1
|
Toxqui-Rodríguez S, Estensoro I, Domingo-Bretón R, Del Pozo R, Pérez-Sánchez J, Sipkema D, Sitjà-Bobadilla A, Piazzon MC. Interactions between gilthead seabream intestinal transcriptome and microbiota upon Enteromyxum leei infection: a multi-omic approach. Anim Microbiome 2025; 7:22. [PMID: 40050956 PMCID: PMC11884135 DOI: 10.1186/s42523-025-00388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The enteric myxozoan parasite Enteromyxum leei is an important problem in gilthead seabream aquaculture invading the intestinal epithelium and leading to chronic intestinal inflammation, poor food conversion rates, cachexia, and mortalities, with no treatments available, resulting in significant economic losses. It is known that myxozoan infections are affected by factors such as temperature, duration of exposure, stocking densities, and seasonality. Gut microbiota has key effects on host health, including disease resistance and immune system training and development, tightly interacting with the host, affecting systemic and local physiological functions. This study aimed to gain insights into the host-microbiota-parasite interactions integrating metataxonomics, host transcriptomics, and metatranscriptomics within this disease model. RESULTS Exposure to E. leei together with temperature and age differences led to alterations in gilthead seabream intestinal microbiota. Samples from 240 g fish kept at 18ºC during a winter trial at 10 weeks post-parasite exposure showed the highest significant changes in their microbial composition with Proteobacteria increasing in abundance from 32.3% in the control group up to 89.8% in the infected group, while Firmicutes and Actinobacteria significantly decreased in relative abundance from 23% and 37.8-2.4% and 1.1%, respectively. After LEfSe analysis, Acinetobacter was identified as the best biomarker for the parasite-exposed group. Parasite exposure also altered the expression of 935 host genes, highlighting genes involved in immune responses such as pathways related to Interleukins, MHCI and Interferons. Microbial transcripts, also showed significant changes upon parasite infection. Integration of the results revealed differential effects on the host induced directly by the parasite or indirectly by parasite-induced microbial shift. CONCLUSIONS Intestinal microbiota and local host gene expression showed significant changes upon en enteromyxosis. The detected activation of the host immune response was not exclusively linked to the parasite infection but also to changes in microbiota, demonstrating the key role of the different components of the mucosal system during disease. These results provided different datasets of bacterial taxa and microbial and host transcripts that will allow a better understanding of host-microbiota-parasite interactions and can serve as starting points for studying and evaluating mucosal health in aquaculture during parasitosis or other diseases.
Collapse
Affiliation(s)
- Socorro Toxqui-Rodríguez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Ricardo Domingo-Bretón
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS, CSIC), Castellón, Spain.
| |
Collapse
|
2
|
Anderson CJ, Boeckaerts L, Chin P, Cardas JB, Xie W, Gonçalves A, Blancke G, Benson S, Rogatti S, Simpson MS, Davey A, Choi SM, Desmet S, Bushman SD, Goeminne G, Vandenabeele P, Desai MS, Vereecke L, Ravichandran KS. Metabolite-based inter-kingdom communication controls intestinal tissue recovery following chemotherapeutic injury. Cell Host Microbe 2024; 32:1469-1487.e9. [PMID: 39197455 DOI: 10.1016/j.chom.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Cytotoxic chemotherapies have devastating side effects, particularly within the gastrointestinal tract. Gastrointestinal toxicity includes the death and damage of the epithelium and an imbalance in the intestinal microbiota, otherwise known as dysbiosis. Whether dysbiosis is a direct contributor to tissue toxicity is a key area of focus. Here, from both mammalian and bacterial perspectives, we uncover an intestinal epithelial cell death-Enterobacteriaceae signaling axis that fuels dysbiosis. Specifically, our data demonstrate that chemotherapy-induced epithelial cell apoptosis and the purine-containing metabolites released from dying cells drive the inter-kingdom transcriptional re-wiring of the Enterobacteriaceae, including fundamental shifts in bacterial respiration and promotion of purine utilization-dependent expansion, which in turn delays the recovery of the intestinal tract. Inhibition of epithelial cell death or restriction of the Enterobacteriaceae to homeostatic levels reverses dysbiosis and improves intestinal recovery. These findings suggest that supportive therapies that maintain homeostatic levels of Enterobacteriaceae may be useful in resolving intestinal disease.
Collapse
Affiliation(s)
- Christopher J Anderson
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Laura Boeckaerts
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscilla Chin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Javier Burgoa Cardas
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wei Xie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB BioImaging Core, Ghent, Belgium
| | - Gillian Blancke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Benson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sebastian Rogatti
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mariska S Simpson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna Davey
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Summer D Bushman
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | | | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Hai H, Yang M, Cheng Z, Ma K, Shang F. Potential Role of SdiA in Biofilm Formation and Drug Resistance in Avian Pathogenic Escherichia coli. Animals (Basel) 2024; 14:2199. [PMID: 39123725 PMCID: PMC11311028 DOI: 10.3390/ani14152199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) constitutes a significant cause of colibacillosis, a localized or systemic inflammatory disorder in avian species, resulting in considerable economic losses within the global poultry industry. SdiA (suppressor of division inhibitor) is a transcription factor recognized as a LuxR homolog in Escherichia coli, regulating various behaviors, including biofilm formation, multidrug resistance, and the secretion of virulence factors. However, the function of SdiA in APEC strains and its correlation with virulence and multidrug resistance remains unknown. This study probed into the function of SdiA by analyzing the effect of sdiA deletion on the transcription profile of an APEC strain. The microarray data revealed that SdiA upregulates 160 genes and downregulates 59 genes, exerting a particularly remarkable influence on the transcription of multiple virulence genes. A series of antibiotic sensitivity tests, biofilm formation assays, motility assays, and transcriptome analyses were performed, while a Normality test and t-test were conducted on the datasets. This research confirmed that SdiA inhibits biofilm formation by 1.9-fold (p-value < 0.01) and motility by 1.5-fold (p-value < 0.01). RT-qPCR revealed that SdiA positively regulates multidrug resistance by upregulating the expression of yafP, cbrA, and eamB. Collectively, the results of this study indicate the role of SdiA in the pathogenesis of APEC by controlling biofilm formation, motility, and multidrug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.H.); (M.Y.); (Z.C.); (K.M.)
| |
Collapse
|
4
|
Carriles AA, Muzzolini L, Minici C, Tornaghi P, Patrone M, Degano M. Structure-Function Insights into the Dual Role in Nucleobase and Nicotinamide Metabolism and a Possible Use in Cancer Gene Therapy of the URH1p Riboside Hydrolase. Int J Mol Sci 2024; 25:7032. [PMID: 39000137 PMCID: PMC11241417 DOI: 10.3390/ijms25137032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The URH1p enzyme from the yeast Saccharomyces cerevisiae has gained significant interest due to its role in nitrogenous base metabolism, particularly involving uracil and nicotinamide salvage. Indeed, URH1p was initially classified as a nucleoside hydrolase (NH) with a pronounced preference for uridine substrate but was later shown to also participate in a Preiss-Handler-dependent pathway for recycling of both endogenous and exogenous nicotinamide riboside (NR) towards NAD+ synthesis. Here, we present the detailed enzymatic and structural characterisation of the yeast URH1p enzyme, a member of the group I NH family of enzymes. We show that the URH1p has similar catalytic efficiencies for hydrolysis of NR and uridine, advocating a dual role of the enzyme in both NAD+ synthesis and nucleobase salvage. We demonstrate that URH1p has a monomeric structure that is unprecedented for members of the NH homology group I, showing that oligomerisation is not strictly required for the N-ribosidic activity in this family of enzymes. The size, thermal stability and activity of URH1p towards the synthetic substrate 5-fluoruridine, a riboside precursor of the antitumoral drug 5-fluorouracil, make the enzyme an attractive tool to be employed in gene-directed enzyme-prodrug activation therapy against solid tumours.
