, New York, New York 10016, USA
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, USA
- Biochemistry and Chemistry Ph.D. Programs, The City University of New York Graduate Center, New York, New York 10016, USA
- Chemistry Ph.D. Programs, The City University of New York Graduate Center, New York, New York 10016, USA
| |
Collapse
|
9
|
Mishra S, Hasan SH, Sakhawala RM, Chaudhry S, Maraia RJ. Mechanism of RNA polymerase III termination-associated reinitiation-recycling conferred by the essential function of the N terminal-and-linker domain of the C11 subunit. Nat Commun 2021; 12:5900. [PMID: 34625550 PMCID: PMC8501072 DOI: 10.1038/s41467-021-26080-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023] Open
Abstract
RNA polymerase III achieves high level tRNA synthesis by termination-associated reinitiation-recycling that involves the essential C11 subunit and heterodimeric C37/53. The C11-CTD (C-terminal domain) promotes Pol III active center-intrinsic RNA 3'-cleavage although deciphering function for this activity has been complicated. We show that the isolated NTD (N-terminal domain) of C11 stimulates Pol III termination by C37/53 but not reinitiation-recycling which requires the NTD-linker (NTD-L). By an approach different from what led to current belief that RNA 3'-cleavage activity is essential, we show that NTD-L can provide the essential function of Saccharomyces cerevisiae C11 whereas classic point mutations that block cleavage, interfere with active site function and are toxic to growth. Biochemical and in vivo analysis including of the C11 invariant central linker led to a model for Pol III termination-associated reinitiation-recycling. The C11 NTD and CTD stimulate termination and RNA 3'-cleavage, respectively, whereas reinitiation-recycling activity unique to Pol III requires only the NTD-linker. RNA 3'-cleavage activity increases growth rate but is nonessential.
Collapse
Affiliation(s)
- Saurabh Mishra
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Biochemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shaina H Hasan
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, USA
| | - Rima M Sakhawala
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Regulatory RNA, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Pfizer (Pearl River Site), 401 N Middletown Rd, Pearl River, NY, USA
| | - Richard J Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16:e1008330. [PMID: 32324744 PMCID: PMC7200024 DOI: 10.1371/journal.pgen.1008330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
The tRNA isopentenyltransferases (IPTases), which add an isopentenyl group to N6 of A37 (i6A37) of certain tRNAs, are among a minority of enzymes that modify cytosolic and mitochondrial tRNAs. Pathogenic mutations to the human IPTase, TRIT1, that decrease i6A37 levels, cause mitochondrial insufficiency that leads to neurodevelopmental disease. We show that TRIT1 encodes an amino-terminal mitochondrial targeting sequence (MTS) that directs mitochondrial import and modification of mitochondrial-tRNAs. Full understanding of IPTase function must consider the tRNAs selected for modification, which vary among species, and in their cytosol and mitochondria. Selection is principally via recognition of the tRNA A36-A37-A38 sequence. An exception is unmodified tRNATrpCCA-A37-A38 in Saccharomyces cerevisiae, whereas tRNATrpCCA is readily modified in Schizosaccharomyces pombe, indicating variable IPTase recognition systems and suggesting that additional exceptions may account for some of the tRNA-i6A37 paucity in higher eukaryotes. Yet TRIT1 had not been characterized for restrictive type substrate-specific recognition. We used i6A37-dependent tRNA-mediated suppression and i6A37-sensitive northern blotting to examine IPTase activities in S. pombe and S. cerevisiae lacking endogenous IPTases on a diversity of tRNA-A36-A37-A38 substrates. Point mutations to the TRIT1 MTS that decrease human mitochondrial import, decrease modification of mitochondrial but not cytosolic tRNAs in both yeasts. TRIT1 exhibits clear substrate-specific restriction against a cytosolic-tRNATrpCCA-A37-A38. Additional data suggest that position 32 of tRNATrpCCA is a conditional determinant for substrate-specific i6A37 modification by the restrictive IPTases, Mod5 and TRIT1. The cumulative biochemical and phylogenetic sequence analyses provide new insights into IPTase activities and determinants of tRNA-i6A37 profiles in cytosol and mitochondria.
Collapse
Affiliation(s)
- Abdul Khalique
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandy Mattijssen
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Haddad
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
- Commissioned Corps, United States Public Health Service, Rockville, Maryland, United States of America
| |
Collapse
|
11
|
Abstract
La proteins have well-established roles in the maturation of RNA polymerase III transcripts, including pre-tRNAs. In addition to protecting the 3' end of pre-tRNAs from exonuclease digestion, La proteins also promote the native fold of the pre-tRNA using RNA chaperone activity. tRNA-mediated suppression in the fission yeast S. pombe has been an invaluable tool in determining the mechanistic basis by which La proteins promote the maturation of defective pre-tRNAs that benefit from RNA chaperone activity. More recently, tRNA-mediated suppression has been adapted to test for RNA chaperone function in the La-related proteins and in the promoting of tRNA function by tRNA modification enzymes. Thus tRNA-mediated suppression can be a useful assay for the investigation of various proteins hypothesized to promote tRNA folding through RNA chaperone related activities.
Collapse
|
12
|
Thornlow BP, Armstrong J, Holmes AD, Howard JM, Corbett-Detig RB, Lowe TM. Predicting transfer RNA gene activity from sequence and genome context. Genome Res 2020; 30:85-94. [PMID: 31857444 PMCID: PMC6961574 DOI: 10.1101/gr.256164.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/12/2019] [Indexed: 01/25/2023]
Abstract
Transfer RNA (tRNA) genes are among the most highly transcribed genes in the genome owing to their central role in protein synthesis. However, there is evidence for a broad range of gene expression across tRNA loci. This complexity, combined with difficulty in measuring transcript abundance and high sequence identity across transcripts, has severely limited our collective understanding of tRNA gene expression regulation and evolution. We establish sequence-based correlates to tRNA gene expression and develop a tRNA gene classification method that does not require, but benefits from, comparative genomic information and achieves accuracy comparable to molecular assays. We observe that guanine + cytosine (G + C) content and CpG density surrounding tRNA loci is exceptionally well correlated with tRNA gene activity, supporting a prominent regulatory role of the local genomic context in combination with internal sequence features. We use our tRNA gene activity predictions in conjunction with a comprehensive tRNA gene ortholog set spanning 29 placental mammals to estimate the evolutionary rate of functional changes among orthologs. Our method adds a new dimension to large-scale tRNA functional prediction and will help prioritize characterization of functional tRNA variants. Its simplicity and robustness should enable development of similar approaches for other clades, as well as exploration of functional diversification of members of large gene families.
