1
|
Mellor P, Kendall S, Hammond SA, Plett R, Kyrylenko L, Saxena A, Anderson DH. Expression of CREB3L1 blocks key cancer pathways and suppresses metastasis of lung squamous cell carcinoma cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167845. [PMID: 40228676 DOI: 10.1016/j.bbadis.2025.167845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Lung cancer is the leading cause of death due to cancer, with higher mortality rates than cancers of the colon, breast and prostate combined. About one quarter of lung cancers are lung squamous cell carcinomas (LUSC), with a five-year survival rate of only 16 %. We discovered that the majority of LUSCs have reduced expression of a key transcription factor CREB3L1 (cAMP responsive element binding protein 3 like 1), known to function as a metastasis suppressor in breast, bladder and ovarian cancers. In this report, we set out to determine if CREB3L1 functions as a metastasis suppressor in LUSCs. A differential gene expression analysis showed that ectopic expression of CREB3L1 in NCI-H2170 and NCI-1703 cells caused significant reductions in many signaling pathway genes involved in promoting cell viability, survival, migration and angiogenesis. Expression of CREB3L1 was able to reduce cell migration and anchorage-independent growth in soft agar in NCI-H2170, NCI-H1703 and NCI-H226 LUSC cells. Expression of CREB3L1 had less impact on the growth of primary xenograft tumors for NCI-H2170 and NCI-H1703 cells, the latter of which formed atypical masses filled with blood. In contrast, xenografts of NCI-H226 expressing CREB3L1 showed significant reductions in primary tumor growth. Finally, in a mouse metastasis assay, expression of CREB3L1 in NCI-H2170 cells significantly reduced the formation of liver metastases and in NCI-H226 cells, lung metastases, as compared to their respective CREB3L1-deficient parental LUSC cells. Taken together, these results strongly support a role for CREB3L1 as a metastasis suppressor in lung squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Paul Mellor
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Stephanie Kendall
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - S Austin Hammond
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Riley Plett
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Liliia Kyrylenko
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Anurag Saxena
- Department of Pathology and Lab Medicine, Royal University Hospital, 2841 - 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Deborah H Anderson
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada; Department of Oncology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada; Discovery and Translational Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
2
|
Mellor P, Kendall S, Smith S, Saxena A, Anderson DH. Reduced CREB3L1 expression in triple negative and luminal a breast cancer cells contributes to enhanced cell migration, anchorage-independent growth and metastasis. PLoS One 2022; 17:e0271090. [PMID: 35802566 PMCID: PMC9269740 DOI: 10.1371/journal.pone.0271090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Women with metastatic breast cancer have a disheartening 5-year survival rate of only 28%. CREB3L1 (cAMP-responsive element binding protein 3 like 1) is a metastasis suppressor that functions as a transcription factor, and in an estrogen-dependent model of rat breast cancer, it repressed the expression of genes that promote breast cancer progression and metastasis. In this report, we set out to determine the expression level of CREB3L1 across different human breast cancer subtypes and determine whether CREB3L1 functions as a metastasis suppressor, particularly in triple negative breast cancers (TNBCs). CREB3L1 expression was generally increased in luminal A, luminal B and HER2 breast cancers, but significantly reduced in a high proportion (75%) of TNBCs. Two luminal A (HCC1428, T47D) and two basal TNBC (HCC1806, HCC70) CREB3L1-deficient breast cancer cell lines were characterized as compared to their corresponding HA-CREB3L1-expressing counterparts. HA-CREB3L1 expression significantly reduced both cell migration and anchorage-independent growth in soft agar but had no impact on cell proliferation rates as compared to the CREB3L1-deficient parental cell lines. Restoration of CREB3L1 expression in HCC1806 cells was also sufficient to reduce mammary fat pad tumor formation and lung metastases in mouse xenograft models of breast cancer as compared to the parental HCC1806 cells. These results strongly support a metastasis suppressor role for CREB3L1 in human luminal A and TNBCs. Further, the ability to identify the subset of luminal A (7%) and TNBCs (75%) that are CREB3L1-deficient provides opportunities to stratify patients that would benefit from additional treatments to treat their more metastatic disease.
