1
|
Zavarzina II, Kuzmenkov AI, Dobrokhotov NA, Maleeva EE, Korolkova YV, Peigneur S, Tytgat J, Krylov NA, Vassilevski AA, Chugunov AO. The scorpion toxin BeKm-1 blocks hERG cardiac potassium channels using an indispensable arginine residue. FEBS Lett 2024; 598:889-901. [PMID: 38563123 DOI: 10.1002/1873-3468.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.
Collapse
Affiliation(s)
- Iana I Zavarzina
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | | | - Nikita A Dobrokhotov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | | | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Belgium
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alexander A Vassilevski
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Anton O Chugunov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Tsetlin V, Shelukhina I, Kozlov S, Kasheverov I. Fifty Years of Animal Toxin Research at the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS. Int J Mol Sci 2023; 24:13884. [PMID: 37762187 PMCID: PMC10530976 DOI: 10.3390/ijms241813884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This review covers briefly the work carried out at our institute (IBCh), in many cases in collaboration with other Russian and foreign laboratories, for the last 50 years. It discusses the discoveries and studies of various animal toxins, including protein and peptide neurotoxins acting on the nicotinic acetylcholine receptors (nAChRs) and on other ion channels. Among the achievements are the determination of the primary structures of the α-bungarotoxin-like three-finger toxins (TFTs), covalently bound dimeric TFTs, glycosylated cytotoxin, inhibitory cystine knot toxins (ICK), modular ICKs, and such giant molecules as latrotoxins and peptide neurotoxins from the snake, as well as from other animal venoms. For a number of toxins, spatial structures were determined, mostly by 1H-NMR spectroscopy. Using this method in combination with molecular modeling, the molecular mechanisms of the interactions of several toxins with lipid membranes were established. In more detail are presented the results of recent years, among which are the discovery of α-bungarotoxin analogs distinguishing the two binding sites in the muscle-type nAChR, long-chain α-neurotoxins interacting with α9α10 nAChRs and with GABA-A receptors, and the strong antiviral effects of dimeric phospholipases A2. A summary of the toxins obtained from arthropod venoms includes only highly cited works describing the molecules' success story, which is associated with IBCh. In marine animals, versatile toxins in terms of structure and molecular targets were discovered, and careful work on α-conotoxins differing in specificity for individual nAChR subtypes gave information about their binding sites.
Collapse
Affiliation(s)
- Victor Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| | - Irina Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| | - Sergey Kozlov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia;
| | - Igor Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia; (I.S.); (I.K.)
| |
Collapse
|
3
|
Matsumura K, Yokogawa M, Osawa M. Peptide Toxins Targeting KV Channels. Handb Exp Pharmacol 2021; 267:481-505. [PMID: 34117930 DOI: 10.1007/164_2021_500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A number of peptide toxins isolated from animals target potassium ion (K+) channels. Many of them are particularly known to inhibit voltage-gated K+ (KV) channels and are mainly classified into pore-blocking toxins or gating-modifier toxins. Pore-blocking toxins directly bind to the ion permeation pores of KV channels, thereby physically occluding them. In contrast, gating-modifier toxins bind to the voltage-sensor domains of KV channels, modulating their voltage-dependent conformational changes. These peptide toxins are useful molecular tools in revealing the structure-function relationship of KV channels and have potential for novel treatments for diseases related to KV channels. This review focuses on the inhibition mechanism of pore-blocking and gating-modifier toxins that target KV channels.
Collapse
Affiliation(s)
- Kazuki Matsumura
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
4
|
Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel. Toxins (Basel) 2021; 13:toxins13060407. [PMID: 34201318 PMCID: PMC8273696 DOI: 10.3390/toxins13060407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
The Colombian scorpion Centruroides margaritatus produces a venom considered of low toxicity. Nevertheless, there are known cases of envenomation resulting in cardiovascular disorders, probably due to venom components that target ion channels. Among them, the humanether-à-go-go-Related gene (hERG1) potassium channels are critical for cardiac action potential repolarization and alteration in its functionality are associated with cardiac disorders. This work describes the purification and electrophysiological characterization of a Centruroides margaritatus venom component acting on hERG1 channels, the CmERG1 toxin. This novel peptide is composed of 42 amino acids with a MW of 4792.88 Da, folded by four disulfide bonds and it is classified as member number 10 of the γ-KTx1 toxin family. CmERG1 inhibits hERG1 currents with an IC50 of 3.4 ± 0.2 nM. Despite its 90.5% identity with toxin ɣ-KTx1.1, isolated from Centruroides noxius, CmERG1 completely blocks hERG1 current, suggesting a more stable plug of the hERG channel, compared to that formed by other ɣ-KTx.
Collapse
|
5
|
De Waard S, Montnach J, Ribeiro B, Nicolas S, Forest V, Charpentier F, Mangoni ME, Gaborit N, Ronjat M, Loussouarn G, Lemarchand P, De Waard M. Functional Impact of BeKm-1, a High-Affinity hERG Blocker, on Cardiomyocytes Derived from Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21197167. [PMID: 32998413 PMCID: PMC7582727 DOI: 10.3390/ijms21197167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
IKr current, a major component of cardiac repolarization, is mediated by human Ether-à-go-go-Related Gene (hERG, Kv11.1) potassium channels. The blockage of these channels by pharmacological compounds is associated to drug-induced long QT syndrome (LQTS), which is a life-threatening disorder characterized by ventricular arrhythmias and defects in cardiac repolarization that can be illustrated using cardiomyocytes derived from human-induced pluripotent stem cells (hiPS-CMs). This study was meant to assess the modification in hiPS-CMs excitability and contractile properties by BeKm-1, a natural scorpion venom peptide that selectively interacts with the extracellular face of hERG, by opposition to reference compounds that act onto the intracellular face. Using an automated patch-clamp system, we compared the affinity of BeKm-1 for hERG channels with some reference compounds. We fully assessed its effects on the electrophysiological, calcium handling, and beating properties of hiPS-CMs. By delaying cardiomyocyte repolarization, the peptide induces early afterdepolarizations and reduces spontaneous action potentials, calcium transients, and contraction frequencies, therefore recapitulating several of the critical phenotype features associated with arrhythmic risk in drug-induced LQTS. BeKm-1 exemplifies an interesting reference compound in the integrated hiPS-CMs cell model for all drugs that may block the hERG channel from the outer face. Being a peptide that is easily modifiable, it will serve as an ideal molecular platform for the design of new hERG modulators displaying additional functionalities.
Collapse
Affiliation(s)
- Stephan De Waard
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
- LabEx Ion Channels, Science & Therapeutics, F-06560 Valbonne, France;
| | - Jérôme Montnach
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
| | - Barbara Ribeiro
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
| | - Sébastien Nicolas
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
| | - Virginie Forest
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
| | - Flavien Charpentier
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
| | - Matteo Elia Mangoni
- LabEx Ion Channels, Science & Therapeutics, F-06560 Valbonne, France;
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, F34094 Montpellier, France
| | - Nathalie Gaborit
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
| | - Michel Ronjat
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
- LabEx Ion Channels, Science & Therapeutics, F-06560 Valbonne, France;
| | - Gildas Loussouarn
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
| | - Patricia Lemarchand
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
| | - Michel De Waard
- L’institut du thorax, INSERM, CNRS, Université de Nantes, F-44007 Nantes, France; (S.D.W.); (J.M.); (B.R.); (S.N.); (V.F.); (F.C.); (N.G.); (M.R.); (G.L.); (P.L.)