Collapse
Affiliation(s)
- Bryan P Thornlow
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Joel Armstrong
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, California 95064, USA
| | - Andrew D Holmes
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Jonathan M Howard
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, California 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
13
|
Kis A, Hamar É, Tholt G, Bán R, Havelda Z. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1004-1006. [PMID: 30633425 PMCID: PMC6523583 DOI: 10.1111/pbi.13077] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/04/2018] [Accepted: 12/31/2018] [Indexed: 05/18/2023]
Affiliation(s)
- András Kis
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
| | - Éva Hamar
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
- Georgikon FacultyFestetics Doctoral SchoolUniversity of PannoniaKeszthelyHungary
| | - Gergely Tholt
- Plant Protection InstituteCentre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
- Department of Systematic Zoology and EcologyFaculty of ScienceInstitute of BiologyEötvös Loránd UniversityBudapestHungary
| | - Rita Bán
- Plant Protection InstituteFaculty of Agricultural and Environmental SciencesSzent István UniversityGödöllőHungary
| | - Zoltán Havelda
- National Agricultural Research and Innovation CentreAgricultural Biotechnology InstituteGödöllőHungary
| |
Collapse
|
14
|
Hernández-Ibarra NK, Morelos RM, Ramírez JL, Cruz P, Leitch AR, Ibarra AM. Chromosomal and molecular characterization of 5S rRNA genes in the North American abalones Haliotis rufescens Swainson (red abalone) and H. fulgens Philippi (blue abalone). Gene 2019; 695:65-74. [PMID: 30738966 DOI: 10.1016/j.gene.2019.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
Abalone is an extremely valuable food source derived from cultured and wild animals, the later from populations under intense fishing exploitation and of high conservation value. As part of a long-term study to characterize genes from abalone that can be used as markers for hybrids certification, we characterised 5S ribosomal DNA (5S rDNA) in red abalone (Haliotis rufescens) and blue abalone (H. fulgens). The 5S rDNA arrays occur to a single pair of metacentric chromosomes at interstitial positions in both species. Two types of 5S genes were found, named types I and II, each associated with different non-transcribed spacer (NTS) sequences. The structure of the 5S rRNA genes and the NTS indicate incomplete homogenisation of the 5S rDNA arrays. The divergence of the 5S genes between species provide polymorphisms which can be used to distinguish red from blue abalone in forensic analysis of commercial production.
Collapse
Affiliation(s)
- Norma K Hernández-Ibarra
- Aquaculture Genetics & Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23096, Mexico
| | - Rosa M Morelos
- Aquaculture Genetics & Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23096, Mexico
| | - José L Ramírez
- Aquaculture Genetics & Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23096, Mexico
| | - Pedro Cruz
- Aquaculture Genetics & Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23096, Mexico
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ana M Ibarra
- Aquaculture Genetics & Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23096, Mexico.
| |
Collapse
|
15
|
Mishra S, Maraia RJ. RNA polymerase III subunits C37/53 modulate rU:dA hybrid 3' end dynamics during transcription termination. Nucleic Acids Res 2019; 47:310-327. [PMID: 30407541 PMCID: PMC6326807 DOI: 10.1093/nar/gky1109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
RNA polymerase (RNAP) III synthesizes tRNAs and other transcripts, and mutations to its subunits cause human disorders. The RNAP III subunit-heterodimer C37/53 functions in initiation, elongation and in termination-associated reinitiation with subunit C11. C37/53 is related to heterodimers associated with RNAPs I and II, and C11 is related to TFIIS and Rpa12.2, the active site RNA 3' cleavage factors for RNAPs II and I. Critical to termination is stability of the RNA:DNA hybrid bound in the active center, which is loose for RNAP III relative to other RNAPs. Here, we examined RNAP III lacking C37/53/C11 and various reconstituted forms during termination. First, we established a minimal terminator as 5T and 3A on the non-template and template DNA strands, respectively. We demonstrate that C11 stimulates termination, and does so independently of its RNA cleavage activity. We found that C37/53 sensitizes RNAP III termination to RNA:DNA hybrid strength and promotes RNA 3' end pairing/annealing with the template. The latter counteracts C11-insensitive arrest in the proximal part of the oligo(T)-tract, promoting oligo(rU:dA) extension toward greater hybrid instability and RNA release. The data also indicate that RNA 3' end engagement with the active site is a determinant of termination. Broader implications are also discussed.
Collapse
Affiliation(s)
- Saurabh Mishra
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD 20852, USA
| |
Collapse
|
16
|
Song L, Ouedraogo JP, Kolbusz M, Nguyen TTM, Tsang A. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. PLoS One 2018; 13:e0202868. [PMID: 30142205 PMCID: PMC6108506 DOI: 10.1371/journal.pone.0202868] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/11/2018] [Indexed: 11/18/2022] Open
Abstract
As a powerful tool for fast and precise genome editing, the CRISPR/Cas9 system has been applied in filamentous fungi to improve the efficiency of genome alteration. However, the method of delivering guide RNA (gRNA) remains a bottleneck in performing CRISPR mutagenesis in Aspergillus species. Here we report a gRNA transcription driven by endogenous tRNA promoters which include a tRNA gene plus 100 base pairs of upstream sequence. Co-transformation of a cas9-expressing plasmid with a linear DNA coding for gRNA demonstrated that 36 of the 37 tRNA promoters tested were able to generate the intended mutation in A. niger. When gRNA and cas9 were expressed in a single extra-chromosomal plasmid, the efficiency of gene mutation was as high as 97%. Co-transformation with DNA template for homologous recombination, the CRISPR/Cas9 system resulted ~42% efficiency of gene replacement in a strain with a functioning non-homologous end joining machinery (kusA+), and an efficiency of >90% gene replacement in a kusA- background. Our results demonstrate that tRNA promoter-mediated gRNA expressions are reliable and efficient in genome editing in A. niger.