Collapse
Affiliation(s)
- Alejandra Angela Carriles
- Biocrystallography Group, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Laura Muzzolini
- Biocrystallography Group, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Claudia Minici
- Biocrystallography Group, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Paola Tornaghi
- Biocrystallography Group, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Marco Patrone
- Biocrystallography Group, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Massimo Degano
- Biocrystallography Group, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
5
|
Zhang K, Qin M, Hou Y, Zhang W, Wang Z, Wang H. Efficient production of guanosine in Escherichia coli by combinatorial metabolic engineering. Microb Cell Fact 2024; 23:182. [PMID: 38898430 PMCID: PMC11186194 DOI: 10.1186/s12934-024-02452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Guanosine is a purine nucleoside that is widely used as a raw material for food additives and pharmaceutical products. Microbial fermentation is the main production method of guanosine. However, the guanosine-producing strains possess multiple metabolic pathway interactions and complex regulatory mechanisms. The lack of strains with efficiently producing-guanosine greatly limited industrial application. RESULTS We attempted to efficiently produce guanosine in Escherichia coli using systematic metabolic engineering. First, we overexpressed the purine synthesis pathway from Bacillus subtilis and the prs gene, and deleted three genes involved in guanosine catabolism to increase guanosine accumulation. Subsequently, we attenuated purA expression and eliminated feedback and transcription dual inhibition. Then, we modified the metabolic flux of the glycolysis and Entner-Doudoroff (ED) pathways and performed redox cofactors rebalancing. Finally, transporter engineering and enhancing the guanosine synthesis pathway further increased the guanosine titre to 134.9 mg/L. After 72 h of the fed-batch fermentation in shake-flask, the guanosine titre achieved 289.8 mg/L. CONCLUSIONS Our results reveal that the guanosine synthesis pathway was successfully optimized by combinatorial metabolic engineering, which could be applicable to the efficient synthesis of other nucleoside products.
Collapse
Affiliation(s)
- Kun Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Mengxing Qin
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu Hou
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wenwen Zhang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zhenyu Wang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hailei Wang
- Henan Province Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
6
|
Yu L, Gao Y, He Y, Liu Y, Shen J, Liang H, Gong R, Duan H, Price NPJ, Song X, Deng Z, Chen W. Developing the E. coli platform for efficient production of UMP-derived chemicals. Metab Eng 2024; 83:61-74. [PMID: 38522576 DOI: 10.1016/j.ymben.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.
Collapse
Affiliation(s)
- Le Yu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaojie Gao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuanyuan He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yang Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianning Shen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Han Liang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Gong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - He Duan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Neil P J Price
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Xuemin Song
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenqing Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Shaposhnikov LA, Chikurova NY, Chernobrovkina AV, Tishkov VI, Pometun AA. Development of an approach to determining enzymatic activity of ribonucleoside hydrolase c using hydrophilic interaction liquid chromatography. J Chromatogr A 2024; 1715:464561. [PMID: 38154259 DOI: 10.1016/j.chroma.2023.464561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Ribonucleoside hydrolase C (RihC, EC 3.2.2.1-3.2.2.3, 3.2.2.7, 3.2.2.8) belongs to the family of ribonucleoside hydrolases that catalyze the cleavage of both purine and pyrimidine ribonucleosides to nitrogenous bases and ribose. Its most efficient reaction is the cleavage of uridine with the highest reaction rate. The reaction cannot be detected by a simple spectrophotometric method because of the same absorption maximum for the substrate and reaction product or requires time- and labor-consuming sample preparation for ribose. Reversed-phase HPLC is currently used to register enzymatic activity, where the time of one chromatographic run takes about 10 min. Since a large number of analyses is required to measure the kinetics of an enzymatic reaction, the total time is significant. In this work, we obtained new recombinant RihC from Limosilactobacillus reuteri by gene cloning and expression in E.coli cells. We proposed a new approach for determining the enzymatic activity of the new RihC using hydrophilic interaction liquid chromatography (HILIC). The novel column was developed for this procedure providing the determination of uracil and uridine with high efficiency and retention times of 0.9 and 1.7 min, respectively. Kinetic parameters for RihC uridine cleavage were determined. The proposed approach provided significant rapidity for measurement of the enzyme kinetics being 5 times faster as compared to reversed-phase HPLC.
Collapse
Affiliation(s)
- L A Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - N Yu Chikurova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - A V Chernobrovkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - V I Tishkov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia
| | - A A Pometun
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Avenue, 33-22, Moscow 119071, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russia; Institute of Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba, Miklukho-Maklaya, 8, Moscow, 117198, Russia.
| |
Collapse
|
8
|
Shaposhnikov LA, Chikurova NY, Atroshenko DL, Savin SS, Kleymenov SY, Chernobrovkina AV, Pometun EV, Minyaev ME, Matyuta IO, Hushpulian DM, Boyko KM, Tishkov VI, Pometun AA. Structure-Functional Examination of Novel Ribonucleoside Hydrolase C (RihC) from Limosilactobacillus reuteri LR1. Int J Mol Sci 2023; 25:538. [PMID: 38203708 PMCID: PMC10778931 DOI: 10.3390/ijms25010538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Ribonucleoside hydrolase C (RihC, EC 3.2.2.1, 3.2.2.2, 3.2.2.3, 3.2.2.7, 3.2.2.8) belongs to the family of ribonucleoside hydrolases Rih and catalyzes the cleavage of ribonucleosides to nitrogenous bases and ribose. RihC is one of the enzymes that are synthesized by lactobacilli in response to the presence of Klebsiella. To characterize this protein from Limosilactobacillus reuteri LR1, we cloned and expressed it. The activity of the enzyme was studied towards a wide range of substrates, including ribonucleosides, deoxyribonucleosides as well as an arabinoside. It was shown that the enzyme is active only with ribonucleosides and arabinoside, with the best substrate being uridine. The thermal stability of this enzyme was studied, and its crystal structure was obtained, which demonstrated the tetrameric architecture of the enzyme and allowed to shed light on a correlation between its structure and enzymatic activity. Comprehensive comparisons of all known RihC structures, both existing crystal structures and computed model structures from various species, were made, allowing for the identification of structural motifs important for enzyme functioning.
Collapse
Affiliation(s)
- Leonid A. Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow 119991, Russia;
| | - Natalia Yu. Chikurova
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow 119991, Russia;
| | - Denis L. Atroshenko
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow 119991, Russia;
- Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Miklouho-Maklaya, 8, Moscow 117198, Russia
| | - Svyatoslav S. Savin
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow 119991, Russia;
| | - Sergei Yu. Kleymenov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova, 26, Moscow 119334, Russia
| | - Alla V. Chernobrovkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow 119991, Russia;
| | - Evgenii V. Pometun
- Department of Analytical, Physical and Colloidal Chemistry, A.P. Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya St., 8, Building 2, Moscow 119048, Russia;
| | - Mikhail E. Minyaev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Avenue, 47, Moscow 119991, Russia;
| | - Ilya O. Matyuta
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
| | - Dmitry M. Hushpulian
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
| | - Vladimir I. Tishkov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow 119991, Russia;
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Profsoyuznaya St., 33, Building 4, Moscow 117418, Russia
| | - Anastasia A. Pometun
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Avenue, 33/2, Moscow 119071, Russia; (N.Y.C.); (D.L.A.); (S.S.S.); (S.Y.K.); (I.O.M.); (D.M.H.); (K.M.B.); (V.I.T.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, Moscow 119991, Russia;
- Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Miklouho-Maklaya, 8, Moscow 117198, Russia
| |
Collapse
|
9
|
Shaposhnikov LA, Savin SS, Tishkov VI, Pometun AA. Ribonucleoside Hydrolases-Structure, Functions, Physiological Role and Practical Uses. Biomolecules 2023; 13:1375. [PMID: 37759775 PMCID: PMC10526354 DOI: 10.3390/biom13091375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ribonucleoside hydrolases are enzymes that catalyze the cleavage of ribonucleosides to nitrogenous bases and ribose. These enzymes are found in many organisms: bacteria, archaea, protozoa, metazoans, yeasts, fungi and plants. Despite the simple reaction catalyzed by these enzymes, their physiological role in most organisms remains unclear. In this review, we compare the structure, kinetic parameters, physiological role, and potential applications of different types of ribonucleoside hydrolases discovered and isolated from different organisms.
Collapse
Affiliation(s)
- Leonid A. Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Svyatoslav S. Savin
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir I. Tishkov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anastasia A. Pometun
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
10
|
Huang Z, Wang X, Li N, Song F, Zhou J. Systematic engineering of Escherichia coli for efficient production of nicotinamide riboside from nicotinamide and 3-cyanopyridine. BIORESOURCE TECHNOLOGY 2023; 377:128953. [PMID: 36963699 DOI: 10.1016/j.biortech.2023.128953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Nicotinamide riboside (NR), a key biosynthetic precursor of NAD+, is receiving increasing attention because of its role. In this study, a whole-cell catalysis method to efficiently synthesize NR was established. First, the performance of 5'-nucleotidase (UshA) from Escherichia coli was confirmed to have high catalytic activity to synthesize NR. Then, the endogenous NR degradation pathway was detected, and the genes (rihA, rihB, and rihC) involved in NR degradation were knocked out, which enabled NR biosynthesis. In addition, the important role of the signal peptide of UshA in NR transport had been confirmed. Subsequently, nitrile hydratase was introduced to achieve the conversion of 3-cyanopyridine to NR. Finally, the NR titer reached 25.6 and 29.8 g/L with nicotinamide and 3-cyanopyridine, respectively, as substrates in a 5-L bioreactor, the efficient biosynthesis of NR in E. coli by using nicotinamide and 3-cyanopyridine.
