1
|
Han R, Pareja F, Ross DS, Grabenstetter A, Wen HY, Brogi E. Frank Invasion in Tall Cell Carcinoma With Reversed Polarity of the Breast: Report of Two Cases. Mod Pathol 2025; 38:100714. [PMID: 39828059 DOI: 10.1016/j.modpat.2025.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Tall cell carcinoma with reversed polarity (TCCRP) is a rare neoplasm of the breast composed of columnar tumor cells arranged in solid and solid-papillary nests with evidence of apical nuclear polarity. No frank invasion is evident despite the lack of a myoepithelial cell layer throughout the tumor. TCCRP has a triple-negative or hormone receptor-low immunophenotype. Recurrent IDH2 R172 hotspot mutation coexisting with genetic alterations in the PI3K pathway characterizes this tumor. Here, we report on 2 postmenopausal patients with TCCRP with frank stromal invasion. IDH2 R172 mutations were detected in both tumors by immunohistochemistry. Targeted sequencing of case 2 demonstrated the presence of IDH2 R172T and RTEL1 E839K mutations. Both patients underwent breast conservation surgery, radiation therapy, and adjuvant endocrine therapy with anastrozole and demonstrated no evidence of disease at 65 and 25 months, respectively. This study suggests that TCCRP may give rise to frank invasive carcinoma, the prognostic significance of which is yet unknown.
Collapse
Affiliation(s)
- Rachel Han
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York; Sunnybrook Health Sciences Centre, Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Toronto, Ontario, Canada
| | - Fresia Pareja
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Dara S Ross
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Anne Grabenstetter
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Hannah Y Wen
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York
| | - Edi Brogi
- Memorial Sloan Kettering Cancer Center, Department of Pathology, New York, New York.
| |
Collapse
|
2
|
Vasquez C, Osgood NB, Zepeda M, Sandel D, Cowan Q, Peiris M, Donoghue D, Komor A. Precision genome editing and in-cell measurements of oxidative DNA damage repair enable functional and mechanistic characterization of cancer-associated MUTYH variants. Nucleic Acids Res 2025; 53:gkaf037. [PMID: 40156857 PMCID: PMC11952967 DOI: 10.1093/nar/gkaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 04/01/2025] Open
Abstract
Functional characterization of genetic variants has the potential to advance the field of precision medicine by enhancing the efficacy of current therapies and accelerating the development of new approaches to combat genetic diseases. MUTYH is a DNA repair enzyme that recognizes and repairs oxidatively damaged guanines [8-oxoguanine (8-oxoG)] mispaired with adenines (8-oxoG·A). While some mutations in the MUTYH gene are associated with colorectal cancer, most MUTYH variants identified in sequencing databases are classified as variants of uncertain significance. Convoluting clinical classification is the absence of data directly comparing homozygous versus heterozygous MUTYH mutations. In this study, we present the first effort to functionally characterize MUTYH variants using precision genome editing to generate heterozygous and homozygous isogenic cell lines. Using a MUTYH-specific lesion reporter in which we site-specifically incorporate an 8-oxoG·A lesion in a fluorescent protein gene, we measure endogenous MUTYH enzymatic activity and classify them as pathogenic or benign. Further, we modify this reporter to incorporate the MUTYH repair intermediate (8-oxoG across from an abasic site) and validate it with co-immunoprecipitation experiments to demonstrate its ability to characterize the mechanism by which MUTYH mutants are defective at DNA repair.
Collapse
Affiliation(s)
- Carlos A Vasquez
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Nicola R B Osgood
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Marcanthony U Zepeda
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Dominika K Sandel
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Quinn T Cowan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, San Diego, CA 92093, United States
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, United States
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, San Diego, CA 92093, United States
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92037, United States
| |
Collapse
|
3
|
Wang T, Wang Z. Targeting the "Undruggable": Small-Molecule Inhibitors of Proliferating Cell Nuclear Antigen (PCNA) in the Spotlight in Cancer Therapy. J Med Chem 2025; 68:2058-2088. [PMID: 39904718 DOI: 10.1021/acs.jmedchem.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
PCNA plays multiple roles in cancer development, including cell proliferation regulation, DNA repair, replication, and serving as a widely used biomarker and therapeutic target. Despite its significant role in oncology, PCNA has historically been considered "undruggable" due to the absence of known endogenous small molecule modulators and identifiable ligand binding sites. Unlike other protein-protein interfaces, PCNA lacks explicit binding grooves, featuring a relatively small and shallow surface pocket, which hinders the discovery of traditional small molecule targets. Recent breakthroughs have introduced promising PCNA-targeting candidates, with ATX-101 and AOH1996 entering phase I clinical trials for cancer therapy, garnering academic and industry interest. These achievements provide new evidence for PCNA as a drug target. This article provides insight and perspective on the application of small-molecule PCNA inhibitors in cancer treatment, covering PCNA function, its relationship with cancer, structural modification of small molecule inhibitors, and discovery strategies.
Collapse
Affiliation(s)
- Tiantian Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Zengtao Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
- Jiangxi Provincial Key Laboratory of TCM Female Reproductive Health and Related Diseases Research and Transformation, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| |
Collapse
|
4
|
Conlon S, Khuu C, Trasviña-Arenas CH, Xia T, Hamm ML, Raetz AG, David SS. Cellular Repair of Synthetic Analogs of Oxidative DNA Damage Reveals a Key Structure-Activity Relationship of the Cancer-Associated MUTYH DNA Repair Glycosylase. ACS CENTRAL SCIENCE 2024; 10:291-301. [PMID: 38435525 PMCID: PMC10906249 DOI: 10.1021/acscentsci.3c00784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 03/05/2024]
Abstract
The base excision repair glycosylase MUTYH prevents mutations associated with the oxidatively damaged base, 8-oxo-7,8-dihydroguanine (OG), by removing undamaged misincorporated adenines from OG:A mispairs. Defects in OG:A repair in individuals with inherited MUTYH variants are correlated with the colorectal cancer predisposition syndrome known as MUTYH-associated polyposis (MAP). Herein, we reveal key structural features of OG required for efficient repair by human MUTYH using structure-activity relationships (SAR). We developed a GFP-based plasmid reporter assay to define SAR with synthetically generated OG analogs in human cell lines. Cellular repair results were compared with kinetic parameters measured by adenine glycosylase assays in vitro. Our results show substrates lacking the 2-amino group of OG, such as 8OI:A (8OI = 8-oxoinosine), are not repaired in cells, despite being excellent substrates in in vitro adenine glycosylase assays, new evidence that the search and detection steps are critical factors in cellular MUTYH repair functionality. Surprisingly, modification of the O8/N7H of OG, which is the distinguishing feature of OG relative to G, was tolerated in both MUTYH-mediated cellular repair and in vitro adenine glycosylase activity. The lack of sensitivity to alterations at the O8/N7H in the SAR of MUTYH substrates is distinct from previous work with bacterial MutY, indicating that the human enzyme is much less stringent in its lesion verification. Our results imply that the human protein relies almost exclusively on detection of the unique major groove position of the 2-amino group of OG within OGsyn:Aanti mispairs to select contextually incorrect adenines for excision and thereby thwart mutagenesis. These results predict that MUTYH variants that exhibit deficiencies in OG:A detection will be severely compromised in a cellular setting. Moreover, the reliance of MUTYH on the interaction with the OG 2-amino group suggests that disrupting this interaction with small molecules may provide a strategy to develop potent and selective MUTYH inhibitors.
Collapse
Affiliation(s)
- Savannah
G. Conlon
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Cindy Khuu
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlos H. Trasviña-Arenas
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Tian Xia
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Michelle L. Hamm
- Department
of Chemistry, University of Richmond, 410 Westhampton Way, Richmond, Virginia 23173, United States
| | - Alan G. Raetz
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sheila S. David
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Graduate
Program in Chemistry and Chemical Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Biochemistry,
Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
5
|
Bakman AS, Kuznetsova AA, Yanshole LV, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. Fluorescently labeled human apurinic/apyrimidinic endonuclease APE1 reveals effects of DNA polymerase β on the APE1-DNA interaction. DNA Repair (Amst) 2023; 123:103450. [PMID: 36689867 DOI: 10.1016/j.dnarep.2023.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The base excision repair (BER) pathway involves sequential action of DNA glycosylases and apurinic/apyrimidinic (AP) endonucleases to incise damaged DNA and prepare DNA termini for incorporation of a correct nucleotide by DNA polymerases. It has been suggested that the enzymatic steps in BER include recognition of a product-enzyme complex by the next enzyme in the pathway, resulting in the "passing-the-baton" model of transfer of DNA intermediates between enzymes. To verify this model, in this work, we aimed to create a suitable experimental system. We prepared APE1 site-specifically labeled with a fluorescent reporter that is sensitive to stages of APE1-DNA binding, of formation of the catalytic complex, and of subsequent dissociation of the enzyme-product complex. Interactions of the labeled APE1 with various model DNA substrates (containing an abasic site) of varied lengths revealed that the enzyme remains mostly in complex with the DNA product. By means of the fluorescently labeled APE1 in combination with a stopped-flow fluorescence assay, it was found that Polβ stimulates both i) APE1 binding to an abasic-site-containing DNA duplex with the formation of a catalytically competent complex and ii) the dissociation of APE1 from its product. These findings confirm DNA-mediated coordination of APE1 and Polβ activities and suggest that Polβ is the key trigger of the DNA transfer between the enzymes participating in initial steps of BER.
