1
|
Liao ZH, Kuo TC, Kao CH, Chou TM, Kao YH, Huang RN. Identification of the chitinase genes from the diamondback moth, Plutella xylostella. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:769-780. [PMID: 27417424 DOI: 10.1017/s0007485316000511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitinases have an indispensable function in chitin metabolism and are well characterized in numerous insect species. Although the diamondback moth (DBM) Plutella xylostella, which has a high reproductive potential, short generation time, and characteristic adaptation to adverse environments, has become one of the most serious pests of cruciferous plants worldwide, the information on the chitinases of the moth is presently limited. In the present study, using degenerated polymerase chain reaction (PCR) and rapid amplification of cDNA ends-PCR strategies, four chitinase genes of P. xylostella were cloned, and an exhaustive search was conducted for chitinase-like sequences from the P. xylostella genome and transcriptomic database. Based on the domain analysis of the deduced amino acid sequences and the phylogenetic analysis of the catalytic domain sequences, we identified 15 chitinase genes from P. xylostella. Two of the gut-specific chitinases did not cluster with any of the known phylogenetic groups of chitinases and might be in a new group of the chitinase family. Moreover, in our study, group VIII chitinase was not identified. The structures, classifications and expression patterns of the chitinases of P. xylostella were further delineated, and with this information, further investigations on the functions of chitinase genes in DBM could be facilitated.
Collapse
Affiliation(s)
- Z H Liao
- Department of Life Science,National Central University,Chung-Li,Taoyuan,Taiwan 320,ROC
| | - T C Kuo
- Department of Biochemistry,Taipei Medical University,250 Wu-Hsing Street,Taipei 110,Taiwan
| | - C H Kao
- Applied Zoology Division,Taiwan Agricultural Research Institute,Council of Agriculture,Executive Yua,Wufeng,Taichung 41362,Taiwan
| | - T M Chou
- Applied Zoology Division,Taiwan Agricultural Research Institute,Council of Agriculture,Executive Yua,Wufeng,Taichung 41362,Taiwan
| | - Y H Kao
- Department of Life Science,National Central University,Chung-Li,Taoyuan,Taiwan 320,ROC
| | - R N Huang
- Department of Entomology,College of Bioresources and Agriculture, National Taiwan University,Taipei 106,Taiwan
| |
Collapse
|
2
|
Jankiewicz U, Brzezinska MS. Purification, characterization, and gene cloning of a chitinase fromStenotrophomonas maltophiliaN4. J Basic Microbiol 2015; 55:709-17. [DOI: 10.1002/jobm.201400717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/09/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Urszula Jankiewicz
- Department of Biochemistry; Warsaw University of Life Sciences; SGGW Warsaw Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology; Institute of Ecology and Environmental Protection; Nicolaus Copernicus University; Torun Poland
| |
Collapse
|
3
|
Palazzo A, Marconi S, Specchia V, Bozzetti MP, Ivics Z, Caizzi R, Marsano RM. Functional characterization of the Bari1 transposition system. PLoS One 2013; 8:e79385. [PMID: 24244492 PMCID: PMC3828361 DOI: 10.1371/journal.pone.0079385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023] Open
Abstract
The transposons of the Bari family are mobile genetic elements widespread in the Drosophila genus. However, despite a broad diffusion, virtually no information is available on the mechanisms underlying their mobility. In this paper we report the functional characterization of the Bari elements transposition system. Using the Bari1 element as a model, we investigated the subcellular localization of the transposase, its physical interaction with the transposon, and its catalytic activity. The Bari1 transposase localized in the nucleus and interacted with the terminal sequences of the transposon both in vitro and in vivo, however, no transposition activity was detected in transposition assays. Profiling of mRNAs expressed by the transposase gene revealed the expression of abnormal, internally processed transposase transcripts encoding truncated, catalytically inactive transposase polypeptides. We hypothesize that a post-transcriptional control mechanism produces transposase-derived polypeptides that effectively repress transposition. Our findings suggest further clues towards understanding the mechanisms that control transposition of an important class of mobile elements, which are both an endogenous source of genomic variability and widely used as transformation vectors/biotechnological tools.