Collapse
Affiliation(s)
- Zhongshi Huang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ning Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Fuqiang Song
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Loss of key endosymbiont genes may facilitate early host control of the chromatophore in Paulinella. iScience 2022; 25:104974. [PMID: 36093053 PMCID: PMC9450145 DOI: 10.1016/j.isci.2022.104974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/12/2023] Open
Abstract
The primary plastid endosymbiosis (∼124 Mya) that occurred in the heterotrophic amoeba lineage, Paulinella, is at an earlier stage of evolution than in Archaeplastida, and provides an excellent model for studying organelle integration. Using genomic data from photosynthetic Paulinella, we identified a plausible mechanism for the evolution of host control of endosymbiont (termed the chromatophore) biosynthetic pathways and functions. Specifically, random gene loss from the chromatophore and compensation by nuclear-encoded gene copies enables host control of key pathways through a minimal number of evolutionary innovations. These gene losses impact critical enzymatic steps in nucleotide biosynthesis and the more peripheral components of multi-protein DNA replication complexes. Gene retention in the chromatophore likely reflects the need to maintain a specific stoichiometric balance of the encoded products (e.g., involved in DNA replication) rather than redox state, as in the highly reduced plastid genomes of algae and plants. Endosymbiont DNA replication cannot be completed without several key host proteins Endosymbiont nucleotide biosynthesis is completed by import of host proteins Limited gene loss allowed the host to gain control of endosymbiont division Paulinella regulates chromatophore function using the stringent response pathway
Collapse
|
12
|
Sun P, Li C, Gong Y, Wang J, Xu Q. Process study of ceramic membrane-coupled mixed-cell fermentation for the production of adenine. Front Bioeng Biotechnol 2022; 10:969668. [PMID: 36032726 PMCID: PMC9399796 DOI: 10.3389/fbioe.2022.969668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
In order to solve the problems of high complexity, many by-products, high pollution and difficult extraction of the existing adenine production process, in this study, ceramic membrane-coupled mixed cell fermentation was used to produce adenine while reducing the synthesis of by-products and simplifying the production process of adenine. Nucleoside hydrolase (encoded by the rihC gene) was used to produce adenine by coordinated fermentation with the adenosine-producing bacterium Bacillus Subtilis XGL. The adenosine hydrolase (AdHy)-expressing strain Escherichia coli BL21-AdHy was successfully employed and the highest activity of the crude enzyme solution was found by orthogonal experiments at 170 W power, 42% duty cycle, and 8 min of sonication. The highest AdHy activity was found after 18 h of induction incubation. E. coli BL21-AdHy was induced for 18 h and sonicated under the above ultrasonic conditions and the resulting crude enzyme solution was used for co-fermentation of the strain and enzyme. Moreover, 15% (v/v) of the AdHy crude enzyme solution was added to fermentation of B. subtilis XGL after 35 h. Finally, the whole fermentation system was dialyzed using coupled ceramic membranes for 45 and 75 h, followed by the addition of fresh medium. In contrast, the AdHy crude enzyme solution was added after 35, 65, and 90 h of B. subtilis fermentation, with three additions of 15, 15, and 10% of the B. subtilis XGL fermentation system. The process was validated in a 5 L fermenter and 14 ± 0.25 g/L of adenine was obtained, with no accumulation of adenosine and d-ribose as by-products. The enzymatic activity of the AdHy crude solution treated with ultrasound was greatly improved. It also reduced the cellular activity of E. coli BL21-AdHy and reduced effects on bacterial co-fermentation. Membrane-coupled dialysis solved the problem of decreased yield due to poor bacterial survival and decreased viability, and eliminated inhibition of the product synthesis pathway by adenosine. The batch addition of crude enzyme broth allowed the continuous conversion of adenosine to adenine. This production method provides the highest yield of biologically produced adenine reported to date, reduces the cost of adenine production, and has positive implications for the industrial production of adenine by fermentation. And it provides a reference for producing other high-value-added products made by fermentation.
Collapse
Affiliation(s)
- Pengjie Sun
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Changgeng Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Gong
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jinduo Wang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- *Correspondence: Qingyang Xu,
| |
Collapse
|
13
|
Adenosine Awakens Metabolism to Enhance Growth-Independent Killing of Tolerant and Persister Bacteria across Multiple Classes of Antibiotics. mBio 2022; 13:e0048022. [PMID: 35575513 PMCID: PMC9239199 DOI: 10.1128/mbio.00480-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolic and growth arrest are primary drivers of antibiotic tolerance and persistence in clinically diverse bacterial pathogens. We recently showed that adenosine (ADO) suppresses bacterial growth under nutrient-limiting conditions. In the current study, we show that despite the growth-suppressive effect of ADO, extracellular ADO enhances antibiotic killing in both Gram-negative and Gram-positive bacteria by up to 5 orders of magnitude. The ADO-potentiated antibiotic activity is dependent on purine salvage and is paralleled with a suppression of guanosine tetraphosphate synthesis and the massive accumulation of ATP and GTP. These changes in nucleoside phosphates coincide with transient increases in rRNA transcription and proton motive force. The potentiation of antibiotic killing by ADO is manifested against bacteria grown under both aerobic and anaerobic conditions, and it is exhibited even in the absence of alternative electron acceptors such as nitrate. ADO potentiates antibiotic killing by generating proton motive force and can occur independently of an ATP synthase. Bacteria treated with an uncoupler of oxidative phosphorylation and NADH dehydrogenase-deficient bacteria are refractory to the ADO-potentiated killing, suggesting that the metabolic awakening induced by this nucleoside is intrinsically dependent on an energized membrane. In conclusion, ADO represents a novel example of metabolite-driven but growth-independent means to reverse antibiotic tolerance. Our investigations identify the purine salvage pathway as a potential target for the development of therapeutics that may improve infection clearance while reducing the emergence of antibiotic resistance. IMPORTANCE Antibiotic tolerance, which is a hallmark of persister bacteria, contributes to treatment-refractory infections and the emergence of heritable antimicrobial resistance. Drugs that reverse tolerance and persistence may become part of the arsenal to combat antimicrobial resistance. Here, we demonstrate that salvage of extracellular ADO reduces antibiotic tolerance in nutritionally stressed Escherichia coli, Salmonella enterica, and Staphylococcus aureus. ADO potentiates bacterial killing under aerobic and anaerobic conditions and takes place in bacteria lacking the ATP synthase. However, the sensitization to antibiotic killing elicited by ADO requires an intact NADH dehydrogenase, suggesting a requirement for an energized electron transport chain. ADO antagonizes antibiotic tolerance by activating ATP and GTP synthesis, promoting proton motive force and cellular respiration while simultaneously suppressing the stringent response. These investigations reveal an unprecedented role for purine salvage stimulation as a countermeasure of antibiotic tolerance and the emergence of antimicrobial resistance.
Collapse
|
14
|
Degano M. Structure, Oligomerization and Activity Modulation in N-Ribohydrolases. Int J Mol Sci 2022; 23:ijms23052576. [PMID: 35269719 PMCID: PMC8910321 DOI: 10.3390/ijms23052576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyzing the hydrolysis of the N-glycosidic bond in nucleosides and other ribosides (N-ribohydrolases, NHs) with diverse substrate specificities are found in all kingdoms of life. While the overall NH fold is highly conserved, limited substitutions and insertions can account for differences in substrate selection, catalytic efficiency, and distinct structural features. The NH structural module is also employed in monomeric proteins devoid of enzymatic activity with different physiological roles. The homo-oligomeric quaternary structure of active NHs parallels the different catalytic strategies used by each isozyme, while providing a buttressing effect to maintain the active site geometry and allow the conformational changes required for catalysis. The unique features of the NH catalytic strategy and structure make these proteins attractive targets for diverse therapeutic goals in different diseases.