- LabEx Ion Channels, Science & Therapeutics, F-06560 Valbonne, France;
- Smartox Biotechnology, 6 rue des Platanes, F-38120 Saint-Egrève, France
- Correspondence: ; Tel.: +33-228-080-076
| |
Collapse
|
6
|
Chang WT, Ragazzi E, Liu PY, Wu SN. Effective block by pirfenidone, an antifibrotic pyridone compound (5-methyl-1-phenylpyridin-2[H-1]-one), on hyperpolarization-activated cation current: An additional but distinctive target. Eur J Pharmacol 2020; 882:173237. [PMID: 32525005 PMCID: PMC7276140 DOI: 10.1016/j.ejphar.2020.173237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Pirfenidone (PFD), a pyridone compound, is well recognized as an antifibrotic agent tailored for the treatment of idiopathic pulmonary fibrosis. Recently, through its anti-inflammatory and anti-oxidant effects, PFD based clinical trial has also been launched for the treatment of coronavirus disease (COVID-19). To what extent this drug can perturb membrane ion currents remains largely unknown. Herein, the exposure to PFD was observed to depress the amplitude of hyperpolarization-activated cation current (Ih) in combination with a considerable slowing in the activation time of the current in pituitary GH3 cells. In the continued presence of ivabradine or zatebradine, subsequent application of PFD decreased Ih amplitude further. The presence of PFD resulted in a leftward shift in Ih activation curve without changes in the gating charge. The addition of this compound also led to a reduction in area of voltage-dependent hysteresis evoked by long-lasting inverted triangular (downsloping and upsloping) ramp pulse. Neither the amplitude of M-type nor erg-mediated K+ current was altered by its presence. In whole-cell potential recordings, addition of PFD reduced the firing frequency, and this effect was accompanied by the depression in the amplitude of sag voltage elicited by hyperpolarizing current stimulus. Overall, this study highlights evidence that PFD is capable of perturbing specific ionic currents, revealing a potential additional impact on functional activities of different excitable cells.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Division of Cardiology, Internal Medicine, Chi-Mei Medical Center, Tainan, 71004, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 71004, Taiwan.
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Padova, Italy
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Division of Cardiology, Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan, 70401, Taiwan.
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
7
|
Bajaj S, Han J. Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy. Front Pharmacol 2019; 10:58. [PMID: 30863305 PMCID: PMC6399158 DOI: 10.3389/fphar.2019.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Ion channels play a key role in our body to regulate homeostasis and conduct electrical signals. With the help of advances in structural biology, as well as the discovery of numerous channel modulators derived from animal toxins, we are moving toward a better understanding of the function and mode of action of ion channels. Their ubiquitous tissue distribution and the physiological relevancies of their opening and closing suggest that cation channels are particularly attractive drug targets, and years of research has revealed a variety of natural toxins that bind to these channels and alter their function. In this review, we provide an introductory overview of the major cation ion channels: potassium channels, sodium channels and calcium channels, describe their venom-derived peptide modulators, and how these peptides provide great research and therapeutic value to both basic and translational medical research.
Collapse
Affiliation(s)
- Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jingyao Han
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Vasseur L, Chavanieu A, Combemale S, Caumes C, Béroud R, De Waard M, Ducrot P, Boutin JA, Ferry G, Cens T. Fluorescent analogues of BeKm-1 with high and specific activity against the hERG channel. Toxicon X 2019; 2:100010. [PMID: 32550567 PMCID: PMC7285999 DOI: 10.1016/j.toxcx.2019.100010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Peptidic toxins that target specifically mammalian channels and receptors can be found in the venom of animals. These toxins are rarely used directly as tools for biochemical experiments, and need to be modified via the attachment of chemical groups (e.g., radioactive or fluorescent moieties). Ideally, such modifications should maintain the toxin specificity and affinity for its target. With the goal of obtaining fluorescent derivatives of BeKm-1, a toxin from the scorpion species Buthus eupeus that selectively inhibits the voltage-gated potassium ion channel hERG, we produced four active analogues using a model of BeKm-1 docking to the outer mouth of the channel. In these BeKm-1 analogues, the natural peptide was linked to the fluorescent cyanine 5 (Cy5) probe via four different linkers at Arg1 or Arg/Lys27. All analogues retained their specificity towards the hERG channel in electrophysiological experiments but displayed a lesser affinity. These results validate our strategy for designing toxin analogues and demonstrate that different chemical groups can be attached to different residues of BeKm-1. Recent structural data on the hERG ion channel allow modeling BeKm-1 docking to the outer mouth of the channel. The docking model identified solvent-exposed residues in BeKm-1 sequence for the attachment of chemical groups. Four BeKm-1 analogues were produced by labeling with a fluorescent dye the end of four different linkers. Electrophysiological recordings demonstrated that BeKm-1 analogues retain the toxin affinity and specificity towards hERG.
Collapse
Affiliation(s)
- Lucie Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France
| | - Alain Chavanieu
- Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France
| | | | | | | | - Michel De Waard
- Smartox Biotechnology, Saint-Egrève, France.,Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx « Ion Channels, Science & Therapeutics », Nantes, France
| | - Pierre Ducrot
- Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A Boutin
- Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Gilles Ferry
- Pole d'expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Thierry Cens
- Institut des Biomolécules Max Mousseron, Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
K V1.2 channel-specific blocker from Mesobuthus eupeus scorpion venom: Structural basis of selectivity. Neuropharmacology 2018; 143:228-238. [PMID: 30248306 DOI: 10.1016/j.neuropharm.2018.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/25/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
Scorpion venom is an unmatched source of selective high-affinity ligands of potassium channels. There is a high demand for such compounds to identify and manipulate the activity of particular channel isoforms. The objective of this study was to obtain and characterize a specific ligand of voltage-gated potassium channel KV1.2. As a result, we report the remarkable selectivity of the peptide MeKTx11-1 (α-KTx 1.16) from Mesobuthus eupeus scorpion venom to this channel isoform. MeKTx11-1 is a high-affinity blocker of KV1.2 (IC50 ∼0.2 nM), while its activity against KV1.1, KV1.3, and KV1.6 is 10 000, 330 and 45 000 fold lower, respectively, as measured using the voltage-clamp technique on mammalian channels expressed in Xenopus oocytes. Two substitutions, G9V and P37S, convert MeKTx11-1 to its natural analog MeKTx11-3 (α-KTx 1.17) having 15 times lower activity and reduced selectivity to KV1.2. We produced MeKTx11-1 and MeKTx11-3 as well as their mutants MeKTx11-1(G9V) and MeKTx11-1(P37S) recombinantly and demonstrated that point mutations provide an intermediate effect on selectivity. Key structural elements that explain MeKTx11-1 specificity were identified by molecular modeling of the toxin-channel complexes. Confirming our molecular modeling predictions, site-directed transfer of these elements from the pore region of KV1.2 to KV1.3 resulted in the enhanced sensitivity of mutant KV1.3 channels to MeKTx11-1. We conclude that MeKTx11-1 may be used as a selective tool in neurobiology.