Collapse
Affiliation(s)
| | - Simona Marconi
- Dipartimento di Biologia, Università di Bari, Bari, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | | |
Collapse
|
4
|
Jankiewicz U, Brzezinska MS, Saks E. Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. J Biosci Bioeng 2012; 113:30-5. [DOI: 10.1016/j.jbiosc.2011.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 11/15/2022]
|
5
|
Pan Y, Lü P, Wang Y, Yin L, Ma H, Ma G, Chen K, He Y. In silico identification of novel chitinase-like proteins in the silkworm, Bombyx mori, genome. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:150. [PMID: 23461297 PMCID: PMC3646613 DOI: 10.1673/031.012.15001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/10/2012] [Indexed: 05/26/2023]
Abstract
In insects, chitinases participate in the periodic shedding of old exoskeletons and the turnover of peritrophic membranes. Chitinase family members have been identified in dozens of species, including Tribolium castaneum, Drosophila melanogaster, and Anopheles gambiae. In this study, nine chitinases and three hypothetical chitinases have been identified in Bombyx mori L. (Lepidoptera: Bombycidae) through genome-wide searching. Phylogenetic analyses revealed that seven of them belong to the seven chitinase groups, respectively. BmCht25 and BmCht26 could not be grouped into the known chitinase groups, and might belong to two new groups of the chitinase family. BmCht10, BmCht25, and BmIDGF have glutamate amino acid substitutions in the active catalytic domain. Only BmCht5 and BmCht10 contain CBD domain and PEST sequences (rich in proline, glutamic acid, serine, and threonine). BmCht5 and BmCht26 are located on chromosome 7, and others (BmCht6, BmCht7, BmCht10, BmCht11, BmCht20, BmIDGF) are located on separate chromosomes of Bombyx mori, respectively. The present study provides important background information for future studies using Bombyx mori as a model organism for insect development and virus and host interaction.
Collapse
Affiliation(s)
- Ye Pan
- The Laboratory Animal Research Center, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R China
- These authors contributed equally to this paper
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 21201 3, P. R. China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 21201 3, P. R. China
- These authors contributed equally to this paper
| | - Yong Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 21201 3, P. R. China
| | - Lijing Yin
- The Laboratory Animal Research Center, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R China
| | - Hexiang Ma
- The Laboratory Animal Research Center, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R China
| | - Guohong Ma
- The Laboratory Animal Research Center, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 21201 3, P. R. China
| | - Yuanqing He
- The Laboratory Animal Research Center, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 21201 3, P. R. China
| |
Collapse
|
6
|
Demattei MV, Hedhili S, Sinzelle L, Bressac C, Casteret S, Moiré N, Cambefort J, Thomas X, Pollet N, Gantet P, Bigot Y. Nuclear importation of Mariner transposases among eukaryotes: motif requirements and homo-protein interactions. PLoS One 2011; 6:e23693. [PMID: 21876763 PMCID: PMC3158080 DOI: 10.1371/journal.pone.0023693] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/22/2011] [Indexed: 12/13/2022] Open
Abstract
Mariner-like elements (MLEs) are widespread transposable elements in animal genomes. They have been divided into at least five sub-families with differing host ranges. We investigated whether the ability of transposases encoded by Mos1, Himar1 and Mcmar1 to be actively imported into nuclei varies between host belonging to different eukaryotic taxa. Our findings demonstrate that nuclear importation could restrict the host range of some MLEs in certain eukaryotic lineages, depending on their expression level. We then focused on the nuclear localization signal (NLS) in these proteins, and showed that the first 175 N-terminal residues in the three transposases were required for nuclear importation. We found that two components are involved in the nuclear importation of the Mos1 transposase: an SV40 NLS-like motif (position: aa 168 to 174), and a dimerization sub-domain located within the first 80 residues. Sequence analyses revealed that the dimerization moiety is conserved among MLE transposases, but the Himar1 and Mcmar1 transposases do not contain any conserved NLS motif. This suggests that other NLS-like motifs must intervene in these proteins. Finally, we showed that the over-expression of the Mos1 transposase prevents its nuclear importation in HeLa cells, due to the assembly of transposase aggregates in the cytoplasm.