Collapse
Affiliation(s)
- Paul Mellor
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Stephanie Kendall
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shari Smith
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anurag Saxena
- Department of Pathology and Lab Medicine, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Deborah H. Anderson
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
3
|
Marshall JDS, Mellor P, Ruan X, Whitecross DE, Moore SA, Anderson DH. Insight into the PTEN - p85α interaction and lipid binding properties of the p85α BH domain. Oncotarget 2018; 9:36975-36992. [PMID: 30651929 PMCID: PMC6319338 DOI: 10.18632/oncotarget.26432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway plays a key role in regulating cell growth and cell survival and is frequently deregulated in cancer cells. p85α regulates the p110α lipid kinase, and also stabilizes and stimulates PTEN, the lipid phosphatase that downregulates this pathway. In this report, we determined that the p85α BH domain binds several phosphorylated phosphoinositide lipids, an interaction that could help localize p85α to membranes rich in these lipids. We also identified key residues responsible for mediating PTEN – p85α complex formation. Based on these experimental results, a docking model for the PTEN – p85α BH domain complex was developed that is consistent with the known binding interactions for both PTEN and p85α. This model involves extensive side-chain and peptide backbone contacts between both the PASE and C2 domains of PTEN with the p85α BH domains. The p85α BH domain residues shown to be important for PTEN binding were p85α residues E212, Q221, K225, R228 and H234. We also verified experimentally the importance of PTEN-E91 in mediating the interaction with the p85α BH domain. These results shed new light on the mechanism of PTEN regulation by p85α.
Collapse
Affiliation(s)
- Jeremy D S Marshall
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.,Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Paul Mellor
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Xuan Ruan
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Dielle E Whitecross
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Stanley A Moore
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Deborah H Anderson
- Cancer Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.,Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.,Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
4
|
Mellor P, Marshall JDS, Ruan X, Whitecross DE, Ross RL, Knowles MA, Moore SA, Anderson DH. Patient-derived mutations within the N-terminal domains of p85α impact PTEN or Rab5 binding and regulation. Sci Rep 2018; 8:7108. [PMID: 29740032 PMCID: PMC5940657 DOI: 10.1038/s41598-018-25487-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
The p85α protein regulates flux through the PI3K/PTEN signaling pathway, and also controls receptor trafficking via regulation of Rab-family GTPases. In this report, we determined the impact of several cancer patient-derived p85α mutations located within the N-terminal domains of p85α previously shown to bind PTEN and Rab5, and regulate their respective functions. One p85α mutation, L30F, significantly reduced the steady state binding to PTEN, yet enhanced the stimulation of PTEN lipid phosphatase activity. Three other p85α mutations (E137K, K288Q, E297K) also altered the regulation of PTEN catalytic activity. In contrast, many p85α mutations reduced the binding to Rab5 (L30F, I69L, I82F, I177N, E217K), and several impacted the GAP activity of p85α towards Rab5 (E137K, I177N, E217K, E297K). We determined the crystal structure of several of these p85α BH domain mutants (E137K, E217K, R262T E297K) for bovine p85α BH and found that the mutations did not alter the overall domain structure. Thus, several p85α mutations found in human cancers may deregulate PTEN and/or Rab5 regulated pathways to contribute to oncogenesis. We also engineered several experimental mutations within the p85α BH domain and identified L191 and V263 as important for both binding and regulation of Rab5 activity.
Collapse
Affiliation(s)
- Paul Mellor
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Jeremy D S Marshall
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada.,Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Xuan Ruan
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Dielle E Whitecross
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Rebecca L Ross
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom
| | - Margaret A Knowles
- Section of Experimental Oncology, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom
| | - Stanley A Moore
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Deborah H Anderson
- Cancer Research Group, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada. .,Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
5
|
Basquin C, Malardé V, Mellor P, Anderson DH, Meas-Yedid V, Olivo-Marin JC, Dautry-Varsat A, Sauvonnet N. The signalling factor PI 3-kinase is a specific regulator of the clathrin-independent dynamin-dependent endocytosis of IL-2 receptors. J Cell Sci 2013; 126:1099-108. [DOI: 10.1242/jcs.110932] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Receptor-mediated endocytosis is an essential process used by eukaryotic cells to internalise many molecules. Several clathrin-independent endocytic routes exist but the molecular mechanism of each pathway remains to be uncovered. This study focuses on a clathrin-independent, dynamin-dependent pathway used by interleukin 2 receptors (IL-2R), essential players of the immune response. Rac1 and its targets the p21-activated kinases (Pak) are specific regulators of this pathway, acting on cortactin and actin polymerization. Here, our study reveals a dual and specific role of phosphatidylinositol 3-kinase (PI 3-kinase) in IL-2R endocytosis. Firstly, the inhibition of the catalytic activity of PI 3-kinase strongly affects IL-2R endocytosis, in contrast to transferrin (Tf) uptake, a marker of the clathrin-mediated pathway. Moreover, Vav2, a GTPase exchange factor (GEF) induced upon PI 3-kinase activation, is specifically involved in IL-2R entry. The second action of PI 3-kinase is via its regulatory subunit, p85α, which binds to and recruits Rac1 during IL-2R internalisation. Indeed, the overexpression of a p85α mutant missing the Rac1 binding motif, leads to the specific inhibition of IL-2R endocytosis. The inhibitory effect of this p85α mutant could be rescued by the overexpression of either Rac1 or the active form of Pak, indicating that p85α acts upstream of the Rac1-Pak cascade. Finally, biochemical and fluorescent microscopy techniques reveal an interaction between p85α, Rac1 and IL-2R that is enhanced by IL-2. In summary our results point out a key role of class I PI 3-kinase in IL-2R endocytosis that creates a link with IL-2 signalling.