Collapse
|
10
|
Amorim FG, Cordeiro FA, Pinheiro-Júnior EL, Boldrini-França J, Arantes EC. Microbial production of toxins from the scorpion venom: properties and applications. Appl Microbiol Biotechnol 2018; 102:6319-6331. [PMID: 29858954 DOI: 10.1007/s00253-018-9122-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Scorpion venom are composed mainly of bioactive proteins and peptides that may serve as lead compounds for the design of biotechnological tools and therapeutic drugs. However, exploring the therapeutic potential of scorpion venom components is mainly impaired by the low yield of purified toxins from milked venom. Therefore, production of toxin-derived peptides and proteins by heterologous expression is the strategy of choice for research groups and pharmaceutical industry to overcome this limitation. Recombinant expression in microorganisms is often the first choice, since bacteria and yeast systems combine high level of recombinant protein expression, fast cell growth and multiplication and simple media requirement. Herein, we present a comprehensive revision, which describes the scorpion venom components that were produced in their recombinant forms using microbial systems. In addition, we highlight the pros and cons of performing the heterologous expression of these compounds, regarding the particularities of each microorganism and how these processes can affect the application of these venom components. The most used microbial system in the heterologous expression of scorpion venom components is Escherichia coli (85%), and among all the recombinant venom components produced, 69% were neurotoxins. This review may light up future researchers in the choice of the best expression system to produce scorpion venom components of interest.
Collapse
Affiliation(s)
- Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Francielle Almeida Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Ernesto Lopes Pinheiro-Júnior
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Johara Boldrini-França
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
11
|
Bauer CK, Schwarz JR. Ether-à-go-go K + channels: effective modulators of neuronal excitability. J Physiol 2018; 596:769-783. [PMID: 29333676 DOI: 10.1113/jp275477] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
Mammalian ether-à-go-go (EAG) channels are voltage-gated K+ channels. They are encoded by the KCNH gene family and divided into three subfamilies, eag (Kv10), erg (eag-related gene; Kv11) and elk (eag-like; Kv12). All EAG channel subtypes are expressed in the brain where they effectively modulate neuronal excitability. This Topical Review describes the biophysical properties of each of the EAG channel subtypes, their function in neurons and the neurological diseases induced by EAG channel mutations. In contrast to the function of erg currents in the heart, where they contribute to repolarization of the cardiac action potential, erg currents in neurons are involved in the maintenance of the resting potential, setting of action potential threshold and frequency accommodation. They can even support high frequency firing by preventing a depolarization-induced Na+ channel block. EAG channels are modulated differentially, e.g. eag channels by intracellular Ca2+ , erg channels by extracellular K+ and GPCRs, and elk channels by changes in pH. So far, only currents mediated by erg channels have been recorded in neurons with the help of selective blockers. Neuronal eag and elk currents have not been isolated due to the lack of suitable channel blockers. However, findings in KO mice indicate a physiological role of eag1 currents in synaptic transmission and an involvement of elk2 currents in cognitive performance. Human eag1 and eag2 gain-of-function mutations underlie syndromes associated with epileptic seizures.
Collapse
Affiliation(s)
- Christiane K Bauer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen R Schwarz
- Institute of Molecular Neurogenetics, Center of Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Jiménez-Vargas JM, Possani LD, Luna-Ramírez K. Arthropod toxins acting on neuronal potassium channels. Neuropharmacology 2017; 127:139-160. [PMID: 28941737 DOI: 10.1016/j.neuropharm.2017.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Arthropod venoms are a rich mixture of biologically active compounds exerting different physiological actions across diverse phyla and affecting multiple organ systems including the central nervous system. Venom compounds can inhibit or activate ion channels, receptors and transporters with high specificity and affinity providing essential insights into ion channel function. In this review, we focus on arthropod toxins (scorpions, spiders, bees and centipedes) acting on neuronal potassium channels. A brief description of the K+ channels classification and structure is included and a compendium of neuronal K+ channels and the arthropod toxins that modify them have been listed. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | - Karen Luna-Ramírez
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
13
|
Nekrasova O, Kudryashova K, Fradkov A, Yakimov S, Savelieva M, Kirpichnikov M, Feofanov A. Straightforward approach to produce recombinant scorpion toxins-Pore blockers of potassium channels. J Biotechnol 2016; 241:127-135. [PMID: 27914892 DOI: 10.1016/j.jbiotec.2016.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/24/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
Scorpion venom peptide blockers (KTx) of potassium channels are a valuable tool for structure-functional studies and prospective candidates for medical applications. Low yields of recombinant KTx hamper their wide application. We developed convenient and efficient bioengineering approach to a large-scale KTx production that meets increasing demands for such peptides. Maltose-binding protein was used as a carrier for cytoplasmic expression of folded disulfide-rich KTx in E. coli. TEV protease was applied for in vitro cleavage of the target peptide from the carrier. To produce KTx with retained native N-terminal sequence, the last residue of TEV protease cleavage site (CSTEV) was occupied by the native N-terminal residue of a target peptide. It was shown that decreased efficiency of hydrolysis of fusion proteins with non-canonical CSTEV can be overcome without by-product formation. Disulfide formation and folding of a target peptide occurred in cytoplasm eliminating the need for renaturation procedure in vitro. Advantages of this approach were demonstrated by producing six peptides with three disulfide bonds related to four KTx sub-families and achieving peptide yields of 12-22mg per liter of culture. The developed approach can be of general use for low-cost production of various KTx, as well as other disulfide-rich peptides and proteins.
Collapse
Affiliation(s)
- Oksana Nekrasova
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Ksenia Kudryashova
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Arkadiy Fradkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Sergey Yakimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Maria Savelieva
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia
| | - Mikhail Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey Feofanov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| |
Collapse
|
14
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
15
|
Wu W, Sanguinetti MC. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology. Card Electrophysiol Clin 2016; 8:275-84. [PMID: 27261821 DOI: 10.1016/j.ccep.2016.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity.
Collapse
Affiliation(s)
- Wei Wu
- Department of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA
| | - Michael C Sanguinetti
- Department of Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Kuzmenkov AI, Grishin EV, Vassilevski AA. Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins. BIOCHEMISTRY (MOSCOW) 2016; 80:1764-99. [DOI: 10.1134/s0006297915130118] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
ElFessi-Magouri R, Peigneur S, Othman H, Srairi-Abid N, ElAyeb M, Tytgat J, Kharrat R. Characterization of Kbot21 Reveals Novel Side Chain Interactions of Scorpion Toxins Inhibiting Voltage-Gated Potassium Channels. PLoS One 2015; 10:e0137611. [PMID: 26398235 PMCID: PMC4580410 DOI: 10.1371/journal.pone.0137611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.
Collapse
Affiliation(s)
- Rym ElFessi-Magouri
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Houcemeddine Othman
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Najet Srairi-Abid
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Mohamed ElAyeb
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (K.U. Leuven), Campus Gasthuisberg O&N2, Herestraat 49, P.O. Box 922, B-3000, Leuven, Belgium
| | - Riadh Kharrat
- Laboratoire des Venins et Molécules Thérapeutiques, Institut Pasteur de Tunis,13 Place Pasteur, BP-74, 1002, Tunis, Tunisie
- * E-mail:
| |
Collapse
|
18
|
Kuzmenkov AI, Vassilevski AA, Kudryashova KS, Nekrasova OV, Peigneur S, Tytgat J, Feofanov AV, Kirpichnikov MP, Grishin EV. Variability of Potassium Channel Blockers in Mesobuthus eupeus Scorpion Venom with Focus on Kv1.1: AN INTEGRATED TRANSCRIPTOMIC AND PROTEOMIC STUDY. J Biol Chem 2015; 290:12195-209. [PMID: 25792741 DOI: 10.1074/jbc.m115.637611] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
The lesser Asian scorpion Mesobuthus eupeus (Buthidae) is one of the most widely spread and dispersed species of the Mesobuthus genus, and its venom is actively studied. Nevertheless, a considerable amount of active compounds is still under-investigated due to the high complexity of this venom. Here, we report a comprehensive analysis of putative potassium channel toxins (KTxs) from the cDNA library of M. eupeus venom glands, and we compare the deduced KTx structures with peptides purified from the venom. For the transcriptome analysis, we used conventional tools as well as a search for structural motifs characteristic of scorpion venom components in the form of regular expressions. We found 59 candidate KTxs distributed in 30 subfamilies and presenting the cysteine-stabilized α/β and inhibitor cystine knot types of fold. M. eupeus venom was then separated to individual components by multistage chromatography. A facile fluorescent system based on the expression of the KcsA-Kv1.1 hybrid channels in Escherichia coli and utilization of a labeled scorpion toxin was elaborated and applied to follow Kv1.1 pore binding activity during venom separation. As a result, eight high affinity Kv1.1 channel blockers were identified, including five novel peptides, which extend the panel of potential pharmacologically important Kv1 ligands. Activity of the new peptides against rat Kv1.1 channel was confirmed (IC50 in the range of 1-780 nm) by the two-electrode voltage clamp technique using a standard Xenopus oocyte system. Our integrated approach is of general utility and efficiency to mine natural venoms for KTxs.