Collapse
Affiliation(s)
- Artemiy S Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Lyudmila V Yanshole
- International Tomography Center SB RAS, 3a Institutskaya Str., Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Group "Mechanisms of DNA Repair and Carcinogenesis", Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805 Villejuif, France
| | - Murat Saparbaev
- Group "Mechanisms of DNA Repair and Carcinogenesis", Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805 Villejuif, France; NCJSC "Al-Farabi Kazakh National University" Almaty, Kazakhstan
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad. Lavrentyeva, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.
| |
Collapse
|
6
|
Yang F, Lian Q, Ni B, Qiu X, He Y, Zou X, He F, Chen W. MUTYH is a potential prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. LIVER RESEARCH 2022; 6:258-268. [PMID: 39957908 PMCID: PMC11791856 DOI: 10.1016/j.livres.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The development of biomarkers for early detection and monitoring of HCC has not shown significant progress. Meanwhile, the second adenomatous polyposis-related gene, MUTYH, which encodes a DNA glycosylase, has been observed in its contribution to oxidative DNA damage repair. Abnormal expression of MUTYH can reduce cell survival rate. Therefore, this study investigated the usefulness of MUTYH in diagnosing and prognosis HCC. Materials and methods Using The Cancer Genome Atlas (TCGA) data, we analyzed the prognostic value of MUTYH in HCC. We used logistic regression, Wilcoxon signed-rank test, and Kruskal-Wallis test to examine MUTYH expression concerning clinical-pathologic characteristics. Univariate and multivariate Cox regression methods and Kaplan-Meier analysis were applied to determine the related prognostic factors of HCC. The enrichment analysis (GSEA) was used to determine the critical pathways associated with MUTYH. The single-sample gene set enrichment analysis (ssGSEA) was conducted to examine the correlation between MUTYH expression and cancer immune infiltration. Results The higher expression of MUTYH in HCC patients was associated with a poorer overall survival rate and a shorter disease-specific survival rate. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that all differentially expressed genes (DEGs) between the high and low expression levels of MUTYH significantly enriched in the trace ligand-receptor interaction, cell cycle, oocyte meiosis, gap junction, and DNA replication. Group analysis revealed the signals of their open access. The neuron system, M phase, DNA repair, Rho GTPase effector, and cell cycle checkpoints were significantly enriched. ssGSEA showed a positive correlation between MUTYH expression and the infiltration levels of Th2 cells, NK cells, and T helper cells. Moreover, a negative correlation was found between MUTYH expression and the infiltration levels of dendritic cells (DCs) and cytotoxic cells. Conclusions MUTYH expression levels were positively correlated with immune checkpoint gene expression levels in HCC tissues. The expression level of MUTYH was related to the prognosis of HCC and the immune infiltration of HCC.
Collapse
Affiliation(s)
- Fan Yang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Infectious Diseases, The First People's Hospital of Kashi, Kashi, Xinjiang, China
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qinghai Lian
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Beibei Ni
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiusheng Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhan He
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoguang Zou
- Department of Infectious Diseases, The First People's Hospital of Kashi, Kashi, Xinjiang, China
| | - Fangping He
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenjie Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Torgasheva NA, Diatlova EA, Grin IR, Endutkin AV, Mechetin GV, Vokhtantsev IP, Yudkina AV, Zharkov DO. Noncatalytic Domains in DNA Glycosylases. Int J Mol Sci 2022; 23:ijms23137286. [PMID: 35806289 PMCID: PMC9266487 DOI: 10.3390/ijms23137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.
Collapse
Affiliation(s)
- Natalia A. Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
8
|
De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021; 9:758402. [PMID: 34869348 PMCID: PMC8640134 DOI: 10.3389/fcell.2021.758402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres are protective nucleoprotein structures that cap linear chromosome ends and safeguard genome stability. Progressive telomere shortening at each somatic cell division eventually leads to critically short and dysfunctional telomeres, which can contribute to either cellular senescence and aging, or tumorigenesis. Human reproductive cells, some stem cells, and most cancer cells, express the enzyme telomerase to restore telomeric DNA. Numerous studies have shown that oxidative stress caused by excess reactive oxygen species is associated with accelerated telomere shortening and dysfunction. Telomeric repeat sequences are remarkably susceptible to oxidative damage and are preferred sites for the production of the mutagenic base lesion 8-oxoguanine, which can alter telomere length homeostasis and integrity. Therefore, knowledge of the repair pathways involved in the processing of 8-oxoguanine at telomeres is important for advancing understanding of the pathogenesis of degenerative diseases and cancer associated with telomere instability. The highly conserved guanine oxidation (GO) system involves three specialized enzymes that initiate distinct pathways to specifically mitigate the adverse effects of 8-oxoguanine. Here we introduce the GO system and review the studies focused on investigating how telomeric 8-oxoguanine processing affects telomere integrity and overall genome stability. We also discuss newly developed technologies that target oxidative damage selectively to telomeres to investigate roles for the GO system in telomere stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Acharya S, Dahal A, Bhattarai HK. Evolution and origin of sliding clamp in bacteria, archaea and eukarya. PLoS One 2021; 16:e0241093. [PMID: 34379636 PMCID: PMC8357120 DOI: 10.1371/journal.pone.0241093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 07/07/2021] [Indexed: 11/18/2022] Open
Abstract
The replication of DNA is an essential process in all domains of life. A protein often involved in replication is the sliding clamp. The sliding clamp encircles the DNA and helps replicative polymerase stay attached to the replication machinery increasing the processivity of the polymerase. In eukaryotes and archaea, the sliding clamp is called the Proliferating Cell Nuclear Antigen (PCNA) and consists of two domains. This PCNA forms a trimer encircling the DNA as a hexamer. In bacteria, the structure of the sliding clamp is highly conserved, but the protein itself, called beta clamp, contains three domains, which dimerize to form a hexamer. The bulk of literature touts a conservation of the structure of the sliding clamp, but fails to recognize the conservation of protein sequence among sliding clamps. In this paper, we have used PSI blast to the second iteration in NCBI to show a statistically significant sequence homology between Pyrococcus furiosus PCNA and Kallipyga gabonensis beta clamp. The last two domains of beta clamp align with the two domains of PCNA. This homology data demonstrates that PCNA and beta clamp arose from a common ancestor. In this paper, we have further used beta clamp and PCNA sequences from diverse bacteria, archaea and eukarya to build maximum likelihood phylogenetic tree. Most, but not all, species in different domains of life harbor one sliding clamp from vertical inheritance. Some of these species that have two or more sliding clamps have acquired them from gene duplication or horizontal gene transfer events.
Collapse
Affiliation(s)
- Sandesh Acharya
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Amol Dahal
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
10
|
Nakamura T, Okabe K, Hirayama S, Chirifu M, Ikemizu S, Morioka H, Nakabeppu Y, Yamagata Y. Structure of the mammalian adenine DNA glycosylase MUTYH: insights into the base excision repair pathway and cancer. Nucleic Acids Res 2021; 49:7154-7163. [PMID: 34142156 PMCID: PMC8266592 DOI: 10.1093/nar/gkab492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Mammalian MutY homologue (MUTYH) is an adenine DNA glycosylase that excises adenine inserted opposite 8-oxoguanine (8-oxoG). The inherited variations in human MUTYH gene are known to cause MUTYH-associated polyposis (MAP), which is associated with colorectal cancer. MUTYH is involved in base excision repair (BER) with proliferating cell nuclear antigen (PCNA) in DNA replication, which is unique and critical for effective mutation-avoidance. It is also reported that MUTYH has a Zn-binding motif in a unique interdomain connector (IDC) region, which interacts with Rad9–Rad1–Hus1 complex (9–1–1) in DNA damage response, and with apurinic/apyrimidinic endonuclease 1 (APE1) in BER. However, the structural basis for the BER pathway by MUTYH and its interacting proteins is unclear. Here, we determined the crystal structures of complexes between mouse MUTYH and DNA, and between the C-terminal domain of mouse MUTYH and human PCNA. The structures elucidated the repair mechanism for the A:8-oxoG mispair including DNA replication-coupled repair process involving MUTYH and PCNA. The Zn-binding motif was revealed to comprise one histidine and three cysteine residues. The IDC, including the Zn-binding motif, is exposed on the MUTYH surface, suggesting its interaction modes with 9–1–1 and APE1, respectively. The structure of MUTYH explains how MAP mutations perturb MUTYH function.