Collapse
|
6
|
Evans JV, Ammer AG, Jett JE, Bolcato CA, Breaux JC, Martin KH, Culp MV, Gannett PM, Weed SA. Src binds cortactin through an SH2 domain cystine-mediated linkage. J Cell Sci 2012; 125:6185-97. [PMID: 23097045 DOI: 10.1242/jcs.121046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.
Collapse
Affiliation(s)
- Jason V Evans
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem J 2011; 441:23-37. [DOI: 10.1042/bj20111164] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The p85α protein is best known as the regulatory subunit of class 1A PI3Ks (phosphoinositide 3-kinases) through its interaction, stabilization and repression of p110-PI3K catalytic subunits. PI3Ks play multiple roles in the regulation of cell survival, signalling, proliferation, migration and vesicle trafficking. The present review will focus on p85α, with special emphasis on its important roles in the regulation of PTEN (phosphatase and tensin homologue deleted on chromosome 10) and Rab5 functions. The phosphatidylinositol-3-phosphatase PTEN directly counteracts PI3K signalling through dephosphorylation of PI3K lipid products. Thus the balance of p85α–p110 and p85α–PTEN complexes determines the signalling output of the PI3K/PTEN pathway, and under conditions of reduced p85α levels, the p85α–PTEN complex is selectively reduced, promoting PI3K signalling. Rab5 GTPases are important during the endocytosis, intracellular trafficking and degradation of activated receptor complexes. The p85α protein helps switch off Rab5, and if defective in this p85α function, results in sustained activated receptor tyrosine kinase signalling and cell transformation through disrupted receptor trafficking. The central role for p85α in the regulation of PTEN and Rab5 has widened the scope of p85α functions to include integration of PI3K activation (p110-mediated), deactivation (PTEN-mediated) and receptor trafficking/signalling (Rab5-mediated) functions, all with key roles in maintaining cellular homoeostasis.
Collapse
|
8
|
Shimabukuro Y, Terashima H, Takedachi M, Maeda K, Nakamura T, Sawada K, Kobashi M, Awata T, Oohara H, Kawahara T, Iwayama T, Hashikawa T, Yanagita M, Yamada S, Murakami S. Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. J Cell Physiol 2010; 226:809-21. [DOI: 10.1002/jcp.22406] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Jiang B, Tang G, Cao K, Wu L, Wang R. Molecular mechanism for H(2)S-induced activation of K(ATP) channels. Antioxid Redox Signal 2010; 12:1167-78. [PMID: 19769462 DOI: 10.1089/ars.2009.2894] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hydrogen sulfide (H(2)S) is an endogenous opener of K(ATP) channels in many different types of cells. However, the molecular mechanism for an interaction between H(2)S and K(ATP) channel proteins remains unclear. The whole-cell patch-clamp technique and mutagenesis approach were used to examine the effects of H(2)S on different K(ATP) channel subunits, rvKir6.1 and rvSUR1, heterologously expressed in HEK-293 cells. H(2)S stimulated coexpressed rvKir6.1/rvSUR1 K(ATP) channels, but had no effect on K(ATP) currents generated by rvKir6.1 expression alone. Intracellularly applied sulfhydryl alkylating agent (N-ethylmaleimide, NEM), oxidizing agent (chloramine T, CLT), and a disulfide bond-oxidizing enzyme (protein disulfide isomerase) did not alter H(2)S effects on this recombinant channels. CLT, but not NEM, inhibited basal rvKir6.1/rvSUR1 currents, and both abolished the stimulatory effects of H(2)S on K(ATP) currents, when applied extracellularly. After selective cysteine residues (C6S and C26S but not C1051S and C1057S) in the extracellular loop of rvSUR1 subunits were point-mutated, H(2)S lost its stimulatory effects on rvKir6.1/rvSUR1 currents. Our results demonstrate that H(2)S interacts with Cys6 and Cys26 residues of the extracellular N terminal of rvSUR1 subunit of K(ATP) channel complex. Direct chemical modification of rvSUR1 subunit protein constitutes a molecular mechanism for the activation of K(ATP) channels by H(2)S.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Physiology & Pathophysiology, College of Medicine, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
10
|