Collapse
Affiliation(s)
- Letian Song
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Jean-Paul Ouedraogo
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Magdalena Kolbusz
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| |
Collapse
|
17
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Blewett NH, Maraia RJ. La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:361-372. [PMID: 29397330 DOI: 10.1016/j.bbagrm.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/29/2017] [Accepted: 01/17/2018] [Indexed: 10/25/2022]
Abstract
The conserved nuclear RNA-binding factor known as La protein arose in an ancient eukaryote, phylogenetically associated with another eukaryotic hallmark, synthesis of tRNA by RNA polymerase III (RNAP III). Because 3'-oligo(U) is the sequence-specific signal for transcription termination by RNAP III as well as the high affinity binding site for La, the latter is linked to the intranuclear posttranscriptional processing of eukaryotic precursor-tRNAs. The pre-tRNA processing pathway must accommodate a variety of substrates that are destined for both common steps as well as tRNA-specific events. The order of intranuclear pre-tRNA processing steps is mediated in part by three activities derived from interaction with La protein: 3'-end protection from untimely decay by 3' exonucleases, nuclear retention and chaperone activity that helps prevent pre-tRNA misfolding and mischanneling into offline pathways. A focus of this perspective will be on differences between yeast and mammals in the subcellular partitioning of pre-tRNA intermediates and differential interactions with La. We review how this is most relevant to pre-tRNA splicing which occurs in the cytoplasm of yeasts but in nuclei of higher eukaryotes. Also divergent is La architecture, comprised of three RNA-binding domains in organisms in all examined branches of the eukaryal tree except yeast, which have lost the C-terminal RNA recognition motif-2α (RRM2α) domain. We also review emerging data that suggest mammalian La interacts with nuclear pre-tRNA splicing intermediates and may impact this branch of the tRNA maturation pathway. Finally, because La is involved in intranuclear tRNA biogenesis we review relevant aspects of tRNA-associated neurodegenerative diseases. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Nathan H Blewett
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Commissioned Corps, U.S. Public Health Service, Rockville, MD, USA.
| |
Collapse
|
19
|
Leśniewska E, Boguta M. Novel layers of RNA polymerase III control affecting tRNA gene transcription in eukaryotes. Open Biol 2017; 7:rsob.170001. [PMID: 28228471 PMCID: PMC5356446 DOI: 10.1098/rsob.170001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
20
|
Didychuk AL, Montemayor EJ, Carrocci TJ, DeLaitsch AT, Lucarelli SE, Westler WM, Brow DA, Hoskins AA, Butcher SE. Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Nat Commun 2017; 8:497. [PMID: 28887445 PMCID: PMC5591277 DOI: 10.1038/s41467-017-00484-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/02/2017] [Indexed: 01/06/2023] Open
Abstract
U6 small nuclear ribonucleoprotein (snRNP) biogenesis is essential for spliceosome assembly, but not well understood. Here, we report structures of the U6 RNA processing enzyme Usb1 from yeast and a substrate analog bound complex from humans. Unlike the human ortholog, we show that yeast Usb1 has cyclic phosphodiesterase activity that leaves a terminal 3' phosphate which prevents overprocessing. Usb1 processing of U6 RNA dramatically alters its affinity for cognate RNA-binding proteins. We reconstitute the post-transcriptional assembly of yeast U6 snRNP in vitro, which occurs through a complex series of handoffs involving 10 proteins (Lhp1, Prp24, Usb1 and Lsm2-8) and anti-cooperative interactions between Prp24 and Lhp1. We propose a model for U6 snRNP assembly that explains how evolutionarily divergent and seemingly antagonistic proteins cooperate to protect and chaperone the nascent snRNA during its journey to the spliceosome.The mechanism of U6 small nuclear ribonucleoprotein (snRNP) biogenesis is not well understood. Here the authors characterize the enzymatic activities and structures of yeast and human U6 RNA processing enzyme Usb1, reconstitute post-transcriptional assembly of yeast U6 snRNP in vitro, and propose a model for U6 snRNP assembly.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Eric J Montemayor
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Tucker J Carrocci
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Andrew T DeLaitsch
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Stefani E Lucarelli
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - William M Westler
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA.
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
21
|
Rijal K, Maraia RJ. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo. PLoS Genet 2016; 12:e1006253. [PMID: 27518095 PMCID: PMC4982682 DOI: 10.1371/journal.pgen.1006253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The ability of RNA polymerase (RNAP) III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC); they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT) mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
22
|
Foretek D, Wu J, Hopper AK, Boguta M. Control of Saccharomyces cerevisiae pre-tRNA processing by environmental conditions. RNA (NEW YORK, N.Y.) 2016; 22:339-49. [PMID: 26729922 PMCID: PMC4748812 DOI: 10.1261/rna.054973.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 05/21/2023]
Abstract
tRNA is essential for translation and decoding of the proteome. The yeast proteome responds to stress and tRNA biosynthesis contributes in this response by repression of tRNA transcription and alterations of tRNA modification. Here we report that the stress response also involves processing of pre-tRNA 3' termini. By a combination of Northern analyses and RNA sequencing, we show that upon shift to elevated temperatures and/or to glycerol-containing medium, aberrant pre-tRNAs accumulate in yeast cells. For pre-tRNAUAU(Ile) and pre-tRNAUUU Lys) these aberrant forms are unprocessed at the 5' ends, but they possess extended 3' termini. Sequencing analyses showed that partial 3' processing precedes 5' processing for pre-tRNAUAU(Ile). An aberrant pre-tRNA(Tyr) that accumulates also possesses extended 3' termini, but it is processed at the 5' terminus. Similar forms of these aberrant pre-tRNAs are detected in the rex1Δ strain that is defective in 3' exonucleolytic trimming of pre-tRNAs but are absent in the lhp1Δ mutant lacking 3' end protection. We further show direct correlation between the inhibition of 3' end processing rate and the stringency of growth conditions. Moreover, under stress conditions Rex1 nuclease seems to be limiting for 3' end processing, by decreased availability linked to increased protection by Lhp1. Thus, our data document complex 3' processing that is inhibited by stress in a tRNA-type and condition-specific manner. This stress-responsive tRNA 3' end maturation process presumably contributes to fine-tune the levels of functional tRNA in budding yeast in response to environmental conditions.