Collapse
Affiliation(s)
- Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Kohtaro Okabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Shogo Hirayama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Mami Chirifu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Hiroshi Morioka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Chuo-ku, Kumamoto, 862-0973 Kumamoto, Japan.,Shokei University and Shokei University Junior College, 2-6-78, Kuhonji, Chuo-ku, Kumamoto, 862-8678 Kumamoto, Japan
| |
Collapse
|
11
|
Arroyave A, Nodit L, Clegg D, Russ A. Forty-eight-year-old female MUTYH carrier presenting with five concurrent primary cancers. Cancer Rep (Hoboken) 2021; 5:e1455. [PMID: 34173730 PMCID: PMC8842692 DOI: 10.1002/cnr2.1455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background MUTYH‐associated polyposis is a rare disorder resulting from mutations involved in DNA mismatch repair. This results in an increased susceptibility to colonic adenomatosis and other cancers. Studies have examined the resulting frequency of extracolonic manifestations; however, these typically occur alone, concurrently, or temporally separate from an already diagnosed colorectal cancer in individuals with a biallelic mutation. Case Reported here is a case of five distinct primary neoplasms presenting simultaneously in a patient monoallelic for an MYH mutation. These neoplasms included squamous cell carcinoma of the vulva, rectal adenocarcinoma, synchronous anal adenocarcinoma, papillary thyroid carcinoma, and ovarian serous psammocarcinoma. Throughout her course, she underwent multiple surgical procedures, neoadjuvant chemoradiation, with further adjuvant therapy, and treatment ongoing. Due to her unique presentation, she underwent genetic testing that demonstrated she was monoallelic for an MYH mutation. Conclusion The patient had a positive response to her treatment and surgical procedures with ongoing adjuvant therapy. She will continue to undergo further genetic testing, and testing for her children is being considered. This case demonstrates a unique presentation associated with a monoallelic MYH mutation that is not described in the current literature and warrants further investigation.
Collapse
Affiliation(s)
- Aaron Arroyave
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee, USA
| | - Laurentia Nodit
- Department of Pathology, University of Tennessee Medical Center, Knoxville, Tennessee, USA
| | - Devin Clegg
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee, USA
| | - Andrew Russ
- Department of Surgery, Colon and Rectal Surgery, University of Tennessee Medical Center, Knoxville, Tennessee, USA
| |
Collapse
|
12
|
Raper AT, Maxwell BA, Suo Z. Dynamic Processing of a Common Oxidative DNA Lesion by the First Two Enzymes of the Base Excision Repair Pathway. J Mol Biol 2021; 433:166811. [PMID: 33450252 DOI: 10.1016/j.jmb.2021.166811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 01/25/2023]
Abstract
Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2'-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair. How BER enzymes coordinate their activities to resolve 8-oxoG damage while limiting cytotoxic BER intermediates from propagating genomic instability remains unclear. Here we use single-molecule Förster resonance energy transfer (smFRET) and ensemble-level techniques to characterize the activities and interactions of consecutive BER enzymes important for repair of 8-oxoG. In addition to characterizing the damage searching and processing mechanisms of human 8-oxoguanine glycosylase 1 (hOGG1), our data support the existence of a ternary complex between hOGG1, the damaged DNA substrate, and human AP endonuclease 1 (APE1). Our results indicate that hOGG1 is actively displaced from its abasic site containing product by protein-protein interactions with APE1 to ensure timely repair of damaged DNA.
Collapse
Affiliation(s)
- Austin T Raper
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Brian A Maxwell
- The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
13
|
Gorini F, Scala G, Cooke MS, Majello B, Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair (Amst) 2021; 97:103027. [PMID: 33285475 PMCID: PMC7926032 DOI: 10.1016/j.dnarep.2020.103027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of DNA oxidation, is a pre-mutagenic lesion which is prone to mispair, if left unrepaired, with 2'-deoxyadenosine during DNA replication. While unrepaired or incompletely repaired 8-oxodG has classically been associated with genome instability and cancer, it has recently been reported to have a role in the epigenetic regulation of gene expression. Despite the growing collection of genome-wide 8-oxodG mapping studies that have been used to provide new insight on the functional nature of 8-oxodG within the genome, a comprehensive view that brings together the epigenetic and the mutagenic nature of the 8-oxodG is still lacking. To help address this gap, this review aims to provide (i) a description of the state-of-the-art knowledge on both the mutagenic and epigenetic roles of 8-oxodG; (ii) putative molecular models through which the 8-oxodG can cause genome instability; (iii) a possible molecular model on how 8-oxodG, acting as an epigenetic signal, could cause the translocations and deletions which are associated with cancer.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy.
| |
Collapse
|
14
|
Dayer G, Masoom ML, Togtema M, Zehbe I. Virus-Host Protein-Protein Interactions between Human Papillomavirus 16 E6 A1 and D2/D3 Sub-Lineages: Variances and Similarities. Int J Mol Sci 2020; 21:E7980. [PMID: 33121134 PMCID: PMC7663357 DOI: 10.3390/ijms21217980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
High-risk strains of human papillomavirus are causative agents for cervical and other mucosal cancers, with type 16 being the most frequent. Compared to the European Prototype (EP; A1), the Asian-American (AA; D2/D3) sub-lineage seems to have increased abilities to promote carcinogenesis. Here, we studied protein-protein interactions (PPIs) between host proteins and sub-lineages of the key transforming E6 protein. We transduced human keratinocyte with EP or AA E6 genes and co-immunoprecipitated E6 proteins along with interacting cellular proteins to detect virus-host binding partners. AAE6 and EPE6 may have unique PPIs with host cellular proteins, conferring gain or loss of function and resulting in varied abilities to promote carcinogenesis. Using liquid chromatography-mass spectrometry and stringent interactor selection criteria based on the number of peptides, we identified 25 candidates: 6 unique to AAE6 and EPE6, along with 13 E6 targets common to both. A novel approach based on pathway selection discovered 171 target proteins: 90 unique AAE6 and 61 unique EPE6 along with 20 common E6 targets. Interpretations were made using databases, such as UniProt, BioGRID, and Reactome. Detected E6 targets were differentially implicated in important hallmarks of cancer: deregulating Notch signaling, energetics and hypoxia, DNA replication and repair, and immune response.
Collapse
Affiliation(s)
- Guillem Dayer
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Mehran L. Masoom
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Melissa Togtema
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Ingeborg Zehbe
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
15
|
Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol 2020; 11:428-449. [PMID: 32821650 PMCID: PMC7407923 DOI: 10.5306/wjco.v11.i7.428] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
MUTYH is a base excision repair enzyme, it plays a crucial role in the correction of DNA errors from guanine oxidation and may be considered a cell protective factor. In humans it is an adenine DNA glycosylase that removes adenine misincorporated in 7,8-dihydro-8-oxoguanine (8-oxoG) pairs, inducing G:C to T:A transversions. MUTYH functionally cooperates with OGG1 that eliminates 8-oxodG derived from excessive reactive oxygen species production. MUTYH mutations have been linked to MUTYH associated polyposis syndrome (MAP), an autosomal recessive disorder characterized by multiple colorectal adenomas. MAP patients show a greatly increased lifetime risk for gastrointestinal cancers. The cancer risk in mono-allelic carriers associated with one MUTYH mutant allele is controversial and it remains to be clarified whether the altered functions of this protein may have a pathophysiological involvement in other diseases besides familial gastrointestinal diseases. This review evaluates the role of MUTYH, focusing on current studies of human neoplastic and non-neoplastic diseases different to colon polyposis and colorectal cancer. This will provide novel insights into the understanding of the molecular basis underlying MUTYH-related pathogenesis. Furthermore, we describe the association between MUTYH single nucleotide polymorphisms (SNPs) and different cancer and non-cancer diseases. We address the utility to increase our knowledge regarding MUTYH in the light of recent advances in the literature with the aim of a better understanding of the potential for identifying new therapeutic targets. Considering the multiple functions and interactions of MUTYH protein, its involvement in pathologies based on oxidative stress damage could be hypothesized. Although the development of extraintestinal cancer in MUTYH heterozygotes is not completely defined, the risk for malignancies of the duodenum, ovary, and bladder is also increased as well as the onset of benign and malignant endocrine tumors. The presence of MUTYH pathogenic variants is an independent predictor of poor prognosis in sporadic gastric cancer and in salivary gland secretory carcinoma, while its inhibition has been shown to reduce the survival of pancreatic ductal adenocarcinoma cells. Furthermore, some MUTYH SNPs have been associated with lung, hepatocellular and cervical cancer risk. An additional role of MUTYH seems to contribute to the prevention of numerous other disorders with an inflammatory/degenerative basis, including neurological and ocular diseases. Finally, it is interesting to note that MUTYH could be a new therapeutic target and future studies will shed light on its specific functions in the prevention of diseases and in the improvement of the chemo-sensitivity of cancer cells.