Collapse
Affiliation(s)
- Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, via Olgettina 60, 20132 Milano, Italy;
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
15
|
Yang K, Li Z. Multistep construction of metabolically engineered Escherichia coli for enhanced cytidine biosynthesis. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Glowacki RWP, Pudlo NA, Tuncil Y, Luis AS, Sajjakulnukit P, Terekhov AI, Lyssiotis CA, Hamaker BR, Martens EC. A Ribose-Scavenging System Confers Colonization Fitness on the Human Gut Symbiont Bacteroides thetaiotaomicron in a Diet-Specific Manner. Cell Host Microbe 2019; 27:79-92.e9. [PMID: 31901520 DOI: 10.1016/j.chom.2019.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Efficient nutrient acquisition in the human gut is essential for microbial persistence. Although polysaccharides have been well-studied nutrients for the gut microbiome, other resources such as nucleic acids and nucleosides are less studied. We describe several ribose-utilization systems (RUSs) that are broadly represented in Bacteroidetes and appear to have diversified to access ribose from a variety of substrates. One Bacteroides thetaiotaomicron RUS variant is critical for competitive gut colonization in a diet-specific fashion. We used molecular genetics to probe the required functions of the system and the nature of the nutrient source(s) underlying this phenotype. Two RUS-encoded ribokinases were the only components required for this effect, presumably because they generate ribose-phosphate derivatives from products of an unlinked but essential nucleoside phosphorylase. Our results underscore the extensive mechanisms that gut symbionts have evolved to access nutrients and the potential for unexpected dependencies among systems that mediate colonization and persistence.
Collapse
Affiliation(s)
- Robert W P Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yunus Tuncil
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Ana S Luis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anton I Terekhov
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bruce R Hamaker
- Department of Food Science and Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Vila Nova M, Durimel K, La K, Felten A, Bessières P, Mistou MY, Mariadassou M, Radomski N. Genetic and metabolic signatures of Salmonella enterica subsp. enterica associated with animal sources at the pangenomic scale. BMC Genomics 2019; 20:814. [PMID: 31694533 PMCID: PMC6836353 DOI: 10.1186/s12864-019-6188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Salmonella enterica subsp. enterica is a public health issue related to food safety, and its adaptation to animal sources remains poorly described at the pangenome scale. Firstly, serovars presenting potential mono- and multi-animal sources were selected from a curated and synthetized subset of Enterobase. The corresponding sequencing reads were downloaded from the European Nucleotide Archive (ENA) providing a balanced dataset of 440 Salmonella genomes in terms of serovars and sources (i). Secondly, the coregenome variants and accessory genes were detected (ii). Thirdly, single nucleotide polymorphisms and small insertions/deletions from the coregenome, as well as the accessory genes were associated to animal sources based on a microbial Genome Wide Association Study (GWAS) integrating an advanced correction of the population structure (iii). Lastly, a Gene Ontology Enrichment Analysis (GOEA) was applied to emphasize metabolic pathways mainly impacted by the pangenomic mutations associated to animal sources (iv). RESULTS Based on a genome dataset including Salmonella serovars from mono- and multi-animal sources (i), 19,130 accessory genes and 178,351 coregenome variants were identified (ii). Among these pangenomic mutations, 52 genomic signatures (iii) and 9 over-enriched metabolic signatures (iv) were associated to avian, bovine, swine and fish sources by GWAS and GOEA, respectively. CONCLUSIONS Our results suggest that the genetic and metabolic determinants of Salmonella adaptation to animal sources may have been driven by the natural feeding environment of the animal, distinct livestock diets modified by human, environmental stimuli, physiological properties of the animal itself, and work habits for health protection of livestock.
Collapse
Affiliation(s)
- Meryl Vila Nova
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Kévin Durimel
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Kévin La
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Arnaud Felten
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Philippe Bessières
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel-Yves Mistou
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France
| | - Mahendra Mariadassou
- Applied Mathematics and Computer Science, from Genomes to the Environment (MaIAGE), French National Institute for Agricultural Research (INRA), Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Radomski
- French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Paris-Est University, Maisons-Alfort, France.
| |
Collapse
|
18
|
Moore JP, Li H, Engmann ML, Bischof KM, Kunka KS, Harris ME, Tancredi AC, Ditmars FS, Basting PJ, George NS, Bhagwat AA, Slonczewski JL. Inverted Regulation of Multidrug Efflux Pumps, Acid Resistance, and Porins in Benzoate-Evolved Escherichia coli K-12. Appl Environ Microbiol 2019; 85:e00966-19. [PMID: 31175192 PMCID: PMC6677852 DOI: 10.1128/aem.00966-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/30/2019] [Indexed: 01/23/2023] Open
Abstract
Benzoic acid, a partial uncoupler of the proton motive force (PMF), selects for sensitivity to chloramphenicol and tetracycline during the experimental evolution of Escherichia coli K-12. Transcriptomes of E. coli isolates evolved with benzoate showed the reversal of benzoate-dependent regulation, including the downregulation of multidrug efflux pump genes, the gene for the Gad acid resistance regulon, the nitrate reductase genes narHJ, and the gene for the acid-consuming hydrogenase Hyd-3. However, the benzoate-evolved strains had increased expression of OmpF and other large-hole porins that admit fermentable substrates and antibiotics. Candidate genes identified from benzoate-evolved strains were tested for their roles in benzoate tolerance and in chloramphenicol sensitivity. Benzoate or salicylate tolerance was increased by deletion of the Gad activator ariR or of the acid fitness island from slp to the end of the gadX gene encoding Gad regulators and the multidrug pump genes mdtEF Benzoate tolerance was also increased by deletion of multidrug component gene emrA, RpoS posttranscriptional regulator gene cspC, adenosine deaminase gene add, hydrogenase gene hyc (Hyd-3), and the RNA chaperone/DNA-binding regulator gene hfq Chloramphenicol resistance was decreased by mutations in genes for global regulators, such as RNA polymerase alpha subunit gene rpoA, the Mar activator gene rob, and hfq Deletion of lipopolysaccharide biosynthetic kinase gene rfaY decreased the rate of growth in chloramphenicol. Isolates from experimental evolution with benzoate had many mutations affecting aromatic biosynthesis and catabolism, such as aroF (encoding tyrosine biosynthesis) and apt (encoding adenine phosphoribosyltransferase). Overall, benzoate or salicylate exposure selects for the loss of multidrug efflux pumps and of hydrogenases that generate a futile cycle of PMF and upregulates porins that admit fermentable nutrients and antibiotics.IMPORTANCE Benzoic acid is a common food preservative, and salicylic acid (2-hydroxybenzoic acid) is the active form of aspirin. At high concentrations, benzoic acid conducts a proton across the membrane, depleting the proton motive force. In the absence of antibiotics, benzoate exposure selects against proton-driven multidrug efflux pumps and upregulates porins that admit fermentable substrates but that also allow the entry of antibiotics. Thus, evolution with benzoate and related molecules, such as salicylates, requires a trade-off for antibiotic sensitivity, a trade-off that could help define a stable gut microbiome. Benzoate and salicylate are naturally occurring plant signal molecules that may modulate the microbiomes of plants and animal digestive tracts so as to favor fermenters and exclude drug-resistant pathogens.
Collapse
Affiliation(s)
- Jeremy P Moore
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Karina S Kunka
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mary E Harris
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Nadja S George
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Arvind A Bhagwat
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | | |
Collapse
|
19
|
Thicklin L, Shamsuddin A, Alahmry F, Gezley C, Brown E, Stone J, Burns-Carver E, Kline PC. Purification of a non-specific nucleoside hydrolase from Alaska pea seeds. Protein Expr Purif 2019; 154:140-146. [PMID: 30366031 DOI: 10.1016/j.pep.2018.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 11/23/2022]
Abstract
A non-specific nucleoside hydrolase has been isolated from germinated Alaska pea seeds. The enzyme catalyzes the hydrolysis of both purines and pyrimidines along with ribo- and deoxyribonucleosides. A purification scheme utilized ammonium sulfate precipitation, ion exchange chromatography and size exclusion chromatography, resulted in 103-fold purification with a recovery of 2.8%. The purified protein has a specific activity of 0.308 μmol/min•mg. The subunit molecular weight was 26103 Da and the enzyme exists as a dimer. The enzyme retains a significant amount of activity over a wide pH range with the maximum activity occurring at a pH of 6.0. The maximum activity was observed with adenosine as the substrate followed by inosine and guanosine, respectively. The Km for adenosine was 184 ± 34 μM and for inosine 283 ± 88 μM. In addition to the nucleoside hydrolase activity, adenosine deaminase activity was seen in the initial extract. Using adenosine as the substrate with the initial extract from the germinated seeds, the products adenine, inosine, and hypoxanthine were identified based on their retention times during reverse phase HPLC.