Chamberlain MD, Chan T, Oberg JC, Hawrysh AD, James KM, Saxena A, Xiang J, Anderson DH. Disrupted RabGAP function of the p85 subunit of phosphatidylinositol 3-kinase results in cell transformation. J Biol Chem 2008; 283:15861-8. [PMID: 18387942 DOI: 10.1074/jbc.m800941200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab proteins regulate vesicle fusion events during the endocytosis, recycling, and degradation of activated receptor tyrosine kinases. The p85alpha subunit of phosphatidylinositol 3-kinase has GTPase-activating protein activity toward Rab5 and Rab4, an activity severely reduced by a single point mutation (p85-R274A). Expression of p85-R274A resulted in increased platelet-derived growth factor receptor (PDGFR) activation and downstream signaling (Akt and MAPK) and in decreased PDGFR degradation. We now report that the biological consequences of p85-R274A expression cause cellular transformation as determined by the following: aberrant morphological phenotype, loss of contact inhibition, growth in soft agar, and tumor formation in nude mice. Immunohistochemistry shows that the tumors contain activated PDGFR and high levels of activated Akt. Coexpression of a dominant negative Rab5-S34N mutant attenuated these transformed properties. Our results demonstrate that disruption of the RabGAP function of p85alpha due to a single point mutation (R274A) is sufficient to cause cellular transformation via a phosphatidylinositol 3-kinase-independent mechanism partially reversed by Rab5-S34N expression. This critical new role for p85 in the regulation of Rab function suggests a novel role for p85 in controlling receptor signaling and trafficking through its effects on Rab GTPases.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wavreille AS, Garaud M, Zhang Y, Pei D. Defining SH2 domain and PTP specificity by screening combinatorial peptide libraries. Methods 2007; 42:207-19. [PMID: 17532507 PMCID: PMC2041848 DOI: 10.1016/j.ymeth.2007.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022] Open
Abstract
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.
Collapse
Affiliation(s)
- Anne-Sophie Wavreille
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Mathieu Garaud
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Yanyan Zhang
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Dehua Pei
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
12
|
McFie PJ, Wang GL, Timchenko NA, Wilson HL, Hu X, Roesler WJ. Identification of a Co-repressor That Inhibits the Transcriptional and Growth-Arrest Activities of CCAAT/Enhancer-binding Protein α. J Biol Chem 2006; 281:18069-80. [PMID: 16644732 DOI: 10.1074/jbc.m512734200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used a yeast two-hybrid screening approach to identify novel interactors of CCAAT/enhancer-binding protein alpha (C/EBPalpha) that may offer insight into its mechanism of action and regulation. One clone obtained was that for CA150, a nuclear protein previously characterized as a transcriptional elongation factor. In this report, we show that CA150 is a widely expressed co-repressor of C/EBP proteins. Two-hybrid and co-immunoprecipitation analyses indicated that CA150 interacts with C/EBPalpha. Overexpression of CA150 inhibited the transactivation produced by C/EBPalpha and was also able to reverse the enhancing effect of the co-activator p300 on C/EBPbeta-mediated transactivation. Analysis of C/EBPalpha mutants indicated that CA150 interacts with C/EBPalpha primarily through a domain spanning amino acids 135-150. Chromatin immunoprecipitation assays showed that CA150 was present on a promoter that is repressed by C/EBPalpha but not present on a promoter that is activated by C/EBPalpha. Finally, we showed that in cells in which growth arrest had been induced by ectopic expression of C/EBPalpha, CA150 was able to release them from growth arrest. Interestingly, CA150 could not reverse the growth arrest produced by the minimal growth-arrest domain of C/EBPalpha (amino acids 175-217), suggesting that the effect of CA150 was directed at a region of C/EBPalpha outside of this minimal domain, consistent with our two-hybrid analysis. Taken together, these data indicate that CA150 is a co-repressor of C/EBP proteins and provides a possible mechanism for how C/EBPalpha can repress transcription of specific genes.