Collapse
Affiliation(s)
- Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Via Consolare Valeria 98125, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Via dei Vestini 66100, Italy
| |
Collapse
|
16
|
Abduljaleel Z, Athar M, Al-Allaf FA, Al-Dehlawi S, Vazquez JR. Association of functional variants and protein-to-protein physical interactions of human MutY homolog linked with familial adenomatous polyposis and colorectal cancer syndrome. Noncoding RNA Res 2020; 4:155-173. [PMID: 32072083 PMCID: PMC7012779 DOI: 10.1016/j.ncrna.2019.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/26/2019] [Accepted: 11/19/2019] [Indexed: 11/26/2022] Open
Abstract
The human gene MUTYH codes for a DNA glycosylase involved in the repair of oxidative DNA damage. Faulty MUTYH protein activity causes the accumulation of G→T transversions due to unrepaired 8-oxoG:A mismatches. MUTYH germ-line mutations in humans are linked with a recessive form of Familial Adenomatous Polyposis (FAP) and colorectal cancer predisposition. We studied the repair capacity of variants identified in MUTYH-associated polyposis (MAP) patients. MAP is inherited in an autosomal recessive type due to mutations in MUTYH (Y165C, G382D, P54S, A22V, Q63R, G45D, S136P and N43S), indicating that both copies of the gene become inactivated. However, the parents of an individual with an autosomal recessive condition may serve as carriers, each harboring one copy of the mutated gene without showing signs or symptoms of MAP. Six protein partners have been associated with MUTYH, four via direct physical interactions, namely, hMSH6, hPCNA, hRPA1, and hAPEX1. We examined, for the first time, specific interactions of these protein partners with MAP-associated MUTYH mutants using molecular dynamics simulations. The approach provided tools for exploration of the conformational energy landscape accessible to protein partners. The investigation also determined the impact before and after energy minimization of protein-protein interactions and binding affinities of MUTYH wild type and mutant forms, as well as the interactions with other proteins. Taken together, this study provided new insights into the role of MUTYH and its interacting proteins in MAP.
Collapse
Affiliation(s)
- Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O.Box: 715, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box: 715, Makkah 21955, Saudi Arabia.,Bircham University, Av. Sierra, 2, 28691 Villanueva de la Canada, Madrid, Spain
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O.Box: 715, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box: 715, Makkah 21955, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O.Box: 715, Makkah 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box: 715, Makkah 21955, Saudi Arabia
| | - Saied Al-Dehlawi
- The Regional Laboratory, Ministry of Health (MOH), P.O. Box: 6251, Makkah, Saudi Arabia
| | - Jose R Vazquez
- Bircham University, Av. Sierra, 2, 28691 Villanueva de la Canada, Madrid, Spain
| |
Collapse
|
17
|
Raetz AG, Banda DM, Ma X, Xu G, Rajavel AN, McKibbin PL, Lebrilla CB, David SS. The DNA repair enzyme MUTYH potentiates cytotoxicity of the alkylating agent MNNG by interacting with abasic sites. J Biol Chem 2020; 295:3692-3707. [PMID: 32001618 DOI: 10.1074/jbc.ra119.010497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/22/2020] [Indexed: 11/06/2022] Open
Abstract
Higher expression of the human DNA repair enzyme MUTYH has previously been shown to be strongly associated with reduced survival in a panel of 24 human lymphoblastoid cell lines exposed to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The molecular mechanism of MUTYH-enhanced MNNG cytotoxicity is unclear, because MUTYH has a well-established role in the repair of oxidative DNA lesions. Here, we show in mouse embryonic fibroblasts (MEFs) that this MNNG-dependent phenotype does not involve oxidative DNA damage and occurs independently of both O6-methyl guanine adduct cytotoxicity and MUTYH-dependent glycosylase activity. We found that blocking of abasic (AP) sites abolishes higher survival of Mutyh-deficient (Mutyh -/-) MEFs, but this blockade had no additive cytotoxicity in WT MEFs, suggesting the cytotoxicity is due to MUTYH interactions with MNNG-induced AP sites. We found that recombinant mouse MUTYH tightly binds AP sites opposite all four canonical undamaged bases and stimulated apurinic/apyrimidinic endonuclease 1 (APE1)-mediated DNA incision. Consistent with these observations, we found that stable expression of WT, but not catalytically-inactive MUTYH, enhances MNNG cytotoxicity in Mutyh -/- MEFs and that MUTYH expression enhances MNNG-induced genomic strand breaks. Taken together, these results suggest that MUTYH enhances the rapid accumulation of AP-site intermediates by interacting with APE1, implicating MUTYH as a factor that modulates the delicate process of base-excision repair independently of its glycosylase activity.
Collapse
Affiliation(s)
- Alan G Raetz
- Department of Chemistry, University of California, Davis, California 95616
| | - Douglas M Banda
- Department of Chemistry, University of California, Davis, California 95616
| | - Xiaoyan Ma
- Department of Chemistry, University of California, Davis, California 95616
| | - Gege Xu
- Department of Chemistry, University of California, Davis, California 95616
| | - Anisha N Rajavel
- Department of Chemistry, University of California, Davis, California 95616
| | - Paige L McKibbin
- Department of Chemistry, University of California, Davis, California 95616
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, California 95616
| | - Sheila S David
- Department of Chemistry, University of California, Davis, California 95616.
| |
Collapse
|
18
|
Nelson SR, Kathe SD, Hilzinger TS, Averill AM, Warshaw DM, Wallace SS, Lee AJ. Single molecule glycosylase studies with engineered 8-oxoguanine DNA damage sites show functional defects of a MUTYH polyposis variant. Nucleic Acids Res 2019; 47:3058-3071. [PMID: 30698731 PMCID: PMC6451117 DOI: 10.1093/nar/gkz045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
Proper repair of oxidatively damaged DNA bases is essential to maintain genome stability. 8-Oxoguanine (7,8-dihydro-8-oxoguanine, 8-oxoG) is a dangerous DNA lesion because it can mispair with adenine (A) during replication resulting in guanine to thymine transversion mutations. MUTYH DNA glycosylase is responsible for recognizing and removing the adenine from 8-oxoG:adenine (8-oxoG:A) sites. Biallelic mutations in the MUTYH gene predispose individuals to MUTYH-associated polyposis (MAP), and the most commonly observed mutation in some MAP populations is Y165C. Tyr165 is a ‘wedge’ residue that intercalates into the DNA duplex in the lesion bound state. Here, we utilize single molecule fluorescence microscopy to visualize the real-time search behavior of Escherichia coli and Mus musculus MUTYH WT and wedge variant orthologs on DNA tightropes that contain 8-oxoG:A, 8-oxoG:cytosine, or apurinic product analog sites. We observe that MUTYH WT is able to efficiently find 8-oxoG:A damage and form highly stable bound complexes. In contrast, MUTYH Y150C shows decreased binding lifetimes on undamaged DNA and fails to form a stable lesion recognition complex at damage sites. These findings suggest that MUTYH does not rely upon the wedge residue for damage site recognition, but this residue stabilizes the lesion recognition complex.
Collapse
Affiliation(s)
- Shane R Nelson
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Scott D Kathe
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Thomas S Hilzinger
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Andrea J Lee
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
19
|
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int J Mol Sci 2019; 20:ijms20133279. [PMID: 31277343 PMCID: PMC6651865 DOI: 10.3390/ijms20133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Transcripts of many enzymes involved in base excision repair (BER) undergo extensive alternative splicing, but functions of the corresponding alternative splice variants remain largely unexplored. In this review, we cover the studies describing the common alternatively spliced isoforms and disease-associated variants of DNA glycosylases, AP-endonuclease 1, and DNA polymerase beta. We also discuss the roles of alternative splicing in the regulation of their expression, catalytic activities, and intracellular transport.
Collapse
Affiliation(s)
| | - Rafil F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 9 Parizhskoy Kommuny Str., 420012 Kazan, Russia
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., 123182 Moscow, Russia.
| | - Dmitry O Zharkov
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia.