Collapse
Affiliation(s)
- Lendsey Thicklin
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Abdullah Shamsuddin
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Fiezah Alahmry
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Claire Gezley
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Erika Brown
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - James Stone
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Elizabeth Burns-Carver
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Paul C Kline
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
20
|
Aučynaitė A, Rutkienė R, Tauraitė D, Meškys R, Urbonavičius J. Identification of a 2'- O-Methyluridine Nucleoside Hydrolase Using the Metagenomic Libraries. Molecules 2018; 23:molecules23112904. [PMID: 30405065 PMCID: PMC6278475 DOI: 10.3390/molecules23112904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022] Open
Abstract
Ribose methylation is among the most ubiquitous modifications found in RNA. 2'-O-methyluridine is found in rRNA, snRNA, snoRNA and tRNA of Archaea, Bacteria, and Eukaryota. Moreover, 2'-O-methylribonucleosides are promising starting materials for the production of nucleic acid-based drugs. Despite the countless possibilities of practical use for the metabolic enzymes associated with methylated nucleosides, there are very few reports regarding the metabolic fate and enzymes involved in the metabolism of 2'-O-alkyl nucleosides. The presented work focuses on the cellular degradation of 2'-O-methyluridine. A novel enzyme was found using a screening strategy that employs Escherichia coli uracil auxotroph and the metagenomic libraries. A 2'-O-methyluridine hydrolase (RK9NH) has been identified together with an aldolase (RK9DPA)-forming a part of a probable gene cluster that is involved in the degradation of 2'-O-methylated nucleosides. The RK9NH is functional in E. coli uracil auxotroph and in vitro. The RK9NH nucleoside hydrolase could be engineered to enzymatically produce 2'-O-methylated nucleosides that are of great demand as raw materials for production of nucleic acid-based drugs. Moreover, RK9NH nucleoside hydrolase converts 5-fluorouridine, 5-fluoro-2'-deoxyuridine and 5-fluoro-2'-O-methyluridine into 5-fluorouracil, which suggests it could be employed in cancer therapy.
Collapse
Affiliation(s)
- Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania.
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania.
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania.
| |
Collapse
|
21
|
Vitkin E, Solomon O, Sultan S, Yakhini Z. Genome-wide analysis of fitness data and its application to improve metabolic models. BMC Bioinformatics 2018; 19:368. [PMID: 30305012 PMCID: PMC6180484 DOI: 10.1186/s12859-018-2341-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022] Open
Abstract
Background Synthetic biology and related techniques enable genome scale high-throughput investigation of the effect on organism fitness of different gene knock-downs/outs and of other modifications of genomic sequence. Results We develop statistical and computational pipelines and frameworks for analyzing high throughput fitness data over a genome scale set of sequence variants. Analyzing data from a high-throughput knock-down/knock-out bacterial study, we investigate differences and determinants of the effect on fitness in different conditions. Comparing fitness vectors of genes, across tens of conditions, we observe that fitness consequences strongly depend on genomic location and more weakly depend on gene sequence similarity and on functional relationships. In analyzing promoter sequences, we identified motifs associated with conditions studied in bacterial media such as Casaminos, D-glucose, Sucrose, and other sugars and amino-acid sources. We also use fitness data to infer genes associated with orphan metabolic reactions in the iJO1366 E. coli metabolic model. To do this, we developed a new computational method that integrates gene fitness and gene expression profiles within a given reaction network neighborhood to associate this reaction with a set of genes that potentially encode the catalyzing proteins. We then apply this approach to predict candidate genes for 107 orphan reactions in iJO1366. Furthermore - we validate our methodology with known reactions using a leave-one-out approach. Specifically, using top-20 candidates selected based on combined fitness and expression datasets, we correctly reconstruct 39.7% of the reactions, as compared to 33% based on fitness and to 26% based on expression separately, and to 4.02% as a random baseline. Our model improvement results include a novel association of a gene to an orphan cytosine nucleosidation reaction. Conclusion Our pipeline for metabolic modeling shows a clear benefit of using fitness data for predicting genes of orphan reactions. Along with the analysis pipelines we developed, it can be used to analyze similar high-throughput data. Electronic supplementary material The online version of this article (10.1186/s12859-018-2341-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward Vitkin
- Department of Computer Science, Technion, Haifa, Israel
| | - Oz Solomon
- Faculty of Biotechnology and Food Engineering, Technion, Haifa, Israel. .,School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.
| | - Sharon Sultan
- School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
| | - Zohar Yakhini
- Department of Computer Science, Technion, Haifa, Israel. .,School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.
| |
Collapse
|
22
|
Wu H, Li Y, Ma Q, Li Q, Jia Z, Yang B, Xu Q, Fan X, Zhang C, Chen N, Xie X. Metabolic engineering of Escherichia coli for high-yield uridine production. Metab Eng 2018; 49:248-256. [PMID: 30189293 DOI: 10.1016/j.ymben.2018.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 01/14/2023]
Abstract
Uridine is a kind of pyrimidine nucleoside that has been widely applied in the pharmaceutical industry. Although microbial fermentation is a promising method for industrial production of uridine, an efficient microbial cell factory is still lacking. In this study, we constructed a metabolically engineered Escherichia coli capable of high-yield uridine production. First, we developed a CRISPR/Cas9-mediated chromosomal integration strategy to integrate large DNA into the E. coli chromosome, and a 9.7 kb DNA fragment including eight genes in the pyrimidine operon of Bacillus subtilis F126 was integrated into the yghX locus of E. coli W3110. The resultant strain produced 3.3 g/L uridine and 4.5 g/L uracil in shake flask culture for 32 h. Subsequently, five genes involved in uridine catabolism were knocked out, and the uridine titer increased to 7.8 g/L. As carbamyl phosphate, aspartate, and 5'-phosphoribosyl pyrophosphate are important precursors for uridine synthesis, we further modified several metabolism-related genes and synergistically improved the supply of these precursors, leading to a 76.9% increase in uridine production. Finally, nupC and nupG encoding nucleoside transport proteins were deleted, and the extracellular uridine accumulation increased to 14.5 g/L. After 64 h of fed-batch fermentation, the final engineered strain UR6 produced 70.3 g/L uridine with a yield and productivity of 0.259 g/g glucose and 1.1 g/L/h, respectively. To the best of our knowledge, this is the highest uridine titer and productivity ever reported for the fermentative production of uridine.
Collapse
Affiliation(s)
- Heyun Wu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Ma
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zifan Jia
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Yang
- The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoguang Fan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
23
|
Fan F, Chen N, Wang Y, Wu R, Cao Z. QM/MM and MM MD Simulations on the Pyrimidine-Specific Nucleoside Hydrolase: A Comprehensive Understanding of Enzymatic Hydrolysis of Uridine. J Phys Chem B 2018; 122:1121-1131. [PMID: 29285933 DOI: 10.1021/acs.jpcb.7b10524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pyrimidine-specific nucleoside hydrolase Yeik (CU-NH) from Escherichia coli cleaves the N-glycosidic bond of uridine and cytidine with a 102-104-fold faster rate than that of purine nucleoside substrates, such as inosine. Such a remarkable substrate specificity and the plausible hydrolytic mechanisms of uridine have been explored by using QM/MM and MM MD simulations. The present calculations show that the relatively stronger hydrogen-bond interactions between uridine and the active-site residues Gln227 and Tyr231 in CU-NH play an important role in enhancing the substrate binding and thus promoting the N-glycosidic bond cleavage, in comparison with inosine. The estimated energy barrier of 30 kcal/mol for the hydrolysis of inosine is much higher than 22 kcal/mol for uridine. Extensive MM MD simulations on the transportation of substrates to the active site of CU-NH indicate that the uridine binding is exothermic by ∼23 kcal/mol, more remarkable than inosine (∼12 kcal/mol). All of these arise from the noncovalent interactions between the substrate and the active site featured in CU-NH, which account for the substrate specificity. Quite differing from other nucleoside hydrolases, here the enzymatic N-glycosidic bond cleavage of uridine is less influenced by its protonation.