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander A Vassilevski
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,
| | - Kseniya S Kudryashova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Oksana V Nekrasova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Alexey V Feofanov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Mikhail P Kirpichnikov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia, the Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia, and
| | - Eugene V Grishin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
19
|
Hu YT, Hu J, Li T, Wei JJ, Feng J, Du YM, Cao ZJ, Li WX, Wu YL. Open conformation of hERG channel turrets revealed by a specific scorpion toxin BmKKx2. Cell Biosci 2014; 4:18. [PMID: 24725272 PMCID: PMC4108063 DOI: 10.1186/2045-3701-4-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/11/2014] [Indexed: 11/23/2022] Open
Abstract
Background The human ether-a-go-go-related gene potassium channel (hERG) has an unusual long turret, whose role in recognizing scorpion toxins remains controversial. Here, BmKKx2, the first specific blocker of hERG channel derived from scorpion Mesobuthus martensii, was identified and the turret role of hERG channel was re-investigated using BmKKx2 as a molecular probe. Results BmKKx2 was found to block hERG channel with an IC50 of 6.7 ± 1.7 nM and share similar functional surface with the known hERG channel inhibitor BeKm-1. The alanine-scanning mutagenesis data indicate that different residue substitutions on hERG channel by alanine decreased the affinities of toxin BmKKx2 by about 10-fold compared with that of wild-type hERG channel, which reveals that channel turrets play a secondary role in toxin binding. Different from channel turret, the pore region of hERG channel was found to exert the conserved and essential function for toxin binding because the mutant hERG-S631A channel remarkably decreased toxin BmKKx2 affinity by about 104-fold. Conclusions Our results not only revealed that channel turrets of hERG channel formed an open conformation in scorpion toxin binding, but also enriched the diversity of structure-function relationships among the different potassium channel turrets.
Collapse
Affiliation(s)
- You-Tian Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tian Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing-Jing Wei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Feng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi-Mei Du
- Research Center of Ion Channelopathy, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Jian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Xin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying-Liang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
Ma J, Hu Y, Guo M, Huang Z, Li W, Wu Y. hERG potassium channel blockage by scorpion toxin BmKKx2 enhances erythroid differentiation of human leukemia cells K562. PLoS One 2013; 8:e84903. [PMID: 24386436 PMCID: PMC3873423 DOI: 10.1371/journal.pone.0084903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The hERG potassium channel can modulate the proliferation of the chronic myelogenous leukemic K562 cells, and its role in the erythroid differentiation of K562 cells still remains unclear. PRINCIPAL FINDINGS The hERG potassium channel blockage by a new 36-residue scorpion toxin BmKKx2, a potent hERG channel blocker with IC50 of 6.7 ± 1.7 nM, enhanced the erythroid differentiation of K562 cells. The mean values of GPA (CD235a) fluorescence intensity in the group of K562 cells pretreated by the toxin for 24 h and followed by cytosine arabinoside (Ara-C) treatment for 72 h were about 2-fold stronger than those of K562 cells induced by Ara-C alone. Such unique role of hERG potassium channel was also supported by the evidence that the effect of the toxin BmKKx2 on cell differentiation was nullified in hERG-deficient cell lines. During the K562 cell differentiation, BmKKx2 could also suppress the expression of hERG channels at both mRNA and protein levels. Besides the function of differentiation enhancement, BmKKx2 was also found to promote the differentiation-dependent apoptosis during the differentiation process of K562 cells. In addition, the blockage of hERG potassium channel by toxin BmKKx2 was able to decrease the intracellular Ca(2+) concentration during the K562 cell differentiation, providing an insight into the mechanism of hERG potassium channel regulating this cellular process. CONCLUSIONS/SIGNIFICANCE Our results revealed scorpion toxin BmKKx2 could enhance the erythroid differentiation of leukemic K562 cells via inhibiting hERG potassium channel currents. These findings would not only accelerate the functional research of hERG channel in different leukemic cells, but also present the prospects of natural scorpion toxins as anti-leukemic drugs.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Youtian Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingxiong Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zan Huang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (WL); (YW)
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (WL); (YW)
| |
Collapse
|
21
|
Quintero-Hernández V, Jiménez-Vargas J, Gurrola G, Valdivia H, Possani L. Scorpion venom components that affect ion-channels function. Toxicon 2013; 76:328-42. [PMID: 23891887 PMCID: PMC4089097 DOI: 10.1016/j.toxicon.2013.07.012] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022]
Abstract
The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na(+)-, K(+)- and Ca(++)-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are nowadays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na(+)-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K(+)-channels are normally pore blocking agents. The Ryanodine Ca(++)-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells.
Collapse
Affiliation(s)
- V. Quintero-Hernández
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| | - J.M. Jiménez-Vargas
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| | - G.B. Gurrola
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
- Cardiovascular Center 2139, Michigan University, Ann Arbor, MI 48109-5644, U.S.A
| | - H.H.F. Valdivia
- Cardiovascular Center 2139, Michigan University, Ann Arbor, MI 48109-5644, U.S.A
| | - L.D. Possani
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
22
|
Erg potassium currents of neonatal mouse Purkinje cells exhibit fast gating kinetics and are inhibited by mGluR1 activation. J Neurosci 2013; 33:16729-40. [PMID: 24133274 DOI: 10.1523/jneurosci.5523-12.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We investigated the subthreshold properties of an erg (ether-à-go-go-related gene) K(+) current in Purkinje cells of neonatal mice. Action potentials recorded from Purkinje cells in cerebellar slices exhibited a decreased threshold potential and increased frequency of spontaneous and repetitive activity following application of the specific erg channel blocker E-4031. Accommodation was absent before and after drug application. The erg current of these Purkinje cells activated at membrane potentials near -60 mV and exhibited fast gating kinetics. The functional importance of fast gating subthreshold erg channels in Purkinje cells was corroborated by comparing the results of action potential clamp experiments with erg1a, erg1b, erg2, and erg3 currents heterologously expressed in HEK cells. Computer simulations based on a NEURON model of Purkinje cells only reproduced the effects of the native erg current when an erg channel conductance like that of erg3 was included. Experiments with subunit-sensitive toxins (BeKm-1, APETx1) indicated that erg channels in Purkinje cells are presumably mediated by heteromeric erg1/erg3 or modified erg1 channels. Following mGluR1 activation, the native erg current was reduced by ∼70%, brought about by reduction of the maximal erg current and a shift of the activation curve to more positive potentials. The Purkinje cell erg current contributed to the sustained current component of the biphasic mGluR1 response. Activation of mGluR1 by the agonist 3,4-dihydroxyphenylglycol increased Purkinje cell excitability, similar to that induced by E-4031. The results indicated that erg currents can be modulated and may contribute to the mGluR1-induced plasticity changes in Purkinje cells.