Collapse
Affiliation(s)
| | - Sabah Hedhili
- CIRAD, UMR 1098 Développement et Amélioration des Plantes, Montpellier, France
| | - Ludivine Sinzelle
- Metamorphosys, CNRS UPS3201-Université d'Evry Val d'Essonne, Genavenir 3 - Genopole Campus 1, Evry, France
| | | | - Sophie Casteret
- PRC, UMR INRA-CNRS 6175, Nouzilly, France
- GICC, UMR CNRS 6239, UFR des Sciences et Techniques, Tours, France
| | | | - Jeanne Cambefort
- GICC, UMR CNRS 6239, UFR des Sciences et Techniques, Tours, France
| | - Xavier Thomas
- GICC, UMR CNRS 6239, UFR des Sciences et Techniques, Tours, France
| | - Nicolas Pollet
- Metamorphosys, CNRS UPS3201-Université d'Evry Val d'Essonne, Genavenir 3 - Genopole Campus 1, Evry, France
| | - Pascal Gantet
- CIRAD, UMR 1098 Développement et Amélioration des Plantes, Montpellier, France
| | - Yves Bigot
- PRC, UMR INRA-CNRS 6175, Nouzilly, France
- * E-mail:
| |
Collapse
|
7
|
Fan Y, Guo S, Pei X, Zhang Y, Luo Z, Pei Y. Effects of chitin binding domain on enzymatic properties and insecticidal activity of Bombyx mori chitinase. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0607-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Keith JH, Fraser TS, Fraser MJ. Analysis of the piggyBac transposase reveals a functional nuclear targeting signal in the 94 c-terminal residues. BMC Mol Biol 2008; 9:72. [PMID: 18694511 PMCID: PMC2532691 DOI: 10.1186/1471-2199-9-72] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 08/11/2008] [Indexed: 11/30/2022] Open
Abstract
Background The piggyBac transposable element is a popular tool for germ-line transgenesis of eukaryotes. Despite this, little is known about the mechanism of transposition or the transposase (TPase) itself. A thorough understanding of just how piggyBac works may lead to more effective use of this important mobile element. A PSORTII analysis of the TPase amino acid sequence predicts a bipartite nuclear localization signal (NLS) near the c-terminus, just upstream of a putative ZnF (ZnF). Results We fused the piggyBac TPase upstream of and in-frame with the enhanced yellow fluorescent protein (EYFP) in the Drosophila melanogaster inducible metallothionein protein. Using Drosophila Schneider 2 (S2) cells and the deep red fluorescent nuclear stain Draq5, we were able to track the pattern of piggyBac localization with a scanning confocal microscope 48 hours after induction with copper sulphate. Conclusion Through n and c-terminal truncations, targeted internal deletions, and specific amino acid mutations of the piggyBac TPase open reading frame, we found that not only is the PSORTII-predicted NLS required for the TPase to enter the nucleus of S2 cells, but there are additional requirements for negatively charged amino acids a short length upstream of this region for nuclear localization.
Collapse
|
9
|
Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:452-466. [PMID: 18342250 DOI: 10.1016/j.ibmb.2007.06.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/20/2007] [Accepted: 06/27/2007] [Indexed: 05/26/2023]
Abstract
A bioinformatics-based investigation of three insect species with completed genome sequences has revealed that insect chitinase-like proteins (glycosylhydrolase family 18) are encoded by a rather large and diverse group of genes. We identified 16, 16 and 13 putative chitinase-like genes in the genomic databases of the red flour beetle, Tribolium castaneum, the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. Chitinase-like proteins encoded by this gene family were classified into five groups based on phylogenetic analyses. Group I chitinases are secreted proteins that are the most abundant such enzymes in molting fluid and/or integument, and represent the prototype enzyme of the family, with a single copy each of the catalytic domain and chitin-binding domain (ChBD) connected by an S/T-rich linker polypeptide. Group II chitinases are unusually larger-sized secreted proteins that contain multiple catalytic domains and ChBDs. Group III chitinases contain two catalytic domains and are predicted to be membrane-anchored proteins. Group IV chitinases are the most divergent. They usually lack a ChBD and/or an S/T-rich linker domain, and are known or predicted to be secreted proteins found in gut or fat body. Group V proteins include the putative chitinase-like imaginal disc growth factors (IDGFs). In each of the three insect genomes, multiple genes encode group IV and group V chitinase-like proteins. In contrast, groups I-III are each represented by only a singe gene in each species.