Collapse
Affiliation(s)
- Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Ignatiuk A, Quickfall JP, Hawrysh AD, Chamberlain MD, Anderson DH. The Smaller Isoforms of Ankyrin 3 Bind to the p85 Subunit of Phosphatidylinositol 3′-Kinase and Enhance Platelet-derived Growth Factor Receptor Down-regulation. J Biol Chem 2006; 281:5956-64. [PMID: 16377635 DOI: 10.1074/jbc.m510032200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Src homology 2 (SH2) domains of the p85 subunit of phosphatidylinositol 3'-kinase have been shown to bind to the tyrosine-phosphorylated platelet-derived growth factor receptor (PDGFR). Previously, we have demonstrated that p85 SH2 domains can also bind to the serine/threonine kinase A-Raf via a unique phosphorylation-independent interaction. In this report, we describe a new phosphotyrosine-independent p85 SH2-binding protein, ankyrin 3 (Ank3). In general, ankyrins serve a structural role by binding to both integral membrane proteins at the plasma membrane and spectrin/fodrin proteins of the cytoskeleton. However, smaller isoforms of Ank3 lack the membrane domain and are localized to late endosomes and lysosomes. We found that p85 binds directly to these smaller 120- and 105-kDa Ank3 isoforms. Both the spectrin domain and the regulatory domain of Ank3 are involved in binding to p85. At least two domains of p85 can bind to Ank3, and the interaction involving the p85 C-SH2 domain was found to be phosphotyrosine-independent. Overexpression of the 120- or 105-kDa Ank3 proteins resulted in significantly enhanced PDGFR degradation and a reduced ability to proliferate in response to PDGF. Ank3 overexpression also differentially regulated signaling pathways downstream from the PDGFR. Chloroquine, an inhibitor of lysosomal-mediated degradation pathways, blocked the ability of Ank3 to enhance PDGFR degradation. Immunofluorescence experiments demonstrated that both small Ank3 isoforms colocalized with the lysosomal-associated membrane protein and with p85 and the PDGFR. These results suggest that Ank3 plays an important role in lysosomal-mediated receptor down-regulation, likely through a p85-Ank3 interaction.
Collapse
Affiliation(s)
- Ashley Ignatiuk
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, 20 Campus Drive, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | | | | | |
Collapse
|
14
|
Muscella A, Urso L, Calabriso N, Ciccarese A, Migoni D, Fanizzi FP, Di Jeso B, Storelli C, Marsigliante S. Differential response of normal, dedifferentiated and transformed thyroid cell lines to cisplatin treatment. Biochem Pharmacol 2005; 71:50-60. [PMID: 16297374 DOI: 10.1016/j.bcp.2005.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 11/19/2022]
Abstract
The effects of cisplatin (cisPt) on the extra cellular signal-regulated kinase (ERK) and the protein kinase B (PKB/Akt), known to play important roles in promoting cell survival and in down regulating apoptosis, were investigated in thyroid cell lines. The cytotoxic effect of cisPt was highest in normal PC-Cl3 cells, intermediate in dedifferentiated PC-E1A and PC-raf cells and lowest in fully transformed and tumorigenic PC-E1Araf cells. CisPt provoked ERK phosphorylation; such phosphorylation was unaltered by Gö6976, a conventional PKC inhibitor, whilst blocked by low doses (0.1 microM) or high doses (10 microM) of GF109203X, an inhibitor of all PKC isozymes, in PC-Cl3 and in PC-E1Araf cells, respectively. In PC-E1Araf, but not in PC-Cl3 cells, the cisPt-provoked ERK phosphorylation was also blocked by a myristoylated PKC-zeta pseudo substrate peptide (PS-zeta). The cytotoxic effects of cisPt increased when cells were pre-incubated with the mitogen-activated protein kinase (MEK) inhibitor PD98059. CisPt provoked the phosphorylation of PKB/Akt and this effect was blocked by LY294002, a PI3K inhibitor. In PC-Cl3 cells pre-incubated with LY294002 the effects of cisPt on ERK phosphorylation and cell mortality resulted unaffected; conversely, LY294002 reduced the ERK phosphorylation and increased cisPt cytotoxity of in PC-E1Araf cells. Furthermore, in PC-E1Araf cells pre-incubated with LY294002 and PS-zeta ERK phosphorylation was abolished and cisPt cytotoxicity was highest. Altogether results highlight a role for PKCs in the upstream regulation of ERK pathway facing the cell response to cisPt treatments. Understanding the mechanisms by which cells process cisPt provides important insights for designing more efficient platinum-based drugs.