Collapse
|
23
|
Hayashi M, Novak I. Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 2013; 7:432-41. [PMID: 23962792 PMCID: PMC4042478 DOI: 10.4161/chan.26100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
24
|
Arrhythmogenic effect of a crude extract from sea anemone Condylactis gigantea: possible involvement of rErg1 channels. Toxicon 2013; 67:47-54. [PMID: 23499927 DOI: 10.1016/j.toxicon.2013.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/11/2013] [Accepted: 02/22/2013] [Indexed: 11/21/2022]
Abstract
Sea anemones possess a number of peptide toxins that target ion channels which provide powerful tools to study the molecular basis of diverse signaling pathways. It is also acknowledged that currents through Erg1 K(+) channels in cardiac myocytes are important for electrical stability of the heart and alterations in its activity has been linked to the onset of a potentially life-threatening heart condition named long QT syndrome type 2. Here, we report that a crude extract from sea anemone Condylactis gigantea significantly increases the QT interval and has arrhythmogenic effects in the rat heart. Furthermore, a bioassay-guided purification procedure allowed the isolation of a chromatographic fraction containing a major component with a molecular mass of 4478 Da from the crude extract, which causes a significant inhibition of whole-cell patch-clamp currents through recombinant Erg1 channels, responsible of the rapid delayed rectifying current crucial for electrical activity in the heart. Further studies could provide relevant information on the molecular mechanism of C. gigantea peptide toxins which represent promising tools in studying the physiology of diverse ion channels.
Collapse
|
25
|
Bergeron ZL, Bingham JP. Scorpion toxins specific for potassium (K+) channels: a historical overview of peptide bioengineering. Toxins (Basel) 2012. [PMID: 23202307 PMCID: PMC3509699 DOI: 10.3390/toxins4111082] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics.
Collapse
Affiliation(s)
- Zachary L Bergeron
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | |
Collapse
|
26
|
Wang X, Jimenez-Vargas JM, Xu C, Possani LD, Zhu S. Positive selection-guided mutational analysis revealing two key functional sites of scorpion ERG K(+) channel toxins. Biochem Biophys Res Commun 2012; 429:111-6. [PMID: 23103547 DOI: 10.1016/j.bbrc.2012.10.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Scorpion γ-KTx toxins are important molecular tools for studying physiological and pharmacological functions of human ether-á-go-go related gene (hERG) K(+) channels. To pinpoint functional residues of this class of toxins involved in channel binding, we employed a combined approach that integrates evolutionary information and site-directed mutagenesis. Among three positively selected sites (PSSs) identified here, two (Gln18 and Met35) were found to be associated with the toxin's function because their changes significantly decreased the potency of ErgTx1 (also called CnErg1) on hERG1 channel. On the contrary, no potency alteration was observed at the third PSS (Ala42) when the mutation was introduced, which could be due to its location far from the functional surface of the toxin. Our strategy will accelerate the research of structure-function relationship of scorpion K(+) channel toxins.
Collapse
Affiliation(s)
- Xueli Wang
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
27
|
Ji H, Tucker KR, Putzier I, Huertas MA, Horn JP, Canavier CC, Levitan ES, Shepard PD. Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons - implications for a role in depolarization block. Eur J Neurosci 2012; 36:2906-16. [PMID: 22780096 PMCID: PMC4042402 DOI: 10.1111/j.1460-9568.2012.08190.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bursting activity by midbrain dopamine neurons reflects the complex interplay between their intrinsic pacemaker activity and synaptic inputs. Although the precise mechanism responsible for the generation and modulation of bursting in vivo has yet to be established, several ion channels have been implicated in the process. Previous studies with nonselective blockers suggested that ether-à-go-go-related gene (ERG) K(+) channels are functionally significant. Here, electrophysiology with selective chemical and peptide ERG channel blockers (E-4031 and rBeKm-1) and computational methods were used to define the contribution made by ERG channels to the firing properties of midbrain dopamine neurons in vivo and in vitro. Selective ERG channel blockade increased the frequency of spontaneous activity as well as the response to depolarizing current pulses without altering spike frequency adaptation. ERG channel block also accelerated entry into depolarization inactivation during bursts elicited by virtual NMDA receptors generated with the dynamic clamp, and significantly prolonged the duration of the sustained depolarization inactivation that followed pharmacologically evoked bursts. In vivo, somatic ERG blockade was associated with an increase in bursting activity attributed to a reduction in doublet firing. Taken together, these results show that dopamine neuron ERG K(+) channels play a prominent role in limiting excitability and in minimizing depolarization inactivation. As the therapeutic actions of antipsychotic drugs are associated with depolarization inactivation of dopamine neurons and blockade of cardiac ERG channels is a prominent side effect of these drugs, ERG channels in the central nervous system may represent a novel target for antipsychotic drug development.
Collapse
Affiliation(s)
- Huifang Ji
- Department of Psychiatry and the Maryland Psychiatry Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228
| | - Kristal R. Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Ilva Putzier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Marco A. Huertas
- Department of Cell Biology and Anatomy and the Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - John P. Horn
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Carmen C. Canavier
- Department of Cell Biology and Anatomy and the Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Edwin S. Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Paul D. Shepard
- Department of Psychiatry and the Maryland Psychiatry Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228
| |
Collapse
|
28
|
Xu J, Zhang X, Guo Z, Yan J, Yu L, Li X, Xue X, Liang X. Short-chain peptides identification of scorpion Buthus martensi
Karsch venom by employing high orthogonal 2D-HPLC system and tandem mass spectrometry. Proteomics 2012; 12:3076-84. [DOI: 10.1002/pmic.201200224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/23/2012] [Accepted: 07/27/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Junyan Xu
- Key Lab of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Liaoning China
- Graduate School of Chinese Academy of Sciences; Beijing China
| | - Xiuli Zhang
- Key Lab of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Liaoning China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Liaoning China
| | - Jingyu Yan
- Key Lab of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Liaoning China
| | - Long Yu
- Key Lab of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Liaoning China
| | - Xiuling Li
- Key Lab of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Liaoning China
| | - Xingya Xue
- Key Lab of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Liaoning China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Liaoning China
| |
Collapse
|
29
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
30
|
Towards therapeutic applications of arthropod venom k(+)-channel blockers in CNS neurologic diseases involving memory acquisition and storage. J Toxicol 2012; 2012:756358. [PMID: 22701481 PMCID: PMC3373146 DOI: 10.1155/2012/756358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/08/2012] [Indexed: 12/31/2022] Open
Abstract
Potassium channels are the most heterogeneous and widely distributed group of ion channels and play important functions in all cells, in both normal and pathological mechanisms, including learning and memory processes. Being fundamental for many diverse physiological processes, K+-channels are recognized as potential therapeutic targets in the treatment of several Central Nervous System (CNS) diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, schizophrenia, HIV-1-associated dementia, and epilepsy. Blockers of these channels are therefore potential candidates for the symptomatic treatment of these neuropathies, through their neurological effects. Venomous animals have evolved a wide set of toxins for prey capture and defense. These compounds, mainly peptides, act on various pharmacological targets, making them an innumerable source of ligands for answering experimental paradigms, as well as for therapeutic application. This paper provides an overview of CNS K+-channels involved in memory acquisition and storage and aims at evaluating the use of highly selective K+-channel blockers derived from arthropod venoms as potential therapeutic agents for CNS diseases involving learning and memory mechanisms.