Collapse
Affiliation(s)
- Qingsong Zhu
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
10
|
Souza DS, Grossi-de-Sa MF, Silva LP, Franco OL, Gomes-Junior JE, Oliveira GR, Rocha TL, Magalhães CP, Marra BM, Grossi-de-Sa M, Romano E, de Sá CM, Kombrink E, Jiménez AV, Abreu LR. Identification of a novel β-N-acetylhexosaminidase (Pcb-NAHA1) from marine Zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa, Zoanthidea). Protein Expr Purif 2008; 58:61-9. [DOI: 10.1016/j.pep.2007.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 10/28/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
11
|
Daimon T, Katsuma S, Iwanaga M, Kang W, Shimada T. The BmChi-h gene, a bacterial-type chitinase gene of Bombyx mori, encodes a functional exochitinase that plays a role in the chitin degradation during the molting process. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:1112-23. [PMID: 16102417 DOI: 10.1016/j.ibmb.2005.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2005] [Revised: 05/06/2005] [Accepted: 05/10/2005] [Indexed: 05/04/2023]
Abstract
The silkworm, Bombyx mori, has been recently demonstrated to contain a bacterial-type chitinase gene (BmChi-h) in addition to a well-characterized endochitinase gene (BmChitinase). The deduced amino acid sequence of BmChi-h showed extensive structural similarities with chitinases from bacteria such as Serratia marcescens chiA and baculoviruses (v-CHIA). Bacterial-type chitinase genes have not been found from any eukaryotes and viruses except for lepidopteran insects and lepidopteran baculoviruses. Thus, it was suggested that BmChi-h may be derived from a bacterial or baculovirus chitinase gene via horizontal gene transfer. In this report, we investigated the biological function of BmChi-h. Our enzymological study indicated that a chitinase encoded by BmChi-h has exo-type substrate preference, which is the same as S. marcescens chiA and v-CHIA, and different from BmChitinase, which has endo-type substrate preference. An immunohistochemical study revealed that BmChi-h localizes in the chitin-containing tissues during the molting stages, indicating that it plays a role in chitin degradation during molting. These results suggest that BmChi-h (exochitinase) and BmChitinase (endochitinase) may catalyze a native chitin by a concerted mechanism. Cloning and comparison of BmChi-h orthologues revealed that bacterial-type chitinase genes are highly conserved among lepidopteran insects, suggesting that the utilization of a bacterial-type chitinase during the molting process may be a general feature of lepidopteran insects.
Collapse
Affiliation(s)
- Takaaki Daimon
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
12
|
Iida A, Tachibana A, Hamada S, Hori H, Koga A. Low transposition frequency of the medaka fish Tol2 element may be due to extranuclear localization of its transposase. Genes Genet Syst 2005; 79:119-24. [PMID: 15215677 DOI: 10.1266/ggs.79.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transposase proteins of some highly active DNA-based transposable elements, such as the maize Activator element, are known to possess nuclear localization signals (NLSs). We examined if this is also the case for the transposase of the medaka fish Tol2 element, a member of the hAT (hobo/Activator/Tam3) transposable element family, using human and mouse culture cells. Unexpectedly, the transposase-lacZ fusion protein, in which the lacZ is a location marker, was found to be present in the cytoplasm rather than in the nucleus, suggesting that the Tol2 transposase contains a signal for extranuclear localization. The same staining pattern was also observed with a fusion protein containing a 33-amino-acid region at about the center of the primary structure of the transposase. The Tol2 element might have a mechanism to control its transposition frequency that includes extranuclear localization of its transposase.
Collapse
Affiliation(s)
- Atsuo Iida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
13
|
Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 2003; 206:4393-412. [PMID: 14610026 DOI: 10.1242/jeb.00709] [Citation(s) in RCA: 768] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARY
Chitin is one of the most important biopolymers in nature. It is mainly produced by fungi, arthropods and nematodes. In insects, it functions as scaffold material, supporting the cuticles of the epidermis and trachea as well as the peritrophic matrices lining the gut epithelium. Insect growth and morphogenesis are strictly dependent on the capability to remodel chitin-containing structures. For this purpose, insects repeatedly produce chitin synthases and chitinolytic enzymes in different tissues. Coordination of chitin synthesis and its degradation requires strict control of the participating enzymes during development. In this review, we will summarize recent advances in understanding chitin synthesis and its degradation in insects.
Collapse
Affiliation(s)
- Hans Merzendorfer
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | |
Collapse
|
14
|
Daimon T, Hamada K, Mita K, Okano K, Suzuki MG, Kobayashi M, Shimada T. A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:749-759. [PMID: 12878222 DOI: 10.1016/s0965-1748(03)00084-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have cloned and characterized a novel chitinase gene (BmChi-h) from the silkworm, Bombyx mori. BmChi-h cDNA has an open reading frame of 1,665 nucleotides, encoding a protein of 555 amino acid residues. The predicted protein shared extensive similarities with bacterial and baculovirus chitinases in both amino acid sequences (73% identity with Serratia marcescens chiA and 63% with Autographa californica nucleopolyhedrovirus chiA) and domain architectures. BmChi-h was a single-copy gene and located on chromosome 7. The expression of BmChi-h mRNA was observed in a stage- and tissue-specific manner that was almost identical to that of another chitinase gene previously cloned from B. mori. We further determined the overall genomic organization of BmChi-h. There was no intron in the ORF of BmChi-h. However, BmChi-h was transcribed from three promoters, which generated three isoforms in the 5'-UTR of the transcript. Phylogenetic analysis suggested that ancestral species of B. mori acquired the chitinase gene from a bacterium or an ancestral baculovirus via horizontal gene transfer.