Collapse
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 360015, China
| | - Nanhao Chen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Yongheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 360015, China
| |
Collapse
|
24
|
New nucleoside hydrolase with transribosylation activity from Agromyces sp. MM-1 and its application for enzymatic synthesis of 2'-O-methylribonucleosides. J Biosci Bioeng 2017; 125:38-45. [PMID: 28826816 DOI: 10.1016/j.jbiosc.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Microorganisms were screened for transribosylation activity between 2'-O-methyluridine (2'-OMe-UR) and nucleobases, for the purpose of developing a biotransformation process to synthesize 2'-O-methylribonucleosides (2'-OMe-NRs), which are raw materials for nucleic acid drugs. An actinomycete, Agromyces sp. MM-1 was found to produce 2'-O-methyladenosine (2'-OMe-AR) when whole cells were used in a reaction mixture containing 2'-OMe-UR and adenine. The enzyme responsible for the transribosylation was partially purified from Agromyces sp. MM-1 cells through a six-step separation procedure, and identified as a nucleoside hydrolase family enzyme termed AgNH. AgNH was a bi-functional enzyme catalyzing both hydrolysis towards 2'-OMe-NRs and transribosylation between 2'-OMe-UR and various nucleobases as well as adenine. In the hydrolysis reaction, AgNH preferred guanosine analogues as its substrates. In the transribosylation reaction, AgNH showed strong activity towards 6-chloroguanine, with 25-fold relative activity when adenine was used as the acceptor substrate. The transribosylation reaction product from 2'-OMe-UR and 6-chloroguanine was determined to 2'-O-methyl-6-chloroguanosine (2'-OMe-6ClGR). Under the optimal conditions, the maximum molar yield of 2'-OMe-6ClGR reached 2.3% in a 293-h reaction, corresponding to 440 mg/L.
Collapse
|
25
|
Schuster M, Sexton DJ, Hense BA. Why Quorum Sensing Controls Private Goods. Front Microbiol 2017; 8:885. [PMID: 28579979 PMCID: PMC5437708 DOI: 10.3389/fmicb.2017.00885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Cell-cell communication, also termed quorum sensing (QS), is a widespread process that coordinates gene expression in bacterial populations. The generally accepted view is that QS optimizes the cell density-dependent benefit attained from cooperative behaviors, often in the form of secreted products referred to as "public goods." This view is challenged by an increasing number of cell-associated products or "private goods" reported to be under QS-control for which a collective benefit is not apparent. A prominent example is nucleoside hydrolase from Pseudomonas aeruginosa, a periplasmic enzyme that catabolizes adenosine. Several recent studies have shown that private goods can function to stabilize cooperation by co-regulated public goods, seemingly explaining their control by QS. Here we argue that this property is a by-product of selection for other benefits rather than an adaptation. Emphasizing ecophysiological context, we propose alternative explanations for the QS control of private goods. We suggest that the benefit attained from private goods is associated with high cell density, either because a relevant ecological condition correlates with density, or because the private good is, directly or indirectly, involved in cooperative behavior. Our analysis helps guide a systems approach to QS, with implications for antivirulence drug design and synthetic biology.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - D Joseph Sexton
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum MünchenNeuherberg, Germany
| |
Collapse
|
26
|
Singh RK, Steyaert J, Versées W. Structural and biochemical characterization of the nucleoside hydrolase from C. elegans reveals the role of two active site cysteine residues in catalysis. Protein Sci 2017; 26:985-996. [PMID: 28218438 DOI: 10.1002/pro.3141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/28/2022]
Abstract
Nucleoside hydrolases (NHs) catalyze the hydrolysis of the N-glycoside bond in ribonucleosides and are found in all three domains of life. Although in parasitic protozoa a role in purine salvage has been well established, their precise function in bacteria and higher eukaryotes is still largely unknown. NHs have been classified into three homology groups based on the conservation of active site residues. While many structures are available of representatives of group I and II, structural information for group III NHs is lacking. Here, we report the first crystal structure of a purine-specific nucleoside hydrolase belonging to homology group III from the nematode Caenorhabditis elegans (CeNH) to 1.65Å resolution. In contrast to dimeric purine-specific NHs from group II, CeNH is a homotetramer. A cysteine residue that characterizes group III NHs (Cys253) structurally aligns with the catalytic histidine and tryptophan residues of group I and group II enzymes, respectively. Moreover, a second cysteine (Cys42) points into the active site of CeNH. Substrate docking shows that both cysteine residues are appropriately positioned to interact with the purine ring. Site-directed mutagenesis and kinetic analysis proposes a catalytic role for both cysteines residues, with Cys253 playing the most prominent role in leaving group activation.
Collapse
Affiliation(s)
- Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
27
|
Figueroa-Villar JD, Sales EM. The importance of nucleoside hydrolase enzyme (NH) in studies to treatment of Leishmania: A review. Chem Biol Interact 2016; 263:18-27. [PMID: 27939867 DOI: 10.1016/j.cbi.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 11/16/2022]
Abstract
Leishmania is a genus of trypanosomes, which are responsible for leishmaniasis disease, a major trypanosome infection in humans. In recent years, published studies have shown that the search for new drugs for Leishmania treatments has intensified. Through technique modeling it has been possible to develop new compounds, which act as nucleoside hydrolase (NH) inhibitors. The effect of these enzymes is the hydrolysis of certain RNA nucleotides, which include uridine and inosine, necessary for the protozoa to transform certain nucleosides obtained from infected individuals into nucleobases for the preparation of their DNA. The obtention of NH inhibitors is very important to eliminate leishmaniasis disease in infected individuals. The aim of this study is to discuss the research and development of new agents for the treatment of Leishmania, and to stimulate the formulation of new NH inhibitors.
Collapse
Affiliation(s)
- José D Figueroa-Villar
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil.
| | - Edijane M Sales
- Medicinal Chemistry Group, Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Mitsukawa Y, Hibi M, Matsutani N, Horinouchi N, Takahashi S, Ogawa J. A novel nucleoside hydrolase from Lactobacillus buchneri LBK78 catalyzing hydrolysis of 2'-O-methylribonucleosides. Biosci Biotechnol Biochem 2016; 80:1568-76. [PMID: 27180876 DOI: 10.1080/09168451.2016.1182853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for nucleic acid drugs because of their high thermal stability and nuclease tolerance. In the course of microbial screening for metabolic activity toward 2'-OMe-NRs, Lactobacillus buchneri LBK78 was found to decompose 2'-O-methyluridine (2'-OMe-UR). The enzyme responsible was partially purified from L. buchneri LBK78 cells by a four-step purification procedure, and identified as a novel nucleoside hydrolase. This enzyme, LbNH, belongs to the nucleoside hydrolase superfamily, and formed a homotetrameric structure composed of subunits with a molecular mass around 34 kDa. LbNH hydrolyzed 2'-OMe-UR to 2'-O-methylribose and uracil, and the kinetic constants were Km of 0.040 mM, kcat of 0.49 s(-1), and kcat/Km of 12 mM(-1) s(-1). In a substrate specificity analysis, LbNH preferred ribonucleosides and 2'-OMe-NRs as its hydrolytic substrates, but reacted weakly with 2'-deoxyribonucleosides. In a phylogenetic analysis, LbNH showed a close relationship with purine-specific nucleoside hydrolases from trypanosomes.
Collapse
Affiliation(s)
- Yuuki Mitsukawa
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Makoto Hibi
- b Industrial Microbiology, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Narihiro Matsutani
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Nobuyuki Horinouchi
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Satomi Takahashi
- b Industrial Microbiology, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Jun Ogawa
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| |
Collapse
|
29
|
Deeba F, Pandey AK, Pandey V. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2016; 7:425. [PMID: 27092152 PMCID: PMC4824794 DOI: 10.3389/fpls.2016.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.