Collapse
Affiliation(s)
- Dominika Foretek
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Jingyan Wu
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
23
|
Carlsten JO, Zhu X, Dávila López M, Samuelsson T, Gustafsson CM. Loss of the Mediator subunit Med20 affects transcription of tRNA and other non-coding RNA genes in fission yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:339-47. [DOI: 10.1016/j.bbagrm.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
|
24
|
Castro SI, Hleap JS, Cárdenas H, Blouin C. Molecular organization of the 5S rDNA gene type II in elasmobranchs. RNA Biol 2015; 13:391-9. [PMID: 26488198 PMCID: PMC4841605 DOI: 10.1080/15476286.2015.1100796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022] Open
Abstract
The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.
Collapse
Affiliation(s)
- Sergio I. Castro
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS. Cali, Colombia
| | - Jose S. Hleap
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS. Cali, Colombia
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Heiber Cárdenas
- Grupo de Estudios en Genética Ecología Molecular y Fisiología Animal, Universidad del Valle, Cali, Colombia
| | - Christian Blouin
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Department of Computer Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
25
|
Vachon VK, Conn GL. Adenovirus VA RNA: An essential pro-viral non-coding RNA. Virus Res 2015; 212:39-52. [PMID: 26116898 DOI: 10.1016/j.virusres.2015.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
Abstract
Adenovirus (AdV) 'virus-associated' RNAs (VA RNAs) are exceptionally abundant (up to 10(8)copies/cell), heterogeneous, non-coding RNA transcripts (∼ 150-200 nucleotides). The predominant species, VA RNAI, is best recognized for its essential function in relieving the cellular anti-viral blockade of protein synthesis through inhibition of the double-stranded RNA-activated protein kinase (PKR). More recent evidence has revealed that VA RNAs also interfere with several other host cell processes, in part by virtue of the high level to which they accumulate. Following transcription by cellular RNA polymerase III, VA RNAs saturate the nuclear export protein Exportin 5 (Exp5) and the cellular endoribonculease Dicer, interfering with pre-micro (mi)RNA export and miRNA biogenesis, respectively. Dicer-processed VA RNA fragments are incorporated into the RNA-induced silencing complex (RISC) as 'mivaRNAs', where they may specifically target cellular genes. VA RNAI also interacts with other innate immune proteins, including OAS1. While intact VA RNAI has the paradoxical effect of activating OAS1, a non-natural VA RNAI construct lacking the entire Terminal Stem has been reported to be a pseudoinhibitor of OAS1. Here, we show that a VA RNAI construct corresponding to an authentic product of Dicer processing similarly fails to activate OAS1 but also retains only a modest level of inhibitory activity against PKR in contrast to the non-natural deletion construct. These findings underscore the complexity of the arms race between virus and host, and highlight the need for further exploration of the impact of VA RNAI interactions with host defenses on the outcome of AdV infection beyond that of well-established PKR inhibition. Additional contributions of VA RNAI heterogeneity resulting from variations in transcription initiation and termination to each of these functions remain open questions that are discussed here.
Collapse
Affiliation(s)
- Virginia K Vachon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Arimbasseri AG, Maraia RJ. Mechanism of Transcription Termination by RNA Polymerase III Utilizes a Non-template Strand Sequence-Specific Signal Element. Mol Cell 2015; 58:1124-32. [PMID: 25959395 DOI: 10.1016/j.molcel.2015.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 01/25/2023]
Abstract
Understanding the mechanism of transcription termination by a eukaryotic RNA polymerase (RNAP) has been limited by lack of a characterizable intermediate that reflects transition from an elongation complex to a true termination event. While other multisubunit RNAPs require multipartite cis-signals and/or ancillary factors to mediate pausing and release of the nascent transcript from the clutches of these enzymes, RNAP III does so with precision and efficiency on a simple oligo(dT) tract, independent of other cis-elements or trans-factors. We report an RNAP III pre-termination complex that reveals termination mechanisms controlled by sequence-specific elements in the non-template strand. Furthermore, the TFIIF-like RNAP III subunit C37 is required for this function of the non-template strand signal. The results reveal the RNAP III terminator as an information-rich control element. While the template strand promotes destabilization via a weak oligo(rU:dA) hybrid, the non-template strand provides distinct sequence-specific destabilizing information through interactions with the C37 subunit.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Richard J Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; Commissioned Corps, US Public Health Service.
| |
Collapse
|
27
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Arimbasseri AG, Kassavetis GA, Maraia RJ. Transcription. Comment on "Mechanism of eukaryotic RNA polymerase III transcription termination". Science 2014; 345:524. [PMID: 25082694 DOI: 10.1126/science.1253783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nielsen et al. (Reports, 28 June 2013, p. 1577) characterized their RNA polymerase III (Pol III) preparation and concluded that it requires an RNA hairpin/duplex structure for terminating transcription. We could not corroborate their findings using bona fide Pol III from two laboratory sources. We show that Pol III efficiently terminates transcription in the absence of a hairpin/duplex in vitro and in vivo.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - George A Kassavetis
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Richard J Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA. Commissioned Corps, U.S. Public Health Service.
| |
Collapse
|
29
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
30
|
Soma A, Sugahara J, Onodera A, Yachie N, Kanai A, Watanabe S, Yoshikawa H, Ohnuma M, Kuroiwa H, Kuroiwa T, Sekine Y. Identification of highly-disrupted tRNA genes in nuclear genome of the red alga, Cyanidioschyzon merolae 10D. Sci Rep 2014; 3:2321. [PMID: 23900518 PMCID: PMC3728597 DOI: 10.1038/srep02321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/10/2013] [Indexed: 12/03/2022] Open
Abstract
The limited locations of tRNA introns are crucial for eukaryal tRNA-splicing endonuclease recognition. However, our analysis of the nuclear genome of an early-diverged red alga, Cyanidioschyzon merolae, demonstrated the first evidence of nuclear-encoded tRNA genes that contain ectopic and/or multiple introns. Some genes exhibited both intronic and permuted structures in which the 3′-half of the tRNA coding sequence lies upstream of the 5′-half, and an intron is inserted into either half. These highly disrupted tRNA genes, which account for 63% of all nuclear tRNA genes, are expressed via the orderly and sequential processing of bulge-helix-bulge (BHB) motifs at intron-exon junctions and termini of permuted tRNA precursors, probably by a C. merolae tRNA-splicing endonuclease with an unidentified subunit architecture. The results revealed a considerable diversity in eukaryal tRNA intron properties and endonuclease architectures, which will help to elucidate the acquisition mechanism of the BHB-mediated disrupted tRNA genes.