Collapse
Affiliation(s)
- Antonella Muscella
- General Pathology Laboratory, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università di Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hanna ST, Cao K, Wang R. Interaction of acetylcholine with Kir6.1 channels heterologously expressed in human embryonic kidney cells. Eur J Pharmacol 2005; 515:34-42. [PMID: 15894309 DOI: 10.1016/j.ejphar.2005.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 04/05/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Kir6.1 subunit is one of the pore-forming components of K(ATP) channel complex. The endogenous modulation of Kir6.1 subunit function has been largely unknown. Whether acetylcholine modulated the function of Kir6.1 subunit stably expressed in human embryonic kidney (HEK-293) cells was examined in the present study using the whole-cell patch-clamp technique. Acetylcholine from 1-100 microM concentration-dependently stimulated the heteologously expressed and PNU-37883A sensitive Kir6.1 channels (p<0.05). Co-expression of sulphonylurea receptor 1 subunit with Kir6.1 significantly inhibited the stimulatory effect of acetylcholine on K(ATP) currents. Pretreatment of the transfected HEK-293 cells with atropine, alpha-bungarotoxin, mecamylamine, prazocine, propranolol, or dihydro-beta-erythroidine hydrobromide did not alter the stimulatory effect of acetylcholine on Kir6.1 currents. When intracellular ATP was increased from 0.3 mM to 5 mM, acetylcholine at 10 microM still exhibited its stimulatory effect (-16.4+/-2.3 to -25.5+/-3.8 pA/pF, n=8, p<0.05). In conclusion, we have demonstrated an excitatory effect of acetylcholine on Kir6.1 channels, which is mediated neither by an acetylcholine receptor-dependent mechanism, nor by alteration in ATP metabolism.
Collapse
Affiliation(s)
- Salma Toma Hanna
- Department of Physiology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
| | | | | |
Collapse
|
16
|
Hanna ST, Cao K, Sun X, Wang R. Mediation of the Effect of Nicotine on Kir6.1 Channels by Superoxide Anion Production. J Cardiovasc Pharmacol 2005; 45:447-55. [PMID: 15821440 DOI: 10.1097/01.fjc.0000159046.35241.4e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
KATP channels are a complex of regulatory sulfonylurea receptor subunits and the pore-forming inward rectifiers such as Kir6.1. Using the whole-cell patch-clamp technique, we investigated the interaction of nicotine with the Kir6.1 subunit as well as the underlying mechanism. Stable expression of Kir6.1 in HEK-293 cells yielded a detectable inward rectifier KATP current. This inward current was significantly inhibited by PNU-37883A and by a specific anti-Kir6.1 antibody. Nicotine at 30 and 100 microM increased Kir6.1 currents by 42 +/- 11.8% and 26.2 +/- 14.6%, respectively (n = 4-6, P < 0.05). In contrast, nicotine at 1-3 mM inhibited Kir6.1 currents (P < 0.05). Nicotine at 100 microM increased the production of superoxide anion (O2) by 20.3 +/- 5.7%, whereas at 1 mM it significantly decreased the production of O2 by 37.7 +/- 4.3%. Coapplication of hypoxanthine (HX) and xanthine oxidase (XO) to the transfected HEK-293 cells resulted in a significant and reproducible increase in Kir6.1 currents (P < 0.05). The stimulatory effect of HX/XO on Kir6.1 current was abolished by tempol, a scavenger of O2. Tempol also abolished the stimulatory effect of 30 muM nicotine on Kir6.1 currents. In conclusion, nicotine stimulates Kir6.1 channel at least in part through the production of O2.