Collapse
|
31
|
Jiménez-Vargas JM, Restano-Cassulini R, Possani LD. Toxin modulators and blockers of hERG K(+) channels. Toxicon 2012; 60:492-501. [PMID: 22497787 DOI: 10.1016/j.toxicon.2012.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The K(+) channel encoded by the Ether-á-go-go-Related Gene (ERG) is expressed in different tissues of different animal species. There are at least three subtypes of this channel, being the sub-type 1 (ERG1) crucial in the repolarization phase of the cardiac action potential. Mutations in this gene can affect the properties of the channel producing the type II long QT syndrome (LQTS2) and many drugs are also known to affect this channel with a similar side effect. Various scorpion, spider and sea anemone toxins affect the ERG currents by blocking the ion-conducting pore from the external side or by modulating channel gating through binding to the voltage-sensor domain. By doing so, these toxins become very useful tools for better understanding the structural and functional characteristics of these ion channels. This review discusses the interaction between the ERG channels and the peptides isolated from venoms of these animals. Special emphasis is placed on scorpion toxins, although the effects of several spider venom toxins and anemone toxins will be also revised.
Collapse
Affiliation(s)
- J M Jiménez-Vargas
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Av. Universidad 2001, P.O. Box 501-3, Cuernavaca 62210, Mexico.
| | | | | |
Collapse
|
32
|
Zeng XC, Zhang L, Nie Y, Luo X. Identification and molecular characterization of three new K+-channel specific toxins from the Chinese scorpion Mesobuthus martensii Karsch revealing intronic number polymorphism and alternative splicing in duplicated genes. Peptides 2012; 34:311-23. [PMID: 22230549 DOI: 10.1016/j.peptides.2011.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 11/23/2022]
Abstract
K(+)-channel specific toxins from scorpions are powerful probes used in the structural and functional characterization of different subfamilies of K(+)-channels which are thought to be the most diverse ion channels. However, only a limited number of K(+)-channel toxins have been identified from scorpions so far; moreover, little is known about the mechanisms for the generation of a combinatorial peptide library in a venom gland of a scorpion. Here, we identified and characterized three new K(+)-channel toxin-like peptides from the scorpion Mesobuthus martensii Karsch, which were referred to as BmKcug1, BmKcug2 and BmKcugx, respectively. BmKcug1 and BmKcug2 are two new members of α-KTx1 subfamily, and have been classified as α-KTx1.14 and α-KTx1.15, respectively. BmKcugx represents a new subfamily of K(+)-channel specific toxins which was classified into α-KTx22. BmKcugx was thus classified as α-KTx22.1. Genomic analysis demonstrated that BmKcugx gene has two exons interrupted by an intron inserted in the signal peptide encoding region, whereas BmKcug1a (a close homologue of BmKcug1)/BmKcug2 gene was interrupted by two introns, located within the 5'UTR of the gene and in the signal peptide encoding region, respectively. Transcriptomic analysis for the venom glands of M. martensii Karsch indicated that the abundances of the transcripts of BmKcug1a and BmKcug2 are much higher than that of BmKcugx; it suggests that the intron in 5'UTR could markedly increase the expression level of the K(+)-channel toxins. Alignment of the genomic sequences of BmKcug1a and BmKcug2 revealed that an alternative splicing event occurred at the intron 1-exon 2 junction in the 5'UTR of BmKcug2 transcript.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | | | | | | |
Collapse
|
33
|
Interacting sites of scorpion toxin ErgTx1 with hERG1 K+ channels. Toxicon 2012; 59:633-41. [PMID: 22366117 DOI: 10.1016/j.toxicon.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/12/2012] [Accepted: 02/02/2012] [Indexed: 11/23/2022]
Abstract
Peptides purified from scorpion venoms were shown to interact with specific amino acid residues present in the outer vestibule of various sub-types of potassium channels, occluding the pore and causing a decrement of K(+) permeability through the membrane of excitable and non excitable cells. This communication describes the identification of several interacting sites of toxin ErgTx1, a toxin purified from the venom of the scorpion Centruroides noxius, with the human ERG1 K(+) channels, by means of site-directed mutagenesis of specific residues of the toxin. Recombinant mutants of the gene coding for ErgTx1 were expressed heterologously in Escherichia coli, properly folded and their affinities and interactions with hERG1 channels were determined by patch-clamp techniques. Residues in position Y14, Y17 and F37 of the solvent exposed hydrophobic surface, and charged residues at the position K13 and K38 of ErgTx1 were shown to cause a decrement of the affinity from 20 folds to 3 orders of magnitude, thus suggesting that they are certainly participating on the binding surface of this toxin towards the hERG1 channels. Double mutants at positions K13 and F37, Y14 and F37, Y17 and F37 and K13 and K38 were also prepared and assayed, but the results obtained are not much different from the single point mutants of ErgTx1. The results of the present work indicate the most probable surface area of ErgTx1 that makes contact with the hERG channels.
Collapse
|
34
|
Quintero-Hernández V, Ortiz E, Rendón-Anaya M, Schwartz EF, Becerril B, Corzo G, Possani LD. Scorpion and spider venom peptides: gene cloning and peptide expression. Toxicon 2011; 58:644-63. [PMID: 21978889 DOI: 10.1016/j.toxicon.2011.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023]
Abstract
This communication reviews most of the important findings related to venom components isolated from scorpions and spiders, mainly by means of gene cloning and expression. Rather than revising results obtained by classical biochemical studies that report structure and function of venom components, here the emphasis is placed on cloning and identification of genes present in the venomous glands of these arachnids. Aspects related to cDNA library construction, specific or random ESTs cloning, transcriptome analysis, high-throughput screening, heterologous expression and folding are briefly discussed, showing some numbers of species and components already identified, but also shortly mentioning limitations and perspectives of research for the future in this field.
Collapse
Affiliation(s)
- V Quintero-Hernández
- Instituto de Biotecnología - UNAM, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|
35
|
Gao B, Peigneur S, Dalziel J, Tytgat J, Zhu S. Molecular divergence of two orthologous scorpion toxins affecting potassium channels. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:313-21. [PMID: 21466856 DOI: 10.1016/j.cbpa.2011.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 11/26/2022]
Abstract
Alpha-KTxs are a diverse group of scorpion short-chain peptide toxins that affect animal potassium channels. We report the biochemical purification, gene cloning, and functional characterization of a new α-KTx named MeuTx3B, from venom of the scorpion Mesobuthus eupeus. MeuTx3B is an orthologue of BmTx3B/Martentoxin (α-KTx16 subfamily) from Mesobuthus martensii that differs by three amino acid substitutions. We found that despite their orthologous relationship, MeuTx3B and BmTx3B exhibit different post-transcriptional processing patterns due to nucleotide mutations in their untranslated regions (UTRs). Our results show that MeuTx3B also differs functionally from BmTx3B in that it lacks inhibitory activity on large conductance calcium-activated potassium channels (BK), implicating the amino acids of difference in conferring the inhibitory activity of BmTx3B. Furthermore, we show that MeuTx3B (2μM) partially inhibits human voltage-gated potassium channel Kv1.3. By using codon-substitution models, we detected signals of positive selection that could drive adaptive evolution of MeuTx3B and related toxins in the functional region associated with pharmacological diversification of toxins in the α-KTx 1 and 16 subfamilies.