Collapse
Affiliation(s)
- Akiko Soma
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nagarajavel V, Iben JR, Howard BH, Maraia RJ, Clark DJ. Global 'bootprinting' reveals the elastic architecture of the yeast TFIIIB-TFIIIC transcription complex in vivo. Nucleic Acids Res 2013; 41:8135-43. [PMID: 23856458 PMCID: PMC3783186 DOI: 10.1093/nar/gkt611] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TFIIIB and TFIIIC are multi-subunit factors required for transcription by RNA polymerase III. We present a genome-wide high-resolution footprint map of TFIIIB–TFIIIC complexes in Saccharomyces cerevisiae, obtained by paired-end sequencing of micrococcal nuclease-resistant DNA. On tRNA genes, TFIIIB and TFIIIC form stable complexes with the same distinctive occupancy pattern but in mirror image, termed ‘bootprints’. Global analysis reveals that the TFIIIB–TFIIIC transcription complex exhibits remarkable structural elasticity: tRNA genes vary significantly in length but remain protected by TFIIIC. Introns, when present, are markedly less protected. The RNA polymerase III transcription terminator is flexibly accommodated within the transcription complex and, unexpectedly, plays a major structural role by delimiting its 3′-boundary. The ETC sites, where TFIIIC binds without TFIIIB, exhibit different bootprints, suggesting that TFIIIC forms complexes involving other factors. We confirm six ETC sites and report a new site (ETC10). Surprisingly, TFIIIC, but not TFIIIB, interacts with some centromeric nucleosomes, suggesting that interactions between TFIIIC and the centromere may be important in the 3D organization of the nucleus.
Collapse
Affiliation(s)
- V Nagarajavel
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
32
|
Arimbasseri AG, Rijal K, Maraia RJ. Transcription termination by the eukaryotic RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:318-30. [PMID: 23099421 PMCID: PMC3568203 DOI: 10.1016/j.bbagrm.2012.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/β respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
|
33
|
Rijal K, Maraia RJ. RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Res 2012; 41:139-55. [PMID: 23093604 PMCID: PMC3592421 DOI: 10.1093/nar/gks985] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How eukaryotic RNA polymerases switch from elongation to termination is unknown. Pol III subunits Rpc53 and Rpc37 (C53/37) form a heterodimer homologous to TFIIFβ/α. C53/37 promotes efficient termination and together with C11 also mediates pol III recycling in vitro. We previously developed Schizosaccharomyces pombe strains that report on two pol III termination activities: RNA oligo(U) 3′-end cleavage, and terminator readthrough. We randomly mutagenized C53 and C37 and isolated many C37 mutants with terminator readthrough but no comparable C53 mutants. The majority of C37 mutants have strong phenotypes with up to 40% readthrough and map to a C-terminal tract previously localized near Rpc2p in the pol III active center while a minority represent a distinct class with weaker phenotype, less readthrough and 3′-oligo(U) lengthening. Nascent pre-tRNAs released from a terminator by C37 mutants have shorter 3′-oligo(U) tracts than in cleavage-deficient C11 double mutants indicating RNA 3′-end cleavage during termination. We asked whether termination deficiency affects transcription output in the mutants in vivo both by monitoring intron-containing nascent transcript levels and 14C-uridine incorporation. Surprisingly, multiple termination mutants have no decrease in transcript output relative to controls. These data are discussed in context of current models of pol III transcription.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
34
|
Iben JR, Maraia RJ. tRNAomics: tRNA gene copy number variation and codon use provide bioinformatic evidence of a new anticodon:codon wobble pair in a eukaryote. RNA (NEW YORK, N.Y.) 2012; 18:1358-72. [PMID: 22586155 PMCID: PMC3383967 DOI: 10.1261/rna.032151.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
tRNA genes are interspersed throughout eukaryotic DNA, contributing to genome architecture and evolution in addition to translation of the transcriptome. Codon use correlates with tRNA gene copy number in noncomplex organisms including yeasts. Synonymous codons impact translation with various outcomes, dependent on relative tRNA abundances. Availability of whole-genome sequences allowed us to examine tRNA gene copy number variation (tgCNV) and codon use in four Schizosaccharomyces species and Saccharomyces cerevisiae. tRNA gene numbers vary from 171 to 322 in the four Schizosaccharomyces despite very high similarity in other features of their genomes. In addition, we performed whole-genome sequencing of several related laboratory strains of Schizosaccharomyces pombe and found tgCNV at a cluster of tRNA genes. We examined for the first time effects of wobble rules on correlation of tRNA gene number and codon use and showed improvement for S. cerevisiae and three of the Schizosaccharomyces species. In contrast, correlation in Schizosaccharomyces japonicus is poor due to markedly divergent tRNA gene content, and much worsened by the wobble rules. In japonicus, some tRNA iso-acceptor genes are absent and others are greatly reduced relative to the other yeasts, while genes for synonymous wobble iso-acceptors are amplified, indicating wobble use not apparent in any other eukaryote. We identified a subset of japonicus-specific wobbles that improves correlation of codon use and tRNA gene content in japonicus. We conclude that tgCNV is high among Schizo species and occurs in related laboratory strains of S. pombe (and expectedly other species), and tRNAome-codon analyses can provide insight into species-specific wobble decoding.
Collapse
Affiliation(s)
- James R. Iben
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Richard J. Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
- Commissioned Corps, US Public Health Service, Rockville, Maryland 20852, USA
- Corresponding authorE-mail
| |
Collapse
|
35
|
RNA polymerase III transcription control elements: themes and variations. Gene 2011; 493:185-94. [PMID: 21712079 DOI: 10.1016/j.gene.2011.06.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022]
Abstract
Eukaryotic genomes are punctuated by a multitude of tiny genetic elements, that share the property of being recognized and transcribed by the RNA polymerase (Pol) III machinery to produce a variety of small, abundant non-protein-coding (nc) RNAs (tRNAs, 5S rRNA, U6 snRNA and many others). The highly selective, efficient and localized action of Pol III at its minute genomic targets is made possible by a handful of cis-acting regulatory elements, located within the transcribed region (where they are bound by the multisubunit assembly factor TFIIIC) and/or upstream of the transcription start site. Most of them participate directly or indirectly in the ultimate recruitment of TFIIIB, a key multiprotein initiation factor able to direct, once assembled, multiple transcription cycles by Pol III. But the peculiar efficiency and selectivity of Pol III transcription also depends on its ability to recognize very simple and precisely positioned termination signals. Studies in the last few years have significantly expanded the set of known Pol III-associated loci in genomes and, concomitantly, have revealed unexpected features of Pol III cis-regulatory elements in terms of variety, function, genomic location and potential contribution to transcriptome complexity. Here we review, in a historical perspective, well established and newly acquired knowledge about Pol III transcription control elements, with the aim of providing a useful reference for future studies of the Pol III system, which we anticipate will be numerous and intriguing for years to come.