Collapse
Affiliation(s)
- Takaaki Daimon
- Laboratory of Insect Genetics and Bioscience, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Arakane Y, Zhu Q, Matsumiya M, Muthukrishnan S, Kramer KJ. Properties of catalytic, linker and chitin-binding domains of insect chitinase. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:631-648. [PMID: 12770581 DOI: 10.1016/s0965-1748(03)00049-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Manduca sexta (tobacco hornworm) chitinase is a glycoprotein that consists of an N-terminal catalytic domain, a Ser/Thr-rich linker region, and a C-terminal chitin-binding domain. To delineate the properties of these domains, we have generated truncated forms of chitinase, which were expressed in insect cells using baculovirus vectors. Three additional recombinant proteins composed of the catalytic domain fused with one or two insect or plant chitin-binding domains (CBDs) were also generated and characterized. The catalytic and chitin-binding activities are independent of each other because each activity is functional separately. When attached to the catalytic domain, the CBD enhanced activity toward the insoluble polymer but not the soluble chitin oligosaccharide primarily through an effect on the Km for the former substrate. The linker region, which connects the two domains, facilitates secretion from the cell and helps to stabilize the enzyme in the presence of gut proteolytic enzymes. The linker region is extensively modified by O-glycosylation and the catalytic domain is moderately N-glycosylated. Immunological studies indicated that the linker region, along with elements of the CBD, is a major immunogenic epitope. The results support the hypothesis that the domain structure of insect chitinase evolved for efficient degradation of the insoluble polysaccharide to soluble oligosaccharides during the molting process.
Collapse
Affiliation(s)
- Yasuyuki Arakane
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
16
|
Robertson HM, Walden KKO. Bmmar6, a second mori subfamily mariner transposon from the silkworm moth Bombyx mori. INSECT MOLECULAR BIOLOGY 2003; 12:167-171. [PMID: 12653938 DOI: 10.1046/j.1365-2583.2003.00398.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A second member of the divergent mori subfamily of mariner transposons, Bmmar6, is described from the silkworm moth Bombyx mori genome. A confident consensus sequence for Bmmar6 was obtained from a single genomic copy, 17 EST sequences, and the direct sequencing of a 'family' sequence from an amplification of all full-length genomic copies. Bmmar6 is most similar to Bmmar1 in the mori subfamily, which now also includes several fly and nematode transposons. These might be viewed as a discrete family of transposons within the IS630-Tc1-mariner superfamily with a distinctive D,D37D catalytic motif, and another small divergent D,D41D clade is recognized as their sister group of transposons.
Collapse
Affiliation(s)
- H M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin, Urbana, IL 61801, USA.
| | | |
Collapse
|
17
|
Leroy H, Castagnone-Sereno P, Renault S, Augé-Gouillou C, Bigot Y, Abad P. Characterization of Mcmar1, a mariner-like element with large inverted terminal repeats (ITRs) from the phytoparasitic nematode Meloidogyne chitwoodi. Gene 2003; 304:35-41. [PMID: 12568713 DOI: 10.1016/s0378-1119(02)01144-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two copies of a new mariner-like element (MLE) presenting unusual inverted terminal repeats (ITRs), Mcmar1-1 and Mcmar1-2, were cloned and sequenced in the genome of the phytoparasitic nematode Meloidogyne chitwoodi. Although the sequence features of these Mcmar1 transposons are commonplace and link them to the mariner family, at their extremities they have large 355-pb long inverted terminal repeats that are perfectly conserved. This characteristic distinguishes them from all the other MLEs so far described that have imperfectly conserved ITRs of about 26-30 bp. In consequence, the sequenced full-length Mcmar1-1 element is 2000 bp long, and comprises an uninterrupted open reading frame (ORF) that encodes a putatively active transposase with 340 amino acid residues. The Mcmar1-2 element is a deleted form of Mcmar1-1 that contains a deletion overlapping most of the internal region of the 5'ITR and the 5' region of the transposase ORF. The presence of large ITRs in different transposons related to the Tc1-mariner super-family is discussed.