Collapse
Affiliation(s)
| | | | - Vivek Pandey
- Plant Ecology and Environmental Science, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
30
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
31
|
Kim JS, Koo BS, Hyun HH, Lee HC. Deoxycytidine production by a metabolically engineered Escherichia coli strain. Microb Cell Fact 2015; 14:98. [PMID: 26148515 PMCID: PMC4491880 DOI: 10.1186/s12934-015-0291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background Rational engineering studies for deoxycytidine production were initiated due to low intracellular levels and tight regulation. To achieve high-level production of deoxycytidine, a useful precursor of decitabine, genes related to feed-back inhibition as well as the biosynthetic pathway were engineered. Additionally, we predicted the impact of individual gene expression levels on a complex metabolic network by microarray analysis. Based on these findings, we demonstrated rational metabolic engineering strategies capable of producing deoxycytidine. Results To prepare the deoxycytidine producing strain, we first deleted 3 degradation enzymes in the salvage pathway (deoA, udp, and deoD) and 4 enzymes involved in the branching pathway (dcd, cdd, codA and thyA) to completely eliminate degradation of deoxycytidine. Second, purR, pepA and argR were knocked out to prevent feedback inhibition of CarAB. Third, to enhance influx to deoxycytidine, we investigated combinatorial expression of pyrG, T4 nrdCAB and yfbR. The best strain carried pETGY (pyrG-yfbR) from the possible combinatorial plasmids. The resulting strain showed high deoxycytidine yield (650 mg/L) but co-produced byproducts. To further improve deoxycytidine yield and reduce byproduct formation, pgi was disrupted to generate a sufficient supply of NADPH and ribose. Overall, in shake-flask cultures, the resulting strain produced 967 mg/L of dCyd with decreased byproducts. Conclusions We demonstrated that deoxycytidine could be readily achieved by recombineering with biosynthetic genes and regulatory genes, which appeared to enhance the supply of precursors for synthesis of carbamoyl phosphate, based on transcriptome analysis. In addition, we showed that carbon flux rerouting, by disrupting pgi, efficiently improved deoxycytidine yield and decreased byproduct content. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0291-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Sook Kim
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea. .,Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea.
| | - Hyung-Hwan Hyun
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| | - Hyeon-Cheol Lee
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea. .,Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| |
Collapse
|
32
|
Chen N, Zhao Y, Lu J, Wu R, Cao Z. Mechanistic Insights into the Rate-Limiting Step in Purine-Specific Nucleoside Hydrolase. J Chem Theory Comput 2015; 11:3180-8. [DOI: 10.1021/acs.jctc.5b00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Yuan Zhao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| | - Jianing Lu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Zexing Cao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| |
Collapse
|
33
|
Basu A, Mishra B, Leong SSJ. Global transcriptome analysis reveals distinct bacterial response towards soluble and surface-immobilized antimicrobial peptide (Lasioglossin-III). RSC Adv 2015. [DOI: 10.1039/c5ra14862f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial response towards soluble and immobilized AMP molecules revealed through global transcriptome analysis.
Collapse
Affiliation(s)
- Anindya Basu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
| | - Biswajit Mishra
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
| | - Susanna Su Jan Leong
- Singapore Institute of Technology
- Singapore 138683
- Department of Biochemistry
- Yong Loo Lin School of Medicine
- National University of Singapore
| |
Collapse
|
34
|
Shimaoka M, Takenaka Y, Mihara Y, Kurahashi O, Kawasaki H, Matsui H. Effects ofxapAandguaADisruption on Inosine Accumulation inEscherichia coli. Biosci Biotechnol Biochem 2014; 70:3069-72. [PMID: 17151449 DOI: 10.1271/bbb.60398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A xapA-disrupted mutant was studied to minimize hypoxanthine production and to improve inosine productivity in mutants of Escherichia coli. The xapA-disrupted mutant accumulated 5.6 g/l of inosine from 40 g/l of glucose, while the parent strain accumulated 4.6 g/l. This result indicates that xapA is activated in xapA-positive inosine-producers and that xapA disruption might be useful for improving inosine productivity.
Collapse
Affiliation(s)
- Megumi Shimaoka
- Fermentation and Biotechnology Laboratories, Ajinomoto Co., Inc
| | | | | | | | | | | |
Collapse
|
35
|
Characterization of inosine–uridine nucleoside hydrolase (RihC) from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:656-62. [DOI: 10.1016/j.bbapap.2014.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/12/2014] [Accepted: 01/17/2014] [Indexed: 11/19/2022]
|
36
|
Wink PL, Sanchez Quitian ZA, Rosado LA, Rodrigues VDS, Petersen GO, Lorenzini DM, Lipinski-Paes T, Saraiva Macedo Timmers LF, de Souza ON, Basso LA, Santos DS. Biochemical characterization of recombinant nucleoside hydrolase from Mycobacterium tuberculosis H37Rv. Arch Biochem Biophys 2013; 538:80-94. [DOI: 10.1016/j.abb.2013.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/17/2013] [Indexed: 11/25/2022]
|
37
|
Chen N, Ge H, Xu J, Cao Z, Wu R. Loop motion and base release in purine-specific nucleoside hydrolase: A molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1117-24. [DOI: 10.1016/j.bbapap.2013.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/25/2022]
|
38
|
Xu YF, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy AA, Yakunin AF, Broach JR, Rabinowitz JD. Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol 2013; 9:665. [PMID: 23670538 PMCID: PMC4039369 DOI: 10.1038/msb.2013.21] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/08/2013] [Indexed: 12/30/2022] Open
Abstract
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Giska F, Lichocka M, Piechocki M, Dadlez M, Schmelzer E, Hennig J, Krzymowska M. Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae, creates a binding site for host 14-3-3 proteins. PLANT PHYSIOLOGY 2013; 161:2049-61. [PMID: 23396834 PMCID: PMC3613475 DOI: 10.1104/pp.112.209023] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/06/2013] [Indexed: 05/02/2023]
Abstract
HopQ1 (for Hrp outer protein Q), a type III effector secreted by Pseudomonas syringae pv phaseolicola, is widely conserved among diverse genera of plant bacteria. It promotes the development of halo blight in common bean (Phaseolus vulgaris). However, when this same effector is injected into Nicotiana benthamiana cells, it is recognized by the immune system and prevents infection. Although the ability to synthesize HopQ1 determines host specificity, the role it plays inside plant cells remains unexplored. Following transient expression in planta, HopQ1 was shown to copurify with host 14-3-3 proteins. The physical interaction between HopQ1 and 14-3-3a was confirmed in planta using the fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. Moreover, mass spectrometric analyses detected specific phosphorylation of the canonical 14-3-3 binding site (RSXpSXP, where pS denotes phosphoserine) located in the amino-terminal region of HopQ1. Amino acid substitution within this motif abrogated the association and led to altered subcellular localization of HopQ1. In addition, the mutated HopQ1 protein showed reduced stability in planta. These data suggest that the association between host 14-3-3 proteins and HopQ1 is important for modulating the properties of this bacterial effector.
Collapse
Affiliation(s)
- Fabian Giska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Marcin Piechocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Elmon Schmelzer
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (F.G., M.L., M.P., M.D., J.H., M.K.)
- Institute of Genetics and Biotechnology, Biology Department, Warsaw University, 02–106 Warsaw, Poland (M.D.); and
- Max-Planck Institute for Plant Breeding Research, Central Microscopy, 50829 Cologne, Germany (E.S.)
| | | |
Collapse
|
40
|
Li W, Chiang YH, Coaker G. The HopQ1 effector's nucleoside hydrolase-like domain is required for bacterial virulence in arabidopsis and tomato, but not host recognition in tobacco. PLoS One 2013; 8:e59684. [PMID: 23555744 PMCID: PMC3608555 DOI: 10.1371/journal.pone.0059684] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/16/2013] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens deliver multiple effector proteins into host cells to facilitate bacterial growth. HopQ1 is an effector from Pseudomonas syringae pv. tomato DC3000 that is conserved across multiple bacterial pathogens which infect plants. HopQ1's central region possesses some homology to nucleoside hydrolases, but possesses an alternative aspartate motif not found in characterized enzymes. A structural model was generated for HopQ1 based on the E. coli RihB nucleoside hydrolase and the role of HopQ1's potential catalytic residues for promoting bacterial virulence and recognition in Nicotiana tabacum was investigated. Transgenic Arabidopsis plants expressing HopQ1 exhibit enhanced disease susceptibility to DC3000. HopQ1 can also promote bacterial virulence on tomato when naturally delivered from DC3000. HopQ1's nucleoside hydrolase-like domain alone is sufficient to promote bacterial virulence, and putative catalytic residues are required for virulence promotion during bacterial infection of tomato and in transgenic Arabidopsis lines. HopQ1 is recognized and elicits cell death when transiently expressed in N. tabacum. Residues required to promote bacterial virulence were dispensable for HopQ1's cell death promoting activities in N. tabacum. Although HopQ1 has some homology to nucleoside hydrolases, we were unable to detect HopQ1 enzymatic activity or nucleoside binding capability using standard substrates. Thus, it is likely that HopQ1 promotes pathogen virulence by hydrolyzing alternative ribose-containing substrates in planta.