Collapse
Affiliation(s)
- Bin Gao
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
36
|
Qu Y, Fang M, Gao B, Chui RW, Vargas HM. BeKm-1, a peptide inhibitor of human ether-a-go-go-related gene potassium currents, prolongs QTc intervals in isolated rabbit heart. J Pharmacol Exp Ther 2011; 337:2-8. [PMID: 21205913 DOI: 10.1124/jpet.110.176883] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Drug-induced cardiac arrhythmia, specifically Torsades de pointes, is associated with QT/QTc interval prolongation, thus prolongation of the QT interval is considered as a biomarker for Torsades de pointes risk (N Engl J Med 350:1013-1022, 2004). Specific inhibition of human ether-a-go-go-related gene (hERG) potassium channels has been recognized as the main mechanism for QT prolongation (Cardiovasc Res 58:32-45, 2003). This mechanism has been demonstrated for a variety of small-molecule agents, which access the inner pore of the hERG channel preferentially from inside the cell. Peptide inhibitors of hERG, such as BeKm-1, interact with the extracellular amino acid residues close to the external pore region of the channel. In this study, the isolated rabbit heart was used to assess whether BeKm-1 could induce QTc prolongation like dofetilide and N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl]-4-piperidinyl]carbonyl]phenyl]methanesulfonamide (E-4031). Five hearts were perfused with 10 and 100 nM BeKm-1 sequentially. ECG parameters and left ventricular contractility were measured with spontaneously beating hearts. Both concentrations of BeKm-1 prolonged QTc intervals significantly and concentration-dependently (4.7 and 16.3% at 10 and 100 nM, respectively). When evaluated for their inhibitory effect in a hERG functional assay, BeKm-1, dofetilide, and E-4031 caused QTc prolongation at concentrations that caused significant hERG channel inhibition. Lastly, two polyclonal anti-hERG antibodies were also assessed in the hERG channel assay and found to be devoid of any inhibitory effect. These results indicated that the isolated rabbit heart assay can be used to measure QTc changes caused by specific hERG inhibition by peptides that specifically block the external pore region of the channel.
Collapse
Affiliation(s)
- Yusheng Qu
- Department of Investigative Toxicology, Amgen Inc., Thousand Oaks, CA 91320, USA.
| | | | | | | | | |
Collapse
|
37
|
Gao B, Peigneur S, Tytgat J, Zhu S. A potent potassium channel blocker from Mesobuthus eupeus scorpion venom. Biochimie 2010; 92:1847-53. [DOI: 10.1016/j.biochi.2010.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/24/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
|
38
|
Zhu S, Peigneur S, Gao B, Luo L, Jin D, Zhao Y, Tytgat J. Molecular diversity and functional evolution of scorpion potassium channel toxins. Mol Cell Proteomics 2010; 10:M110.002832. [PMID: 20889474 DOI: 10.1074/mcp.m110.002832] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases.
Collapse
Affiliation(s)
- Shunyi Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Chartrand É, Arnold AA, Gravel A, Jenna S, Marcotte I. Potential role of the membrane in hERG channel functioning and drug-induced long QT syndrome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1651-62. [DOI: 10.1016/j.bbamem.2010.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 04/21/2010] [Accepted: 05/17/2010] [Indexed: 11/16/2022]
|
40
|
Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 2010; 40:15-28. [DOI: 10.1007/s00726-010-0516-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
|
41
|
|
42
|
Hardy AB, Fox JEM, Giglou PR, Wijesekara N, Bhattacharjee A, Sultan S, Gyulkhandanyan AV, Gaisano HY, MacDonald PE, Wheeler MB. Characterization of Erg K+ channels in alpha- and beta-cells of mouse and human islets. J Biol Chem 2009; 284:30441-52. [PMID: 19690348 DOI: 10.1074/jbc.m109.040659] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated eag-related gene (Erg) K(+) channels regulate the electrical activity of many cell types. Data regarding Erg channel expression and function in electrically excitable glucagon and insulin producing cells of the pancreas is limited. In the present study Erg1 mRNA and protein were shown to be highly expressed in human and mouse islets and in alpha-TC6 and Min6 cells alpha- and beta-cell lines, respectively. Whole cell patch clamp recordings demonstrated the functional expression of Erg1 in alpha- and beta-cells, with rBeKm1, an Erg1 antagonist, blocking inward tail currents elicited by a double pulse protocol. Additionally, a small interference RNA approach targeting the kcnh2 gene (Erg1) induced a significant decrease of Erg1 inward tail current in Min6 cells. To investigate further the role of Erg channels in mouse and human islets, ratiometric Fura-2 AM Ca(2+)-imaging experiments were performed on isolated alpha- and beta-cells. Blocking Erg channels with rBeKm1 induced a transient cytoplasmic Ca(2+) increase in both alpha- and beta-cells. This resulted in an increased glucose-dependent insulin secretion, but conversely impaired glucagon secretion under low glucose conditions. Together, these data present Erg1 channels as new mediators of alpha- and beta-cell repolarization. However, antagonism of Erg1 has divergent effects in these cells; to augment glucose-dependent insulin secretion and inhibit low glucose stimulated glucagon secretion.
Collapse
Affiliation(s)
- Alexandre B Hardy
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-à-go-go-related gene potassium channels. J Neurosci 2009; 29:206-21. [PMID: 19129398 DOI: 10.1523/jneurosci.3656-08.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conspecific chemosensory communication controls a broad range of social and sexual behaviors. In most mammals, social chemosignals are predominantly detected by sensory neurons of a specialized olfactory subsystem, the vomeronasal organ (VNO). The behavioral relevance of social chemosignaling puts high demands on the accuracy and dynamic range of the underlying transduction mechanisms. However, the physiological concepts implemented to ensure faithful transmission of social information remain widely unknown. Here, we show that sensory neurons in the basal layer of the mouse VNO dynamically control their input-output relationship by activity-dependent regulation of K(+) channel gene expression. Using large-scale expression profiling, immunochemistry, and electrophysiology, we provide molecular and functional evidence for a role of ether-à-go-go-related gene (ERG) K(+) channels as key determinants of cellular excitability. Our findings indicate that an increase in ERG channel expression extends the dynamic range of the stimulus-response function in basal vomeronasal sensory neurons. This novel mechanism of homeostatic plasticity in the periphery of the accessory olfactory system is ideally suited to adjust VNO neurons to a target output range in a layer-specific and use-dependent manner.