Collapse
|
36
|
The TFIIF-like Rpc37/53 dimer lies at the center of a protein network to connect TFIIIC, Bdp1, and the RNA polymerase III active center. Mol Cell Biol 2011; 31:2715-28. [PMID: 21536656 DOI: 10.1128/mcb.05151-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic RNA polymerase III (Pol III) relies on a transcription factor TFIIF-like Rpc37/53 subcomplex for promoter opening, elongation, termination, and reinitiation. By incorporating the photoreactive amino acid p-benzoyl-L-phenylalanine (BPA) into Rpc37, Rpc53, and the Rpc2 subunit of Pol III, we mapped protein-protein interactions, revealing the position of Rpc37/53 within the Pol III preinitiation complex (PIC). BPA photo-cross-linking was combined with site-directed hydroxyl radical probing to localize the Rpc37/53 dimerization module on the lobe/external 2 domains of Rpc2, in similarity to the binding of TFIIF on Pol II. N terminal to the dimerization domain, Rpc53 binds the Pol III-specific subunits Rpc82 and Rpc34, the Pol III stalk, and the assembly factor TFIIIC, essential for PIC formation. The C-terminal domain of Rpc37 interacts extensively with Rpc2 and Rpc34 and contains binding sites for initiation factor Bdp1. We also located the C-terminal domain of Rpc37 within the Pol III active center in the ternary elongation complex, where it likely functions in accurate termination. Our work explains how the Rpc37/53 dimer is anchored on the Pol III core and acts as a hub to integrate a protein network for initiation and termination.
Collapse
|
37
|
Maraia RJ, Lamichhane TN. 3' processing of eukaryotic precursor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:362-75. [PMID: 21572561 PMCID: PMC3092161 DOI: 10.1002/wrna.64] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Biogenesis of eukaryotic tRNAs requires transcription by RNA polymerase III and subsequent processing. 5' processing of precursor tRNA occurs by a single mechanism, cleavage by RNase P, and usually occurs before 3' processing although some conditions allow observation of the 3'-first pathway. 3' processing is relatively complex and is the focus of this review. Precursor RNA 3'-end formation begins with pol III termination generating a variable length 3'-oligo(U) tract that represents an underappreciated and previously unreviewed determinant of processing. Evidence that the pol III-intrinsic 3'exonuclease activity mediated by Rpc11p affects 3'oligo(U) length is reviewed. In addition to multiple 3' nucleases, precursor tRNA(pre-tRNA) processing involves La and Lsm, distinct oligo(U)-binding proteins with proposed chaperone activities. 3' processing is performed by the endonuclease RNase Z or the exonuclease Rex1p (possibly others) along alternate pathways conditional on La. We review a Schizosaccharomyces pombe tRNA reporter system that has been used to distinguish two chaperone activities of La protein to its two conserved RNA binding motifs. Pre-tRNAs with structural impairments are degraded by a nuclear surveillance system that mediates polyadenylation by the TRAMP complex followed by 3'-digestion by the nuclear exosome which appears to compete with 3' processing. We also try to reconcile limited data on pre-tRNA processing and Lsm proteins which largely affect precursors but not mature tRNAs.A pathway is proposed in which 3' oligo(U) length is a primary determinant of La binding with subsequent steps distinguished by 3'-endo versus exo nucleases,chaperone activities, and nuclear surveillance.
Collapse
Affiliation(s)
- Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver NationalInstitute of Child Health and Human Development, NationalInstitutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
38
|
Iben JR, Mazeika JK, Hasson S, Rijal K, Arimbasseri AG, Russo AN, Maraia RJ. Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Res 2011; 39:6100-13. [PMID: 21450810 PMCID: PMC3152337 DOI: 10.1093/nar/gkr182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase III recognizes and pauses at its terminator, an oligo(dT) tract in non-template DNA, terminates 3' oligo(rU) synthesis within this sequence, and releases the RNA. The pol III subunit Rpc11p (C11) mediates RNA 3'-5' cleavage in the catalytic center of pol III during pausing. The amino and carboxyl regions of C11 are homologous to domains of the pol II subunit Rpb9p, and the pol II elongation and RNA cleavage factor, TFIIS, respectively. We isolated C11 mutants from Schizosaccharomyces pombe that cause pol III to readthrough terminators in vivo. Mutant RNA confirmed the presence of terminator readthrough transcripts. A predominant mutation site, F32, resides in the C11 Rpb9-like domain. Another mutagenic approach confirmed the F32 mutation and also isolated I34 and Y30 mutants. Modeling Y30, F32 and I34 of C11 in available cryoEM pol III structures predicts a hydrophobic patch that may interface with C53/37. Another termination mutant, Rpc2-T455I, appears to reside internally, near the RNA-DNA hybrid. We show that the Rpb9 and TFIIS homologous mutants of C11 reflect distinct activities, that differentially affect terminator recognition and RNA 3' cleavage. We propose that these C11 domains integrate action at the upper jaw and center of pol III during termination.
Collapse
Affiliation(s)
- James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Commissioned Corps, US Public Health Service, Bethesda, MD, USA. 20892
| | | | | | | | | | | | | |
Collapse
|
39
|
Orioli A, Pascali C, Quartararo J, Diebel KW, Praz V, Romascano D, Percudani R, van Dyk LF, Hernandez N, Teichmann M, Dieci G. Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. Nucleic Acids Res 2011; 39:5499-512. [PMID: 21421562 PMCID: PMC3141230 DOI: 10.1093/nar/gkr074] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3′-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T≥4 stretch within 50 bp of 3′-flanking region. In vitro analysis of tDNAs with a distanced T≥4 revealed the existence of non-canonical terminators resembling degenerate T≥5 elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3′ trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3′-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3′-trailer sequences with the potential to contribute novel functional ncRNAs.