Collapse
Affiliation(s)
- Wei Li
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Yi-Hsuan Chiang
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Gitta Coaker
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
41
|
Minici C, Cacciapuoti G, De Leo E, Porcelli M, Degano M. New determinants in the catalytic mechanism of nucleoside hydrolases from the structures of two isozymes from Sulfolobus solfataricus. Biochemistry 2012; 51:4590-9. [PMID: 22551416 DOI: 10.1021/bi300209g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purine- and pyrimidine-specific nucleoside hydrolases (NHs) from the archaeon Sulfolobus solfataricus participate in the fundamental pathway of nucleotide catabolism and function to maintain adequate levels of free nitrogenous bases for cellular function. The two highly homologous isozymes display distinct specificities toward nucleoside substrates, and both lack the amino acids employed for activation of the leaving group in the hydrolytic reaction by the NHs characterized thus far. We determined the high-resolution crystal structures of the purine- and pyrimidine-specific NHs from S. solfataricus to reveal that both enzymes belong to NH structural homology group I, despite the different substrate specificities. A Na(+) ion is bound at the active site of the pyrimidine-specific NH instead of the prototypical Ca(2+), delineating a role of the metals in the catalytic mechanism of NHs in the substrate binding rather than nucleophile activation. A conserved His residue, which regulates product release in other homologous NHs, provides crucial interactions for leaving group activation in the archaeal isozymes. Modeling of the enzyme-substrate interactions suggests that steric exclusion and catalytic selection underlie the orthogonal base specificity of the two isozymes.
Collapse
Affiliation(s)
- Claudia Minici
- Biocrystallography Unit, Department of Immunology, Transplantation, and Infectious Diseases, Scientific Institute San Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
42
|
Wu R, Gong W, Liu T, Zhang Y, Cao Z. QM/MM Molecular Dynamics Study of Purine-Specific Nucleoside Hydrolase. J Phys Chem B 2012; 116:1984-91. [DOI: 10.1021/jp211403j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruibo Wu
- School of
Pharmaceutical Sciences,
East Campus, Sun Yat-sen University, Guangzhou
510006, China
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Wengjin Gong
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Ting, Liu
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Zexing Cao
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
43
|
Porcelli M, De Leo E, Marabotti A, Cacciapuoti G. Site-directed mutagenesis gives insights into substrate specificity of Sulfolobus solfataricus purine-specific nucleoside hydrolase. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0379-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Riegler H, Geserick C, Zrenner R. Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation. THE NEW PHYTOLOGIST 2011; 191:349-359. [PMID: 21599668 PMCID: PMC3147060 DOI: 10.1111/j.1469-8137.2011.03711.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/25/2011] [Indexed: 05/17/2023]
Abstract
A central step in nucleoside and nucleobase salvage pathways is the hydrolysis of nucleosides to their respective nucleobases. In plants this is solely accomplished by nucleosidases (EC 3.2.2.x). To elucidate the importance of nucleosidases for nucleoside degradation, general metabolism, and plant growth, thorough phenotypic and biochemical analyses were performed using Arabidopsis thaliana T-DNA insertion mutants lacking expression of the previously identified genes annotated as uridine ribohydrolases (URH1 and URH2). Comprehensive functional analyses of single and double mutants demonstrated that both isoforms are unimportant for seedling establishment and plant growth, while one participates in uridine degradation. Rather unexpectedly, nucleoside and nucleotide profiling and nucleosidase activity screening of soluble crude extracts revealed a deficiency of xanthosine and inosine hydrolysis in the single mutants, with substantial accumulation of xanthosine in one of them. Mixing of the two mutant extracts, and by in vitro activity reconstitution using a mixture of recombinant URH1 and URH2 proteins, both restored activity, thus providing biochemical evidence that at least these two isoforms are needed for inosine and xanthosine hydrolysis. This mutant study demonstrates the utility of in vivo systems for the examination of metabolic activities, with the discovery of the new substrate xanthosine and elucidation of a mechanism for expanding the nucleosidase substrate spectrum.
Collapse
Affiliation(s)
- Heike Riegler
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
| | - Claudia Geserick
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
| | - Rita Zrenner
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops14979 Grossbeeren, Germany
| |
Collapse
|
45
|
Guimarães AP, Oliveira AA, da Cunha EFF, Ramalho TC, França TCC. Analysis of Bacillus anthracis nucleoside hydrolase via in silico docking with inhibitors and molecular dynamics simulation. J Mol Model 2011; 17:2939-51. [DOI: 10.1007/s00894-011-0968-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
|
46
|
Vandemeulebroucke A, Minici C, Bruno I, Muzzolini L, Tornaghi P, Parkin DW, Versées W, Steyaert J, Degano M. Structure and Mechanism of the 6-Oxopurine Nucleosidase from Trypanosoma brucei brucei,. Biochemistry 2010; 49:8999-9010. [DOI: 10.1021/bi100697d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- An Vandemeulebroucke
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Claudia Minici
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Ilaria Bruno
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Laura Muzzolini
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Paola Tornaghi
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - David W. Parkin
- Department of Chemistry, Adelphi University, Garden City, New York 11530-0701
| | - Wim Versées
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Jan Steyaert
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Massimo Degano
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| |
Collapse
|
47
|
Garau G, Muzzolini L, Tornaghi P, Degano M. Active site plasticity revealed from the structure of the enterobacterial N-ribohydrolase RihA bound to a competitive inhibitor. BMC STRUCTURAL BIOLOGY 2010; 10:14. [PMID: 20529317 PMCID: PMC2898832 DOI: 10.1186/1472-6807-10-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 06/08/2010] [Indexed: 01/06/2023]
Abstract
Background Pyrimidine-preferring N-ribohydrolases (CU-NHs) are a class of Ca2+-dependent enzymes that catalyze the hydrolytic cleavage of the N-glycosidic bond in pyrimidine nucleosides. With the exception of few selected organisms, their physiological relevance in prokaryotes and eukaryotes is yet under investigation. Results Here, we report the first crystal structure of a CU-NH bound to a competitive inhibitor, the complex between the Escherichia coli enzyme RihA bound to 3, 4-diaminophenyl-iminoribitol (DAPIR) to a resolution of 2.1 Å. The ligand can bind at the active site in two distinct orientations, and the stabilization of two flexible active site regions is pivotal to establish the interactions required for substrate discrimination and catalysis. Conclusions A comparison with the product-bound RihA structure allows a rationalization of the structural rearrangements required for an enzymatic catalytic cycle, highlighting a substrate-assisted cooperative motion, and suggesting a yet overlooked role of the conserved His82 residue in modulating product release. Differences in the structural features of the active sites in the two homologous CU-NHs RihA and RihB from E. coli provide a rationale for their fine differences in substrate specificity. These new findings hint at a possible role of CU-NHs in the breakdown of modified nucleosides derived from RNA molecules.
Collapse
Affiliation(s)
- Gianpiero Garau
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases - Scientific Institute S. Raffaele, via Olgettina 58, 20132 Milan - Italy
| | | | | | | |
Collapse
|
48
|
Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: insights into mechanisms of protein stabilization. Arch Biochem Biophys 2008; 483:55-65. [PMID: 19121283 DOI: 10.1016/j.abb.2008.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/23/2022]
Abstract
We report the biochemical and structural characterization of the purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus (SsIAG-NH). SsIAG-NH is a homodimer of 70kDa specific for adenosine, guanosine and inosine. SsIAG-NH is highly thermophilic and is characterized by extreme thermodynamic stability (T(m), 107 degrees C), kinetic stability and remarkable resistance to guanidinium chloride-induced unfolding. A disulfide bond that, on the basis of SDS-PAGE is positioned intersubunits, plays an important role in thermal stability. SsIAG-NH shares 43% sequence identity with the homologous pyrimidine-specific nucleoside hydrolase from S. solfataricus (SsCU-NH). The comparative sequence alignment of SsIAG-NH, SsCU-NH, purine non-specific nucleoside hydrolase from Crithidia fasciculata and purine-specific nucleoside hydrolase from Trypanosoma vivax shows that, only few changes in the base pocket are responsible for different substrate specificity of two S. solfataricus enzymes. The structure of SsIAG-NH predicted by homology modeling allows us to infer the role of specific residues in substrate specificity and thermostability.
Collapse
|
49
|
Iovane E, Giabbai B, Muzzolini L, Matafora V, Fornili A, Minici C, Giannese F, Degano M. Structural Basis for Substrate Specificity in Group I Nucleoside Hydrolases,. Biochemistry 2008; 47:4418-26. [DOI: 10.1021/bi702448s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Iovane
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Barbara Giabbai
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Laura Muzzolini
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Vittoria Matafora
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Arianna Fornili
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Claudia Minici
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Francesca Giannese
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Massimo Degano
- Biocrystallography Unit and Mass Spectrometry Unit, DIBIT San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
50
|
Porcelli M, Concilio L, Peluso I, Marabotti A, Facchiano A, Cacciapuoti G. Pyrimidine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus- biochemical characterization and homology modeling. FEBS J 2008; 275:1900-14. [DOI: 10.1111/j.1742-4658.2008.06348.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|