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
20
|
Raetz AG, David SS. When you're strange: Unusual features of the MUTYH glycosylase and implications in cancer. DNA Repair (Amst) 2019; 80:16-25. [PMID: 31203172 DOI: 10.1016/j.dnarep.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
MUTYH is a base-excision repair glycosylase that removes adenine opposite 8-oxoguanine (OG). Variants of MUTYH defective in functional activity lead to MUTYH-associated polyposis (MAP), which progresses to cancer with very high penetrance. Whole genome and whole exome sequencing studies have found MUTYH deficiencies in an increasing number of cancer types. While the canonical OG:A repair activity of MUTYH is well characterized and similar to bacterial MutY, here we review more recent evidence that MUTYH has activities independent of OG:A repair and appear centered on the interdomain connector (IDC) region of MUTYH. We summarize evidence that MUTYH is involved in rapid DNA damage response (DDR) signaling, including PARP activation, 9-1-1 and ATR signaling, and SIRT6 activity. MUTYH alters survival and DDR to a wide variety of DNA damaging agents in a time course that is not consistent with the formation of OG:A mispairs. Studies that suggest MUTYH inhibits the repair of alkyl-DNA damage and cyclopyrimidine dimers (CPDs) is reviewed, and evidence of a synthetic lethal interaction with mismatch repair (MMR) is summarized. Based on these studies we suggest that MUTYH has evolved from an OG:A mispair glycosylase to a multifunctional scaffold for DNA damage response signaling.
Collapse
Affiliation(s)
- Alan G Raetz
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
21
|
Hicks SD, Miller MW. Ethanol-induced DNA repair in neural stem cells is transforming growth factor β1-dependent. Exp Neurol 2019; 317:214-225. [PMID: 30853389 DOI: 10.1016/j.expneurol.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/13/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Following neurotoxic damage, cells repair their DNA, and survive or undergo apoptosis. This study tests the hypothesis that ethanol induces a DNA damage response (DDR) in neural stem cells (NSCs) that promotes excision repair (ER) and this repair is influenced by the growth factor environment. Non-immortalized NSCs treated with fibroblast growth factor 2 or transforming growth factor (TGF) β1 were exposed to ethanol. Ethanol increased total DNA damage, reactive oxygen species, and oxidized DNA bases. TGFβ1 potentiated these toxic effects. Transcriptional analyses of cultured NSCs revealed ethanol-induced increases in transcripts related to the DDR (e.g., Hus1 and p53), base ER (e.g., Mutyh and Nthl1), and nucleotide ER (e.g., Xpc), particularly in the presence of TGFβ1. Expression and activity of ER proteins were affected by ethanol. Similar changes occurred in proliferating cells of ethanol-treated mouse fetuses. Ethanol-induced DNA repair in NSCs depends on the ambient growth factors. Gene products for DNA repair in stem cells are among the first biomarkers identifying fetal alcohol-induced damage.
Collapse
Affiliation(s)
- Steven D Hicks
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY 13210, USA; Developmental Exposure Alcohol Research Center, Binghamton NY 13902, Cortland NY 13045, and Syracuse, NY 13210, USA
| | - Michael W Miller
- Department of Neuroscience and Physiology, State University of New York - Upstate Medical University, Syracuse, NY 13210, USA; Developmental Exposure Alcohol Research Center, Binghamton NY 13902, Cortland NY 13045, and Syracuse, NY 13210, USA; Department of Anatomy, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA; Research Service, Veterans Affairs Medical Center, Syracuse, NY 13210, USA.
| |
Collapse
|
22
|
Nuñez NN, Khuu C, Babu CS, Bertolani SJ, Rajavel AN, Spear JE, Armas JA, Wright JD, Siegel JB, Lim C, David SS. The Zinc Linchpin Motif in the DNA Repair Glycosylase MUTYH: Identifying the Zn 2+ Ligands and Roles in Damage Recognition and Repair. J Am Chem Soc 2018; 140:13260-13271. [PMID: 30208271 PMCID: PMC6443246 DOI: 10.1021/jacs.8b06923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The DNA base excision repair (BER) glycosylase MUTYH prevents DNA mutations by catalyzing adenine (A) excision from inappropriately formed 8-oxoguanine (8-oxoG):A mismatches. The importance of this mutation suppression activity in tumor suppressor genes is underscored by the association of inherited variants of MUTYH with colorectal polyposis in a hereditary colorectal cancer syndrome known as MUTYH-associated polyposis, or MAP. Many of the MAP variants encompass amino acid changes that occur at positions surrounding the two-metal cofactor-binding sites of MUTYH. One of these cofactors, found in nearly all MUTYH orthologs, is a [4Fe-4S]2+ cluster coordinated by four Cys residues located in the N-terminal catalytic domain. We recently uncovered a second functionally relevant metal cofactor site present only in higher eukaryotic MUTYH orthologs: a Zn2+ ion coordinated by three Cys residues located within the extended interdomain connector (IDC) region of MUTYH that connects the N-terminal adenine excision and C-terminal 8-oxoG recognition domains. In this work, we identified a candidate for the fourth Zn2+ coordinating ligand using a combination of bioinformatics and computational modeling. In addition, using in vitro enzyme activity assays, fluorescence polarization DNA binding assays, circular dichroism spectroscopy, and cell-based rifampicin resistance assays, the functional impact of reduced Zn2+ chelation was evaluated. Taken together, these results illustrate the critical role that the "Zn2+ linchpin motif" plays in MUTYH repair activity by providing for proper engagement of the functional domains on the 8-oxoG:A mismatch required for base excision catalysis. The functional importance of the Zn2+ linchpin also suggests that adjacent MAP variants or exposure to environmental chemicals may compromise Zn2+ coordination, and ability of MUTYH to prevent disease.
Collapse
Affiliation(s)
- Nicole N. Nuñez
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Cindy Khuu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Graduate Group, University of California, Davis, 95616, USA
| | - C. Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan R. O. C
| | - Steve J. Bertolani
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
- Genome Center, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Anisha N. Rajavel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Jensen E. Spear
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Jeremy A. Armas
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Jon D. Wright
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan R. O. C
| | - Justin B. Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
- Genome Center, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan R. O. C
| | - Sheila S. David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
23
|
Majumdar C, Nuñez NN, Raetz AG, Khuu C, David SS. Cellular Assays for Studying the Fe-S Cluster Containing Base Excision Repair Glycosylase MUTYH and Homologs. Methods Enzymol 2018; 599:69-99. [PMID: 29746250 DOI: 10.1016/bs.mie.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many DNA repair enzymes, including the human adenine glycosylase MUTYH, require iron-sulfur (Fe-S) cluster cofactors for DNA damage recognition and subsequent repair. MUTYH prokaryotic and eukaryotic homologs are a family of adenine (A) glycosylases that cleave A when mispaired with the oxidatively damaged guanine lesion, 8-oxo-7,8-dihydroguanine (OG). Faulty OG:A repair has been linked to the inheritance of missense mutations in the MUTYH gene. These inherited mutations can result in the onset of a familial colorectal cancer disorder known as MUTYH-associated polyposis (MAP). While in vitro studies can be exceptional at unraveling how MutY interacts with its OG:A substrate, cell-based assays are needed to provide a cellular context to these studies. In addition, strategic comparison of in vitro and in vivo studies can provide exquisite insight into the search, selection, excision process, and the coordination with protein partners, required to mediate full repair of the lesion. A commonly used assay is the rifampicin resistance assay that provides an indirect evaluation of the intrinsic mutation rate in Escherichia coli (E. coli or Ec), read out as antibiotic-resistant cell growth. Our laboratory has also developed a bacterial plasmid-based assay that allows for direct evaluation of repair of a defined OG:A mispair. This assay provides a means to assess the impact of catalytic defects in affinity and excision on overall repair. Finally, a mammalian GFP-based reporter assay has been developed that more accurately models features of mammalian cells. Taken together, these assays provide a cellular context to the repair activity of MUTYH and its homologs that illuminates the role these enzymes play in preventing mutations and disease.
Collapse
Affiliation(s)
| | - Nicole N Nuñez
- University of California, Davis, Davis, CA, United States
| | - Alan G Raetz
- University of California, Davis, Davis, CA, United States
| | - Cindy Khuu
- University of California, Davis, Davis, CA, United States
| | - Sheila S David
- University of California, Davis, Davis, CA, United States.
| |
Collapse
|
24
|
Bj Rås KØ, Sousa MML, Sharma A, Fonseca DM, S Gaard CK, Bj Rås M, Otterlei M. Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication. Nucleic Acids Res 2017; 45:8291-8301. [PMID: 28575236 PMCID: PMC5737410 DOI: 10.1093/nar/gkx476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions and is known to be associated with DNA replication, but how BER is organized during replication is unclear. Here we coupled the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, we identify for the first time the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1, 2 and 3 on nascent DNA. Our findings suggest that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process.