Collapse
Affiliation(s)
- Salma Toma Hanna
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
17
|
Chamberlain MD, Anderson DH. Measurement of the interaction of the p85alpha subunit of phosphatidylinositol 3-kinase with Rab5. Methods Enzymol 2005; 403:541-52. [PMID: 16473618 DOI: 10.1016/s0076-6879(05)03047-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During endocytosis of the activated platelet-derived growth factor (PDGF) receptor, phosphatidylinositol 3-kinase (PI3K) remains associated with the receptor. We found that the p85 alpha subunit of PI3 kinase binds directly to Rab5 and possesses GTPase activating protein (GAP) activity toward Rab5. Rab5 is a small monomeric GTPase involved in regulating vesicle fusion events during receptor-mediated endocytosis. We used two methods to characterize the direct binding between Rab5 in various nucleotide-bound states and the p85 protein. In the first assay, the ability of p85 to bind to Rab5 is measured using an enzyme-linked immunosorbent assay (ELISA). The second assay is a glutathione S-transferase (GST) pull-down approach in which GST-Rab5 proteins in various nucleotide-bound states are allowed to bind p85. In both instances, bound p85 is detected using anti-p85 antibodies.
Collapse
|
18
|
Mahon ES, Hawrysh AD, Chagpar RB, Johnson LM, Anderson DH. A-Raf associates with and regulates platelet-derived growth factor receptor signalling. Cell Signal 2004; 17:857-68. [PMID: 15763428 DOI: 10.1016/j.cellsig.2004.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/25/2022]
Abstract
Raf kinases are important intermediates in epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) mediated activation of the mitogen-activated protein kinase (MAPK) pathway. In this report, we show that the A-Raf kinase is associated with activated EGF receptor complexes and with PDGF receptor (PDGFR) complexes independent of prior PDGF treatment. The ability of A-Raf to associate with receptor tyrosine kinases could provide a Ras-GTP-independent mechanism for the membrane localization of A-Raf. Expression of a partially activated A-Raf mutant resulted in decreased tyrosine phosphorylation of the PDGFR, specifically on Y857 (autophosphorylation site) and Y1021 (phospholipase Cgamma1 (PLCgamma1) binding site), but not the binding sites for other signalling proteins (Nck, phosphatidylinositol 3'-kinase (PI3K), RasGAP, Grb2, SHP). Activated A-Raf expression also altered the activation of PLCgamma1, and p85-associated PI3K. Thus, A-Raf can regulate PLCgamma1 signalling via a PDGFR-dependent mechanism and may also regulate PI3K signalling via a PDGFR-independent mechanism.
Collapse
Affiliation(s)
- Elizabeth S Mahon
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Ave., Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
19
|
Chamberlain MD, Berry TR, Pastor MC, Anderson DH. The p85alpha subunit of phosphatidylinositol 3'-kinase binds to and stimulates the GTPase activity of Rab proteins. J Biol Chem 2004; 279:48607-14. [PMID: 15377662 DOI: 10.1074/jbc.m409769200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab5 and Rab4 are small monomeric GTPases localized on early endosomes and function in vesicle fusion events. These Rab proteins regulate the endocytosis and recycling or degradation of activated receptor tyrosine kinases such as the platelet-derived growth factor receptor (PDGFR). The p85alpha subunit of phosphatidylinositol 3'-kinase contains a BH domain with sequence homology to GTPase activating proteins (GAPs), but has not previously been shown to possess GAP activity. In this report, we demonstrate that p85alpha has GAP activity toward Rab5, Rab4, Cdc42, Rac1 and to a lesser extent Rab6, with little GAP activity toward Rab11. Purified recombinant Rab5 and p85alpha can bind directly to each other and not surprisingly, the p85alpha-encoded GAP activity is present in the BH domain. Because p85alpha stays bound to the PDGFR during receptor endocytosis, p85alpha will also be localized to the same early endosomal compartment as Rab5 and Rab4. Taken together, the physical co-localization and the ability of p85alpha to preferentially stimulate the down-regulation of Rab5 and Rab4 GTPases suggests that p85alpha regulates how long Rab5 and Rab4 remain in their GTP-bound active state. Cells expressing BH domain mutants of p85 show a reduced rate of PDGFR degradation as compared with wild type p85 expressing cells. These cells also show sustained activation of the mitogen-activated protein kinase and Akt pathways. Thus, the p85alpha protein may play a role in the down-regulation of activated receptors through its temporal control of the GTPase cycles of Rab5 and Rab4.