Collapse
Affiliation(s)
- Hélène Leroy
- Unité Interactions Plantes-Microorganismes et Santé Végétale, I.N.R.A., 123 Bd Francis Meilland, BP2078, 06606, Antibes Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Zheng Y, Zheng S, Cheng X, Ladd T, Lingohr EJ, Krell PJ, Arif BM, Retnakaran A, Feng Q. A molt-associated chitinase cDNA from the spruce budworm, Choristoneura fumiferana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1813-1823. [PMID: 12429133 DOI: 10.1016/s0965-1748(02)00166-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chitinase (CfChitinase) cDNA from the spruce budworm, Choristoneura fumiferana, was cloned using reverse transcription PCR and cDNA library screening. The CfChitinase cDNA was determined to be 2856 nucleotides long with the longest open reading frame made up of 1671 nucleotides that encoded a protein that was 557 amino acid long with a predicted molecular mass of 62 kDa. The deduced amino acid sequence showed 76-79% identity with other lepidopteran chitinases. Northern blots revealed that transcripts of CfChitinase appeared prior to each molt and peaked on the day of ecdysis from the second instar to the pupal stage but disappeared immediately after the molt. No transcripts could be detected in the early first instar prior to the spinning of the hibernaculum or in the diapausing second instars or during the intermolt periods of the other instars. Western blot analysis revealed that the protein appeared 12 h prior to ecdysis and disappeared 12 h after ecdysis from the sixth instar to pupal stage. The 20-hydroxyecdysone analog, tebufenozide (RH5992), induced expression of CfChitinase in the early stage of the sixth instar and caused a precocious and incomplete molt into an extra larval stage. During the sixth instar to the pupal molt, transcripts could be detected only in the epidermis and fat bodies, but not in the midgut. Western blots showed that the protein was present in the epidermis and midgut, but not in the fat bodies. The recombinant protein expressed in Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) showed high levels of chitinolytic activity with an optimal pH range 6-9. Glycosylation appeared to be necessary for the chitinolytic activity and secretion of the recombinant protein.
Collapse
Affiliation(s)
- Y Zheng
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abdel-Banat BMA, Koga D. Alternative splicing of the primary transcript generates heterogeneity within the products of the gene for Bombyx mori chitinase. J Biol Chem 2002; 277:30524-34. [PMID: 12045191 DOI: 10.1074/jbc.m112422200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene of chitinase in the silkworm, Bombyx mori, generates four mRNA products by alternative splicing. Nucleotide sequences of the entire gene for chitinase and respective cDNAs demonstrate that the pre-mRNA undergoes alternative splicing at both the 5' and 3' regions. At the 5' region, the pre-mRNA experienced differential splicing through two alternative 5'-intron consensus splicing sites. These products differ in the last amino acid of the signal peptide and the first amino acid of the mature N-terminal sequences: one with Cys(20)-Ala(21) and the other with Ser(20)-Asp(21). The product with Cys(20)-Ala(21) residues is one amino acid larger than the other with Ser(20)-Asp(21). At the 3' region the pre-mRNA of the chitinase gene undergoes alternative splicing in three different fashions. It is spliced either through retaining or excluding the upstream 121-bp direct repeat found at the 3' region of the coding sequences or through retaining or excluding of an insertion of 9 bp in a combinatorial manner. Retention or exclusion of the upstream 121-bp direct repeat results in a protein with a deduced amino acid sequence similar in size to the one retaining both direct repeats. However, exclusion of the insert of the 9 bp from the mRNA results in a protein with 22 extra amino acids. All of the mRNA products appear to be generated from a single gene as demonstrated by testing the 3' region of the genomic DNA and variant chitinase mRNA products. B. mori chitinase expression in the fifth instar larvae epidermal tissues appears to be developmentally regulated, but the phenomenon of alternative splicing of the pre-mRNA is not stage-dependent. Furthermore, the four mRNA products showed chitinase activity when expressed in Escherichia coli, which demonstrates the role of the alternative splicing process in generating multiple isoforms of the silkworm's chitinase.
Collapse
Affiliation(s)
- Babiker M A Abdel-Banat
- Laboratory of Biochemistry, Department of Biological Science, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | | |
Collapse
|