Collapse
Affiliation(s)
- Andrea Orioli
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Transcription termination in the plasmid/virus hybrid pSSVx from Sulfolobus islandicus. Extremophiles 2010; 14:453-63. [PMID: 20734095 DOI: 10.1007/s00792-010-0325-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/16/2010] [Indexed: 01/17/2023]
Abstract
The pSSVx from Sulfolobus islandicus, strain REY15/4, is a hybrid between a plasmid and a fusellovirus. A systematic study previously performed revealed the presence of nine major transcripts, the expression of which was differentially and temporally regulated over the growth cycle of S. islandicus. In this study, two new transcripts were identified. Then, 3' termini of all the RNAs were mapped using adaptor RT-PCR and RNase protection assays, and termination/arrest positions were identified for each transcript. The majority of the identified ending positions were located in the close vicinity of a T-rich sequence and this was consistent with termination signals identifiable for most of archaeal genes. Furthermore, termination also occurred at locations where a T-track sequence was absent but a stem-loop structure could be formed. We propose that an alternative mechanism based on secondary RNA structures and counter-transcripts might be responsible for the transcription termination at these T-track-minus loci in the closely spaced pSSVx genes.
Collapse
|
41
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
42
|
Kassavetis GA, Prakash P, Shim E. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J Biol Chem 2009; 285:2695-706. [PMID: 19940126 DOI: 10.1074/jbc.m109.074013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C53 and C37 subunits of RNA polymerase III (pol III) form a subassembly that is required for efficient termination; pol III lacking this subcomplex displays increased processivity of RNA chain elongation. We show that the C53/C37 subcomplex additionally plays a role in formation of the initiation-ready open promoter complex similar to that of the Brf1 N-terminal zinc ribbon domain. In the absence of C53 and C37, the transcription bubble fails to stably propagate to and beyond the transcriptional start site even when the DNA template is supercoiled. The C53/C37 subcomplex also stimulates the formation of an artificially assembled elongation complex from its component DNA and RNA strands. Protein-RNA and protein-DNA photochemical cross-linking analysis places a segment of C53 close to the RNA 3' end and transcribed DNA strand at the catalytic center of the pol III elongation complex. We discuss the implications of these findings for the mechanism of transcriptional termination by pol III and propose a structural as well as functional correspondence between the C53/C37 subcomplex and the RNA polymerase II initiation factor TFIIF.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
43
|
Hirtreiter A, Grohmann D, Werner F. Molecular mechanisms of RNA polymerase--the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Res 2009; 38:585-96. [PMID: 19906731 PMCID: PMC2811020 DOI: 10.1093/nar/gkp928] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transcription elongation in vitro is affected by the interactions between RNA polymerase (RNAP) subunits and the nucleic acid scaffold of the ternary elongation complex (TEC, RNAP-DNA–RNA). We have investigated the role of the RNAP subunits F/E (homologous to eukaryotic RPB4/7) during transcription elongation and termination using a wholly recombinant archaeal RNAP and synthetic nucleic acid scaffolds. The F/E complex greatly stimulates the processivity of RNAP, it enhances the formation of full length products, reduces pausing, and increases transcription termination facilitated by weak termination signals. Mutant variants of F/E that are defective in RNA binding show that these activities correlate with the nucleic acid binding properties of F/E. However, a second RNA-binding independent component also contributes to the stimulatory activities of F/E. In summary, our results suggest that interactions between RNAP subunits F/E and the RNA transcript are pivotal to the molecular mechanisms of RNAP during transcription elongation and termination.
Collapse
Affiliation(s)
- Angela Hirtreiter
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
44
|
The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat Cell Biol 2009; 11:1268-71. [PMID: 19749744 DOI: 10.1038/ncb1972] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/15/2009] [Indexed: 11/09/2022]
Abstract
Vault particles are conserved organelles implicated in multidrug resistance and intracellular transport. They contain three different proteins and non-coding vault RNAs (vRNAs). Here we show that human vRNAs produce several small RNAs (svRNAs) by mechanisms different from those in the canonical microRNA (miRNA) pathway. At least one of these svRNAs, svRNAb, associates with Argonaute proteins to guide sequence-specific cleavage and regulate gene expression similarly to miRNAs. We demonstrate that svRNAb downregulates CYP3A4, a key enzyme in drug metabolism. Our findings expand the repertoire of small regulatory RNAs and assign, for the first time, a function to vRNAs that may help explain the association between vault particles and drug resistance.
Collapse
|
45
|
Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009; 23:1247-69. [PMID: 19487567 DOI: 10.1101/gad.1792809] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Gene transcription in the cell nucleus is a complex and highly regulated process. Transcription in eukaryotes requires three distinct RNA polymerases, each of which employs its own mechanisms for initiation, elongation, and termination. Termination mechanisms vary considerably, ranging from relatively simple to exceptionally complex. In this review, we describe the present state of knowledge on how each of the three RNA polymerases terminates and how mechanisms are conserved, or vary, from yeast to human.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
46
|
Spitalny P, Thomm M. A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol Microbiol 2007; 67:958-70. [PMID: 18182021 PMCID: PMC2253867 DOI: 10.1111/j.1365-2958.2007.06084.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An archaeal histone gene from the hyperthermophile Pyrococcus furiosus containing four consecutive putative oligo-dT terminator sequences was used as a model system to investigate termination signals and the mechanism of termination in vitro. The archaeal RNA polymerase terminated with high efficiency at the first terminator at 90°C when it contained five to six T residues, at 80°C readthrough was significantly increased. A putative hairpin structure upstream of the first terminator had no effect on termination efficiency. Template competition experiments starting with RNA polymerase molecules engaged in ternary complexes revealed recycling of RNA polymerase from the terminator to the promoter of the same template. This facilitated reinitiation was dependent upon the presence of a terminator sequence suggesting that pausing at the terminator is required for recycling as in the RNA polymerase III system. Replacement of the sequences immediately downstream of the oligo-dT terminator by an AT-rich segment improved termination efficiency. Both AT-rich and GC-rich downstream sequences seemed to impair the facilitated reinitiation pathway. Our data suggest that recycling is dependent on a subtle interplay of pausing of RNA polymerase at the terminator and RNA polymerase translocation beyond the oligo-dT termination signal that is dramatically affected by downstream sequences.