Collapse
Affiliation(s)
- M Dean Chamberlain
- Cancer Research Unit, Health Research Division, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7N 4H4, Canada
| | | | | | | |
Collapse
|
20
|
Clark RE, Miskimins WK, Miskimins R. Phosphatidylinositol-3 kinase p85 enhances expression from the myelin basic protein promoter in oligodendrocytes. J Neurochem 2002; 83:565-73. [PMID: 12390518 DOI: 10.1046/j.1471-4159.2002.01139.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatidylinositol-3 kinase (PI3K) is a family of enzymes that phosphorylates the D3 position of phosphoinositides in membranes which can then act as a second messenger and affect many essential cellular processes such as survival, proliferation and differentiation. Class IA PI3K is composed of two subunits: a regulatory subunit, p85, and a catalytic subunit, p110. The p85 subunit is composed of several adapter domains which, upon interaction with the appropriate molecules, transmit the signal to activate p110. We have used the spontaneously immortalized oligodendrocyte cell line, CG4, to examine the role of PI3K in maturation of the oligodendrocyte. We show that overexpression of the p85 subunit enhances expression of myelin basic protein (MBP) upon differentiation of CG4 cells and primary oligodendrocytes. In experiments in CG4 cells, neither cotransfection with the tumor suppressor PTEN, which dephosphorylates the D3 position of phosphoinositides, nor inhibition of PI3K activity with wortmannin mimics this effect. Further, we have shown that this effect is dependent on the coexpression of the two SH2 domains within p85. Thus, the p85-mediated enhancement of MBP promoter activity in oligodendrocytes appears to be independent of PI3K activity and dependent on the adapter functions of the p85 subunit's SH2 domains.
Collapse
Affiliation(s)
- Robert E Clark
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 East Clark Street, Vermillion, SD 57069, USA
| | | | | |
Collapse
|
21
|
Abstract
With the rapid accumulation of genetic information, development of general experimental approach suitable for large scale annotation and profiling of the whole proteome have become one of the major challenges in postgenomic era. Biomolecular display technologies, which allow expressing of a large pool of modularly coded biomolecules, are extremely useful for accessing and analyzing protein diversity and interaction profile on a large scale. Recent advances in protein display technologies and their applications to proteomic analyses have been discussed.
Collapse
Affiliation(s)
- D Ma
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
22
|
Fang Y, Johnson LM, Mahon ES, Anderson DH. Two phosphorylation-independent sites on the p85 SH2 domains bind A-Raf kinase. Biochem Biophys Res Commun 2002; 290:1267-74. [PMID: 11812000 DOI: 10.1006/bbrc.2002.6347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.
Collapse
Affiliation(s)
- Yun Fang
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Avenue, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | | | | | | |
Collapse
|
23
|
Rodi DJ, Makowski L, Kay BK. One from column A and two from column B: the benefits of phage display in molecular-recognition studies. Curr Opin Chem Biol 2002; 6:92-6. [PMID: 11827830 DOI: 10.1016/s1367-5931(01)00287-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent uses of phage-displayed combinatorial peptide and cDNA libraries have proven invaluable in mapping protein-protein interactions, protein-drug interactions, and the generation of 'molecular therapeutics'. This article reviews some of the findings of the past year and points out some of the pros and cons of phage display as compared with those of yeast two-hybrid screening.
Collapse
Affiliation(s)
- Diane J Rodi
- Combinatorial Biology Unit, Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | | | | |
Collapse
|
24
|
Mizejewski GJ. Peptides as receptor ligand drugs and their relationship to G-coupled signal transduction. Expert Opin Investig Drugs 2001; 10:1063-73. [PMID: 11772235 DOI: 10.1517/13543784.10.6.1063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptides act as effector agents that regulate and/or mediate physiological processes, serving as hormones, neurotransmitters and signal transducing factors. The low molecular weight peptides affect receptor-mediated events, which influence cardiovascular, gastrointestinal and neurocranial systems. While some peptides have been marketed as drugs, many have served as leads or templates for the development of non-peptide drugs that mimic peptide actions. This review presents the advantages and disadvantages of using peptides as drugs that bind as ligands to cell-surface receptors and considers their applications in such events. The value of both the peptides and their mimics is based on their participation in the biomodulation of physiological processes, which frequently employ scaffolding proteins acting in a cascading sequence of protein-to-protein interactions. The peptides bind to G-coupled surface receptors to initiate a signal that is transduced to the interior of the cell through multiple layers of phosphorylating enzymes and binding proteins. Peptides have been further employed to identify the molecular targets of signal transduction, the uncoupling of which might provide a means for various disease therapies. The exploitation of such peptide-mediated signal pathways, which are of primary importance to tumour cells, may provide an attractive strategy for anticancer therapy in the future.
Collapse
Affiliation(s)
- G J Mizejewski
- Wadsworth Center, New York State Dept. of Health, Empire State Plaza, Albany, NY 12201, USA.
| |
Collapse
|