Collapse
Affiliation(s)
- Karine Ø Bj Rås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), Department of Cancer Research and Molecular Medicine, NTNU, N-7491 Trondheim, Norway
| | - Davi M Fonseca
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,The Central Norway Regional Health Authority, N-7501 Stj⊘rdal, Norway.,Proteomics and Metabolomics Core Facility (PROMEC), Department of Cancer Research and Molecular Medicine, NTNU, N-7491 Trondheim, Norway
| | - Caroline K S Gaard
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Magnar Bj Rås
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.,Department of Microbiology, Oslo University Hospital and University of Oslo, N-0027 Oslo, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
25
|
Kunrath-Lima M, Repolês BM, Alves CL, Furtado C, Rajão MA, Macedo AM, Franco GR, Pena SDJ, Valenzuela L, Wisnovsky S, Kelley SO, Galanti N, Cabrera G, Machado CR. Characterization of Trypanosoma cruzi MutY DNA glycosylase ortholog and its role in oxidative stress response. INFECTION GENETICS AND EVOLUTION 2017; 55:332-342. [PMID: 28970112 DOI: 10.1016/j.meegid.2017.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
Trypanosoma cruzi is a protozoan parasite and the causative agent of Chagas disease. Like most living organisms, it is susceptible to oxidative stress, and must adapt to distinct environments. Hence, DNA repair is essential for its survival and the persistence of infection. Therefore, we studied whether T. cruzi has a homolog counterpart of the MutY enzyme (TcMYH), important in the DNA Base Excision Repair (BER) mechanism. Analysis of T. cruzi genome database showed that this parasite has a putative MutY DNA glycosylase sequence. We performed heterologous complementation assays using this genomic sequence. TcMYH complemented the Escherichia coli MutY- strain, reducing the mutation rate to a level similar to wild type. In in vitro assays, TcMYH was able to remove an adenine that was opposite to 8-oxoguanine. We have also constructed a T. cruzi lineage that overexpresses MYH. Although in standard conditions this lineage has similar growth to control cells, the overexpressor is more sensitive to hydrogen peroxide and glucose oxidase than the control, probably due to accumulation of AP sites in its DNA. Localization experiments with GFP-fused TcMYH showed this enzyme is present in both nucleus and mitochondrion. QPCR and MtOX results reinforce the presence and function of TcMYH in these two organelles. Our data suggest T. cruzi has a functional MYH DNA glycosylase, which participates in nuclear and mitochondrial DNA Base Excision Repair.
Collapse
Affiliation(s)
- Marianna Kunrath-Lima
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Bruno Marçal Repolês
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Ceres Luciana Alves
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Carolina Furtado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Matheus Andrade Rajão
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil
| | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| | - Sérgio Danilo Junho Pena
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| | - Lucía Valenzuela
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Simon Wisnovsky
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Norbel Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte 30161-970, MG, Brazil.
| |
Collapse
|
26
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
27
|
Talhaoui I, Matkarimov BT, Tchenio T, Zharkov DO, Saparbaev MK. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases. Free Radic Biol Med 2017; 107:266-277. [PMID: 27890638 DOI: 10.1016/j.freeradbiomed.2016.11.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
In cellular organisms composition of DNA is constrained to only four nucleobases A, G, T and C, except for minor DNA base modifications such as methylation which serves for defence against foreign DNA or gene expression regulation. Interestingly, this severe evolutionary constraint among other things demands DNA repair systems to discriminate between regular and modified bases. DNA glycosylases specifically recognize and excise damaged bases among vast majority of regular bases in the base excision repair (BER) pathway. However, the mismatched base pairs in DNA can occur from a spontaneous conversion of 5-methylcytosine to thymine and DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved special DNA repair systems that target the non-damaged DNA strand in a duplex to remove mismatched regular DNA bases. Mismatch-specific adenine- and thymine-DNA glycosylases (MutY/MUTYH and TDG/MBD4, respectively) initiated BER and mismatch repair (MMR) pathways can recognize and remove normal DNA bases in mismatched DNA duplexes. Importantly, in DNA repair deficient cells bacterial MutY, human TDG and mammalian MMR can act in the aberrant manner: MutY and TDG removes adenine and thymine opposite misincorporated 8-oxoguanine and damaged adenine, respectively, whereas MMR removes thymine opposite to O6-methylguanine. These unusual activities lead either to mutations or futile DNA repair, thus indicating that the DNA repair pathways which target non-damaged DNA strand can act in aberrant manner and introduce genome instability in the presence of unrepaired DNA lesions. Evidences accumulated showing that in addition to the accumulation of oxidatively damaged DNA in cells, the aberrant DNA repair can also contribute to cancer, brain disorders and premature senescence. For example, the aberrant BER and MMR pathways for oxidized guanine residues can lead to trinucleotide expansion that underlies Huntington's disease, a severe hereditary neurodegenerative syndrome. This review summarises the present knowledge about the aberrant DNA repair pathways for oxidized base modifications and their possible role in age-related diseases.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Thierry Tchenio
- LBPA, UMR8113 ENSC - CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Murat K Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
28
|
Banda DM, Nuñez NN, Burnside MA, Bradshaw KM, David SS. Repair of 8-oxoG:A mismatches by the MUTYH glycosylase: Mechanism, metals and medicine. Free Radic Biol Med 2017; 107:202-215. [PMID: 28087410 PMCID: PMC5457711 DOI: 10.1016/j.freeradbiomed.2017.01.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species (RONS) may infringe on the passing of pristine genetic information by inducing DNA inter- and intra-strand crosslinks, protein-DNA crosslinks, and chemical alterations to the sugar or base moieties of DNA. 8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most prevalent DNA lesions formed by RONS and is repaired through the base excision repair (BER) pathway involving the DNA repair glycosylases OGG1 and MUTYH in eukaryotes. MUTYH removes adenine (A) from 8-oxoG:A mispairs, thus mitigating the potential of G:C to T:A transversion mutations from occurring in the genome. The paramount role of MUTYH in guarding the genome is well established in the etiology of a colorectal cancer predisposition syndrome involving variants of MUTYH, referred to as MUTYH-associated polyposis (MAP). In this review, we highlight recent advances in understanding how MUTYH structure and related function participate in the manifestation of human disease such as MAP. Here we focus on the importance of MUTYH's metal cofactor sites, including a recently discovered "Zinc linchpin" motif, as well as updates to the catalytic mechanism. Finally, we touch on the insight gleaned from studies with MAP-associated MUTYH variants and recent advances in understanding the multifaceted roles of MUTYH in the cell, both in the prevention of mutagenesis and tumorigenesis.
Collapse
Affiliation(s)
- Douglas M Banda
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Nicole N Nuñez
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Michael A Burnside
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Katie M Bradshaw
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Sheila S David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
29
|
Matkarimov BT, Saparbaev MK. Aberrant DNA glycosylase-initiated repair pathway of free radicals in-duced DNA damage: implications for age-related diseases and natural aging. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.000943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Sollazzo A, Shakeri-Manesh S, Fotouhi A, Czub J, Haghdoost S, Wojcik A. Interaction of low and high LET radiation in TK6 cells-mechanistic aspects and significance for radiation protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:721-735. [PMID: 27631423 DOI: 10.1088/0952-4746/36/4/721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Most environmental, occupational and medical exposures to ionising radiation are associated with a simultaneous action of different radiation types. An open question remains whether radiations of different qualities interact with each other to yield effects stronger than expected based on the assumption of additivity. It is possible that DNA damage induced by high linear energy transfer (LET) radiation will lead to an opening of the chromatin structure making the DNA more susceptible to attack by reactive oxygen species (ROS) generated by the low LET radiation. In such case, the effect of mixed beams should be strongly expressed in cells that are sensitive to ROS. The present investigation was carried out to test if cells with an impaired capacity to handle oxidative stress are particularly sensitive to the effect of mixed beams of alpha particles and x-rays. Clonogenic cell survival curves and mutant frequencies were analysed in TK6 wild type (wt) cells and in TK6 cells with a knocked down hMYH glycosylase. The results showed a synergistic effect of mixed beams on clonogenic cell survival of TK6wt but not TK6MYH- cells. The frequencies of mutants showed a high degree of interexperimental variability without any indications for synergistic effects of mixed beams. TK6MYH- cells were generally more tolerant to radiation exposure with respect to clonogenic cell survival but showed a strong increase in mutant frequency. The results demonstrate that exposure of wt cells to a mixed beam of alpha particles and x-rays leads to a detrimental effect which is stronger than expected based on the assumption of additivity. The role of oxidative stress in the reaction of cells to mixed beams remains unclear.
Collapse
Affiliation(s)
- Alice Sollazzo
- MBW Department, Centre for Radiation Protection Research, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Wu Y, Lu J, Kang T. Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai) 2016; 48:671-7. [PMID: 27217471 DOI: 10.1093/abbs/gmw044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/15/2016] [Indexed: 01/03/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential for maintaining the integrity of the genome in all organisms. All processes related to DNA, such as replication, excision, repair, and recombination, require the participation of SSBs whose oligonucleotide/oligosaccharide-binding (OB)-fold domain is responsible for the interaction with single-stranded DNA (ssDNA). For a long time, the heterotrimeric replication protein A (RPA) complex was believed to be the only nuclear SSB in eukaryotes to participate in ssDNA processing, while mitochondrial SSBs that are conserved with prokaryotic SSBs were shown to be essential for maintaining genome stability in eukaryotic mitochondria. In recent years, two new proteins, hSSB1 and hSSB2 (human SSBs 1/2), were identified and have better sequence similarity to bacterial and archaeal SSBs than RPA. This review summarizes the current understanding of these human SSBs in DNA damage repair and in cell-cycle checkpoint activation following DNA damage, as well as their relationships with cancer.