Collapse
Affiliation(s)
- Patrizia Spitalny
- Department of Microbiology, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | |
Collapse
|
47
|
Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y. Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 2007; 318:450-3. [PMID: 17947580 DOI: 10.1126/science.1145718] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A computational analysis of the nuclear genome of a red alga, Cyanidioschyzon merolae, identified 11 transfer RNA (tRNA) genes in which the 3' half of the tRNA lies upstream of the 5' half in the genome. We verified that these genes are expressed and produce mature tRNAs that are aminoacylated. Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.
Collapse
Affiliation(s)
- Akiko Soma
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Yee NS, Gong W, Huang Y, Lorent K, Dolan AC, Maraia RJ, Pack M. Mutation of RNA Pol III subunit rpc2/polr3b Leads to Deficiency of Subunit Rpc11 and disrupts zebrafish digestive development. PLoS Biol 2007; 5:e312. [PMID: 18044988 PMCID: PMC2229849 DOI: 10.1371/journal.pbio.0050312] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 09/26/2007] [Indexed: 11/18/2022] Open
Abstract
The role of RNA polymerase III (Pol III) in developing vertebrates has not been examined. Here, we identify a causative mutation of the second largest Pol III subunit, polr3b, that disrupts digestive organ development in zebrafish slim jim (slj) mutants. The slj mutation is a splice-site substitution that causes deletion of a conserved tract of 41 amino acids in the Polr3b protein. Structural considerations predict that the slj Pol3rb deletion might impair its interaction with Polr3k, the ortholog of an essential yeast Pol III subunit, Rpc11, which promotes RNA cleavage and Pol III recycling. We engineered Schizosaccharomyces pombe to carry an Rpc2 deletion comparable to the slj mutation and found that the Pol III recovered from this rpc2-delta yeast had markedly reduced levels of Rpc11p. Remarkably, overexpression of cDNA encoding the zebrafish rpc11 ortholog, polr3k, rescued the exocrine defects in slj mutants, indicating that the slj phenotype is due to deficiency of Rpc11. These data show that functional interactions between Pol III subunits have been conserved during eukaryotic evolution and support the utility of zebrafish as a model vertebrate for analysis of Pol III function.
Collapse
Affiliation(s)
- Nelson S Yee
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Weilong Gong
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ying Huang
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kristin Lorent
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Amy C Dolan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richard J Maraia
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Pack
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
49
|
Bayfield MA, Kaiser TE, Intine RV, Maraia RJ. Conservation of a masked nuclear export activity of La proteins and its effects on tRNA maturation. Mol Cell Biol 2007; 27:3303-12. [PMID: 17308035 PMCID: PMC1899964 DOI: 10.1128/mcb.00026-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/01/2007] [Accepted: 02/14/2007] [Indexed: 11/20/2022] Open
Abstract
La is an RNA-processing-associated phosphoprotein so highly conserved that the human La protein (hLa) can replace the tRNA-processing function of the fission yeast La protein (Sla1p) in vivo. La proteins contain multiple trafficking elements that support interactions with RNAs in different subcellular locations. Prior data indicate that deletion of a nuclear retention element (NRE) causes nuclear export of La and dysfunctional processing of associated pre-tRNAs that are spliced but 5' and 3' unprocessed, with an accompanying decrease in tRNA-mediated suppression, in fission yeast. To further pursue these observations, we first identified conserved residues in the NREs of hLa and Sla1p that when substituted mimic the NRE deletion phenotype. NRE-defective La proteins then deleted of other motifs indicated that RNA recognition motif 1 (RRM1) is required for nuclear export. Mutations of conserved RRM1 residues restored nuclear accumulation of NRE-defective La proteins. Some RRM1 mutations restored nuclear accumulation, prevented disordered pre-tRNA processing, and restored suppression, indicating that the tRNA-related activity of RRM1 and its nuclear export activity could be functionally separated. When mapped onto an hLa structure, the export-sensitive residues comprised surfaces distinct from the RNA-binding surface of RRM1. The data indicate that the NRE has been conserved to mask or functionally override an equally conserved nuclear export activity of RRM1. The data suggest that conserved elements mediate nuclear retention, nuclear export, and RNA-binding activities of the multifunctional La protein and that their interrelationship contributes to the ability of La to engage its different classes of RNA ligands in different cellular locations.
Collapse
Affiliation(s)
- Mark A Bayfield
- Intramural Research Program, National Institute of Child Health and Human Development, U.S. National Institutes of Health, Bethesda, MD 20892-2426, USA
| | | | | | | |
Collapse
|
50
|
Banks CAS, Kong SE, Spahr H, Florens L, Martin-Brown S, Washburn MP, Conaway JW, Mushegian A, Conaway RC. Identification and Characterization of a Schizosaccharomyces pombe RNA Polymerase II Elongation Factor with Similarity to the Metazoan Transcription Factor ELL. J Biol Chem 2007; 282:5761-9. [PMID: 17150956 DOI: 10.1074/jbc.m610393200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
ELL family transcription factors activate the rate of transcript elongation by suppressing transient pausing by RNA polymerase II at many sites along the DNA. ELL-associated factors 1 and 2 (EAF1 and EAF2) bind stably to ELL family members and act as strong positive regulators of their transcription activities. Orthologs of ELL and EAF have been identified in metazoa, but it has been unclear whether such RNA polymerase II elongation factors are utilized in lower eukaryotes. Using bioinformatic and biochemical approaches, we have identified a new Schizosaccharomyces pombe RNA polymerase II elongation factor that is composed of two subunits designated SpELL and SpEAF, which share weak sequence similarity with members of the metazoan ELL and EAF families. Like mammalian ELL-EAF, SpELL-SpEAF stimulates RNA polymerase II transcription elongation and pyrophosphorolysis. In addition, like many yeast RNA polymerase II elongation factors, deletion of the SpELL gene renders S. pombe sensitive to the drug 6-azauracil. Finally, phylogenetic analyses suggest that the SpELL and SpEAF proteins are evolutionarily conserved in many fungi but not in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Charles A S Banks
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|