Collapse
|
44
|
Greenwood IA, Yeung SY, Tribe RM, Ohya S. Loss of functional K+ channels encoded by ether-à-go-go-related genes in mouse myometrium prior to labour onset. J Physiol 2009; 587:2313-26. [PMID: 19332483 DOI: 10.1113/jphysiol.2009.171272] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is a growing appreciation that ion channels encoded by the ether-à-go-go-related gene family have a functional impact in smooth muscle in addition to their accepted role in cardiac myocytes and neurones. This study aimed to assess the expression of ERG1-3 (KCNH1-3) genes in the murine myometrium (smooth muscle layer of the uterus) and determine the functional impact of the ion channels encoded by these genes in pregnant and non-pregnant animals. Quantitative RT-PCR did not detect message for ERG2 and 3 in whole myometrial tissue extracts. In contrast, message for two isoforms of mERG1 were readily detected with mERG1a more abundant than mERG1b. In isometric tension studies of non-pregnant myometrium, the ERG channel blockers dofetilide (1 microM), E4031 (1 microM) and Be-KM1 (100 nM) increased spontaneous contractility and ERG activators (PD118057 and NS1643) inhibited spontaneous contractility. In contrast, neither ERG blockade nor activation had any effect on the inherent contractility in myometrium from late pregnant (19 days gestation) animals. Moreover, dofetilide-sensitive K(+) currents with distinctive 'hooked' kinetics were considerably smaller in uterine myocytes from late pregnant compared to non-pregnant animals. Expression of mERG1 isoforms did not alter throughout gestation or upon delivery, but the expression of genes encoding auxillary subunits (KCNE) were up-regulated considerably. This study provides the first evidence for a regulation of ERG-encoded K(+) channels as a precursor to late pregnancy physiological activity.
Collapse
Affiliation(s)
- I A Greenwood
- Division of Basic Medical Sciences, Ion Channels And Cell Signaling Research Centre, St George's, University of London, London SW17 0RE, UK.
| | | | | | | |
Collapse
|
45
|
Ozkan O, Carhan A. The neutralizing capacity of Androctonus crassicauda antivenom against Mesobuthus eupeus scorpion venom. Toxicon 2008; 52:375-9. [DOI: 10.1016/j.toxicon.2008.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 04/04/2008] [Accepted: 06/11/2008] [Indexed: 11/30/2022]
|
46
|
Abdel-Mottaleb Y, Corzo G, Martin-Eauclaire MF, Satake H, Céard B, Peigneur S, Nambaru P, Bougis PE, Possani LD, Tytgat J. A common "hot spot" confers hERG blockade activity to alpha-scorpion toxins affecting K+ channels. Biochem Pharmacol 2008; 76:805-15. [PMID: 18687312 DOI: 10.1016/j.bcp.2008.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 02/01/2023]
Abstract
While alpha-KTx peptides are generally known for their modulation of the Shaker-type and the Ca(2+)-activated potassium channels, gamma-KTxs are associated with hERG channels modulation. An exception to the rule is BmTx3 which belongs to subfamily alpha-KTx15 and can block hERG channels. To explain the peculiar behavior of BmTx3, a tentative "hot spot" formed of 2 basic residues (R18 and K19) was suggested but never further studied [Huys I, et al. BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K(+) and HERG currents. Biochem J 2004;378:745-52]. In this work, we investigated if the "hot spot" is a commonality in subfamily alpha-KTx15 by testing the effect of (AmmTx3, Aa1, discrepin). Furthermore, single mutations altering the "hot spot" in discrepin, have introduced for the very first time a hERG blocking activity to a previously non-active alpha-KTx. Additionally, we could extend our results to other alpha-KTx subfamily members belonging to alpha-KTx1, 4 and 6, therefore, the "hot spot" represents a common pharmacophore serving as a predictive tool for yet to be discovered alpha-KTxs.
Collapse
Affiliation(s)
- Yousra Abdel-Mottaleb
- Laboratory of Toxicology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Two novel ergtoxins, blockers of K+-channels, purified from the Mexican scorpion Centruroides elegans elegans. Neurochem Res 2008; 33:1525-33. [PMID: 18338253 DOI: 10.1007/s11064-008-9634-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
Voltage-gated potassium channels of the ether-a-go-go related gene (ERG) family are implicated in many important cellular processes. Three such genes have been cloned (erg1, erg2 and erg3) and shown to be expressed in the central nervous system (CNS) of mammalians. This communication describes the isolation and characterization of two isoforms of scorpion toxin (CeErg4 and CeErg5, systematic nomenclature gamma-KTx1.7 and gamma-KTx1.8, respectively) that can discriminate the various subtypes of ERG channels of human and rat. These peptides were purified from the venom of the Mexican scorpion Centruroides elegans elegans. They contain 42 amino acid residues, tightly folded by four disulfide bridges. Both peptides block in a reversible manner human and rat ERG1 channels, but have no effect on human ERG2. They also block completely and irreversibly the rat ERG2 and the human ERG3 channels hence are excellent tools for the discrimination of the various sub-types of ion-channels studied.
Collapse
|
48
|
Chtcheglova LA, Atalar F, Ozbek U, Wildling L, Ebner A, Hinterdorfer P. Localization of the ergtoxin-1 receptors on the voltage sensing domain of hERG K+ channel by AFM recognition imaging. Pflugers Arch 2008; 456:247-54. [DOI: 10.1007/s00424-007-0418-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/05/2007] [Indexed: 11/29/2022]
|
49
|
Zhang M, Liu XS, Diochot S, Lazdunski M, Tseng GN. APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel. Mol Pharmacol 2007; 72:259-68. [PMID: 17473056 DOI: 10.1124/mol.107.035840] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts the voltage-dependence of hERG activation in the positive direction and suppresses its current amplitudes elicited by strong depolarizing pulses that maximally activate the channels. The APETx1 binding site is distinctly different from that of a pore-blocking peptide toxin, BeKm-1. Mutations in the S3b region of hERG have dramatic impact on the responsiveness to APETx1: G514C potentiates whereas E518C abolishes the APETx1 effect. Restoring the negative charge at position 518 (methanethiosulfonate ethylsulfonate modification of 518C) partially restores APETx1 responsiveness, supporting an electrostatic interaction between E518 and APETx1. Among the three hERG isoforms, hERG1 and hERG3 are equally responsive to APETx1, whereas hERG2 is insensitive. The key feature seems to be an arginine residue uniquely present at the 514-equivalent position in hERG2, where the other two isoforms possess a glycine. Our data show that APETx1 is a gating modifier toxin of the hERG channel, and its binding site shares characteristics with those of gating modifier toxin binding sites on other Kv channels.
Collapse
Affiliation(s)
- M Zhang
- Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
50
|
Tseng GN, Sonawane KD, Korolkova YV, Zhang M, Liu J, Grishin EV, Guy HR. Probing the outer mouth structure of the HERG channel with peptide toxin footprinting and molecular modeling. Biophys J 2007; 92:3524-40. [PMID: 17293393 PMCID: PMC1853143 DOI: 10.1529/biophysj.106.097360] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the unusually long S5-P linker lining human ether a-go-go related gene's (hERG's) outer vestibule is critical for its channel function: point mutations at high-impact positions here can interfere with the inactivation process and, in many cases, also reduce the pore's K+ selectivity. Because no data are available on the equivalent region in the available K channel crystal structures to allow for homology modeling, we used alternative approaches to model its three-dimensional structure. The first part of this article describes mutant cycle analysis used to identify residues on hERG's outer vestibule that interact with specific residues on the interaction surface of BeKm-1, a peptide toxin with known NMR structure and a high binding affinity to hERG. The second part describes molecular modeling of hERG's pore domain. The transmembrane region was modeled after the crystal structure of KvAP pore domain. The S5-P linker was docked to the transmembrane region based on data from previous NMR and mutagenesis experiments, as well as a set of modeling criteria. The models were further restrained by contact points between hERG's outer vestibule and the bound BeKm-1 toxin molecule deduced from the mutant cycle analysis. Based on these analyses, we propose a working model for the open conformation of the outer vestibule of the hERG channel, in which the S5-P linkers interact with the pore loops to influence ion flux through the pore.
Collapse
Affiliation(s)
- Gea-Ny Tseng
- Department of Physiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | |
Collapse
|