Collapse
Affiliation(s)
- Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinping Lu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
32
|
Han SH, Hahm SH, Tran AHV, Chung JH, Hong MK, Paik HD, Kim KS, Han YS. A physical association between the human mutY homolog (hMYH) and DNA topoisomerase II-binding protein 1 (hTopBP1) regulates Chk1-induced cell cycle arrest in HEK293 cells. Cell Biosci 2015; 5:50. [PMID: 26312135 PMCID: PMC4550056 DOI: 10.1186/s13578-015-0042-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/12/2015] [Indexed: 12/02/2022] Open
Abstract
Background Human DNA topoisomerase II-binding protein 1 (hTopBP1) plays an important role in DNA replication and the DNA damage checkpoint pathway. The human mutY homolog (hMYH) is a base excision repair DNA glycosylase that excises adenines or 2-hydroxyadenines that are mispaired with guanine or 7,8-dihydro-8-oxoguanine (8-oxoG). hTopBP1 and hMYH were involved in ATR-mediated Chk1 activation, moreover, both of them were associated with ATR and hRad9 which known as checkpoint-involved proteins. Therefore, we investigated whether hTopBP1 interacted with hMYH, and what the function of their interaction is. Results We documented the interaction between hTopBP1 and hMYH and showed that this interaction increased in a hydroxyurea-dependent manner. We also mapped the hMYH-interacting region of hTopBP1 (residues 444–991). In addition, we investigated several cell cycle-related proteins and found that co-knockdown of hTopBP1 and hMYH significantly diminished cell cycle arrest due to compromised checkpoint kinase 1 (Chk1) activation. Moreover, we observed that hMYH was essential for the accumulation of hTopBP1 on damaged DNA, where hTopBP1 interacts with hRad9, a component of the Rad9-Hus1-Rad1 complex. The accumulation of hTopBP1 on chromatin and its subsequent interaction with hRad9 lead to cell cycle arrest, a process mediated by Chk1 phosphorylation and ataxia telangiectasia and Rad3-related protein (ATR) activation. Conclusions Our results suggested that hMYH is necessary for the accumulation of hTopBP1 to DNA damage lesion to induce the association of hTopBP1 with 9-1-1 and that the interaction between hMYH and hTopBP1 is essential for Chk1 activation. Therefore, we suggest that the interaction between hMYH and hTopBP1 is crucial for activation of the ATR-mediated cell cycle checkpoint. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0042-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Soo-Hyun Hahm
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, 120 Haeryong-ro, Pocheon, Gyeonggi-do 463-836 Republic of Korea
| | - Myoung-Ki Hong
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Key-Sun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, Republic of Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea ; College of Global Integrated Studies, Division of Interdisciplinary Studies, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| |
Collapse
|
33
|
Distinct functional consequences of MUTYH variants associated with colorectal cancer: Damaged DNA affinity, glycosylase activity and interaction with PCNA and Hus1. DNA Repair (Amst) 2015; 34:39-51. [PMID: 26377631 DOI: 10.1016/j.dnarep.2015.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
Abstract
MUTYH is a base excision repair (BER) enzyme that prevents mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenine from inappropriately formed OG:A base-pairs. Germline mutations in the MUTYH gene are linked to colorectal polyposis and a high risk of colorectal cancer, a syndrome referred to as MUTYH-associated polyposis (MAP). There are over 300 different MUTYH mutations associated with MAP and a large fraction of these gene changes code for missense MUTYH variants. Herein, the adenine glycosylase activity, mismatch recognition properties, and interaction with relevant protein partners of human MUTYH and five MAP variants (R295C, P281L, Q324H, P502L, and R520Q) were examined. P281L MUTYH was found to be severely compromised both in DNA binding and base excision activity, consistent with the location of this variation in the iron-sulfur cluster (FCL) DNA binding motif of MUTYH. Both R295C and R520Q MUTYH were found to have low fractions of active enzyme, compromised affinity for damaged DNA, and reduced rates for adenine excision. In contrast, both Q324H and P502L MUTYH function relatively similarly to WT MUTYH in both binding and glycosylase assays. However, P502L and R520Q exhibited reduced affinity for PCNA (proliferation cell nuclear antigen), consistent with their location in the PCNA-binding motif of MUTYH. Whereas, only Q324H, and not R295C, was found to have reduced affinity for Hus1 of the Rad9-Hus1-Rad1 complex, despite both being localized to the same region implicated for interaction with Hus1. These results underscore the diversity of functional consequences due to MUTYH variants that may impact the progression of MAP.
Collapse
|
34
|
Hwang BJ, Jin J, Gao Y, Shi G, Madabushi A, Yan A, Guan X, Zalzman M, Nakajima S, Lan L, Lu AL. SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9-Rad1-Hus1 checkpoint clamp. BMC Mol Biol 2015; 16:12. [PMID: 26063178 PMCID: PMC4464616 DOI: 10.1186/s12867-015-0041-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background SIRT6, a member of the NAD+-dependent histone/protein deacetylase family, regulates genomic stability, metabolism, and lifespan. MYH glycosylase and APE1 are two base excision repair (BER) enzymes involved in mutation avoidance from oxidative DNA damage. Rad9–Rad1–Hus1 (9–1–1) checkpoint clamp promotes cell cycle checkpoint signaling and DNA repair. BER is coordinated with the checkpoint machinery and requires chromatin remodeling for efficient repair. SIRT6 is involved in DNA double-strand break repair and has been implicated in BER. Here we investigate the direct physical and functional interactions between SIRT6 and BER enzymes. Results We show that SIRT6 interacts with and stimulates MYH glycosylase and APE1. In addition, SIRT6 interacts with the 9-1-1 checkpoint clamp. These interactions are enhanced following oxidative stress. The interdomain connector of MYH is important for interactions with SIRT6, APE1, and 9–1–1. Mutagenesis studies indicate that SIRT6, APE1, and Hus1 bind overlapping but different sequence motifs on MYH. However, there is no competition of APE1, Hus1, or SIRT6 binding to MYH. Rather, one MYH partner enhances the association of the other two partners to MYH. Moreover, APE1 and Hus1 act together to stabilize the MYH/SIRT6 complex. Within human cells, MYH and SIRT6 are efficiently recruited to confined oxidative DNA damage sites within transcriptionally active chromatin, but not within repressive chromatin. In addition, Myh foci induced by oxidative stress and Sirt6 depletion are frequently localized on mouse telomeres. Conclusions Although SIRT6, APE1, and 9-1-1 bind to the interdomain connector of MYH, they do not compete for MYH association. Our findings indicate that SIRT6 forms a complex with MYH, APE1, and 9-1-1 to maintain genomic and telomeric integrity in mammalian cells. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0041-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Ying Gao
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing, 100084, China.
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,University of Maryland School of Nursing, 655 West Lombard Street, Baltimore, MD, 21201, USA.
| | - Amrita Madabushi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Department of Natural and Physical Sciences, Life Sciences Institute, Baltimore City Community College, 801 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Austin Yan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Xin Guan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Michal Zalzman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, MD, 21201, USA.
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
35
|
Kroker AJ, Bruning JB. p21 Exploits Residue Tyr151 as a Tether for High-Affinity PCNA Binding. Biochemistry 2015; 54:3483-93. [PMID: 25972089 DOI: 10.1021/acs.biochem.5b00241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proliferating cell nuclear antigen (PCNA, processivity factor, sliding clamp) is a ring-shaped protein that tethers proteins to DNA in processes, including DNA replication, DNA repair, and cell-cycle control. Often used as a marker for cell proliferation, PCNA is overexpressed in cancer cells, making it an appealing pharmaceutical target. PCNA interacts with proteins through a PCNA interacting protein (PIP)-box, an eight-amino acid consensus sequence; different binding partners display a wide range of affinities based on function. Of all biological PIP-boxes, p21 has the highest known affinity for PCNA, allowing for inhibition of DNA replication and cell growth under cellular stress. As p21 is one of the few PIP-box sequences to contain a tyrosine rather than a phenylalanine in the eighth conserved position, we probed the significance of the hydroxyl group at this position using a mutational approach. Here we present the cocrystal structure of PCNA bound to a mutant p21 PIP-box peptide, p21Tyr151Phe, with associated isothermal titration calorimetry data. The p21Tyr151Phe peptide showed a 3-fold difference in affinity, as well as differences in entropy and enthalpy of binding. These differences can be attributed to a loss of hydrogen bonding capacity, as well as structural plasticity in the PCNA interdomain connector loop and the hydrophobic cavity of PCNA to which p21 binds. Thus, the hydroxyl group of Tyr151 in p21 acts as a tethering point for ideal packing and surface recognition of the peptide interface, increasing the binding affinity of p21 for PCNA.
Collapse
Affiliation(s)
- Alice J Kroker
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
36
|
Hwang BJ, Jin J, Gunther R, Madabushi A, Shi G, Wilson GM, Lu AL. Association of the Rad9-Rad1-Hus1 checkpoint clamp with MYH DNA glycosylase and DNA. DNA Repair (Amst) 2015; 31:80-90. [PMID: 26021743 DOI: 10.1016/j.dnarep.2015.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022]
Abstract
Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9-1-1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER. Here, we show that individual 9-1-1 components play distinct roles in BER directed by MYH DNA glycosylase. Analyses of Hus1 deletion mutants revealed that the interdomain connecting loop (residues 134-155) is a key determinant of MYH binding. Both the N-(residues 1-146) and C-terminal (residues 147-280) halves of Hus1, which share structural similarity, can interact with and stimulate MYH. The Hus1(K136A) mutant retains physical interaction with MYH but cannot stimulate MYH glycosylase activity. The N-terminal domain, but not the C-terminal half of Hus1 can also bind DNA with moderate affinity. Intact Rad9 expressed in bacteria binds to and stimulates MYH weakly. However, Rad9(1-266) (C-terminal truncated Rad9) can stimulate MYH activity and bind DNA with high affinity, close to that displayed by heterotrimeric 9(1-266)-1-1 complexes. Conversely, Rad1 has minimal roles in stimulating MYH activity or binding to DNA. Finally, we show that preferential recruitment of 9(1-266)-1-1 to 5'-recessed DNA substrates is an intrinsic property of this complex and is dependent on complex formation. Together, our findings provide a mechanistic rationale for unique contributions by individual 9-1-1 subunits to MYH-directed BER based on subunit asymmetry in protein-protein interactions and DNA binding events.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Randall Gunther
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Amrita Madabushi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Natural and Physical Sciences, Life Sciences Institute; Baltimore City Community College, Baltimore, MD 21201, United States
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; University of Maryland School of Nursing, Baltimore, MD 21201, United States
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
37
|
Thakur S, Dhiman M, Tell G, Mantha AK. A review on protein-protein interaction network of APE1/Ref-1 and its associated biological functions. Cell Biochem Funct 2015; 33:101-12. [DOI: 10.1002/cbf.3100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Thakur
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
| | - M. Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies; Central University of Punjab; Bathinda Punjab India
| | - G. Tell
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - A. K. Mantha
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
38
|
Agustina L, Hahm SH, Han SH, Tran AHV, Chung JH, Park JH, Park JW, Han YS. Visualization of the physical and functional interaction between hMYH and hRad9 by Dronpa bimolecular fluorescence complementation. BMC Mol Biol 2014; 15:17. [PMID: 25127721 PMCID: PMC4151078 DOI: 10.1186/1471-2199-15-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/04/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Human MutY glycosylase homolog (hMYH), a component of the base excision repair pathway, is responsible for the generation of apurinic/apyrimidinic sites. Rad9-Rad1-Hus1 (9-1-1) is a heterotrimeric protein complex that plays a role in cell cycle checkpoint control and DNA repair. In humans, hMYH and 9-1-1 interact through Hus1 and to a lesser degree with Rad1 in the presence of DNA damage. In Saccharomyces pombe, each component of the 9-1-1 complex interacts directly with SpMYH. The glycosylase activity of hMYH is stimulated by Hus1 and the 9-1-1 complex and enhanced by DNA damage treatment. Cells respond to different stress conditions in different manners. Therefore, we investigated whether Rad9 interacted with hMYH under different stresses. Here, we identified and visualized the interaction between hRad9 and hMYH and investigated the functional consequences of this interaction. RESULTS Co-IP and BiFC indicates that hMYH interacts with hRad9. As shown by GST-pull down assay, this interaction is direct. Furthermore, BiFC with deletion mutants of hMYH showed that hRad9 interacts with N-terminal region of hMYH. The interaction was enhanced by hydroxyurea (HU) treatment. mRNA and protein levels of hMYH and hRad9 were increased following HU treatment. A marked increase in p-Chk1 (S345) and p-Cdk2 (T14, Y15) was observed. But this phosphorylation decreased in siMYH- or siRad9-transfected cells, and more pronounced decrease observed in co-transfected cells. CONCLUSIONS Our data reveal that hRad9 interacts directly with N-terminal region of hMYH. This interaction is enhanced by HU treatment. Knockdown of one or both protein result in decreasing Chk1 and Cdk2 phosphorylation. Since both protein functions in the early detection of DNA damage, we suggest that this interaction occurs early in DNA damage pathway.
Collapse
Affiliation(s)
- Lia Agustina
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Soo-Hyun Hahm
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Se Hee Han
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - An Hue Vy Tran
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, College of Life Science, CHA University, Gyeonggi-do 463-836, Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Jin Woo Park
- BioActs, DKC Corporation, 693-2 Gojan-dong, Namdong-gu, Incheon 405-820, Korea
| | - Ye Sun Han
- Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
39
|
de Oliveira AHS, da Silva AE, de Oliveira IM, Henriques JAP, Agnez-Lima LF. MutY-glycosylase: an overview on mutagenesis and activities beyond the GO system. Mutat Res 2014; 769:119-31. [PMID: 25771731 DOI: 10.1016/j.mrfmmm.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023]
Abstract
MutY is a glycosylase known for its role in DNA base excision repair (BER). It is critically important in the prevention of DNA mutations derived from 7,8-dihydro-8-oxoguanine (8-oxoG), which are the major lesions resulting from guanine oxidation. MutY has been described as a DNA repair enzyme in the GO system responsible for removing adenine residues misincorporated in 8-oxoG:A mispairs, avoiding G:C to T:A mutations. Further studies have shown that this enzyme binds to other mispairs, interacts with several enzymes, avoids different transversions/transitions in DNA, and is involved in different repair pathways. Additional activities have been reported for MutY, such as the repair of replication errors in newly synthesized DNA strands through its glycosylase activity. Moreover, MutY is a highly conserved enzyme present in several prokaryotic and eukaryotic organisms. MutY defects are associated with a hereditary colorectal cancer syndrome termed MUTYH-associated polyposis (MAP). Here, we have reviewed the roles of MutY in the repair of mispaired bases in DNA as well as its activities beyond the GO system.
Collapse
Affiliation(s)
- Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil; Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Acarízia Eduardo da Silva
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Iuri Marques de Oliveira
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João Antônio Pegas Henriques
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto de Biotecnologia, Departamento de Ciências Biomédicas, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
40
|
Kuznetsova AA, Kuznetsov NA, Ishchenko AA, Saparbaev MK, Fedorova OS. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1. Biochim Biophys Acta Gen Subj 2014; 1840:3042-51. [PMID: 25086253 DOI: 10.1016/j.bbagen.2014.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. METHODS Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. RESULTS We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. CONCLUSIONS We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. GENERAL SIGNIFICANCE Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway.
Collapse
Affiliation(s)
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Université Paris-Sud XI, UMR8200 CNRS, Institut Gustave Roussy, Villejuif Cedex F-94805, France
| | - Murat K Saparbaev
- Groupe «Réparation de l'ADN», Université Paris-Sud XI, UMR8200 CNRS, Institut Gustave Roussy, Villejuif Cedex F-94805, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
41
|
Chan N, Ali M, McCallum GP, Kumareswaran R, Koritzinsky M, Wouters BG, Wells PG, Gallinger S, Bristow RG. Hypoxia provokes base excision repair changes and a repair-deficient, mutator phenotype in colorectal cancer cells. Mol Cancer Res 2014; 12:1407-15. [PMID: 25030372 DOI: 10.1158/1541-7786.mcr-14-0246] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Regions of acute and chronic hypoxia exist within solid tumors and can lead to increased rates of mutagenesis and/or altered DNA damage and repair protein expression. Base excision repair (BER) is responsible for resolving small, non-helix-distorting lesions from the genome that potentially cause mutations by mispairing or promoting DNA breaks during replication. Germline and somatic mutations in BER genes, such as MutY Homolog (MUTYH/MYH) and DNA-directed polymerase (POLB), are associated with increased risk of colorectal cancer. However, very little is known about the expression and function of BER proteins under hypoxic stress. Using conditions of chronic hypoxia, decreased expression of BER proteins was observed because of a mechanism involving suppressed BER protein synthesis in multiple colorectal cancer cell lines. Functional BER was impaired as determined by MYH- and 8-oxoguanine (OGG1)-specific glycosylase assays. A formamidopyrimidine-DNA glycosylase (Fpg) Comet assay revealed elevated residual DNA base damage in hypoxic cells 24 hours after H2O2 treatment as compared with normoxic controls. Similarly, high-performance liquid chromatography analysis demonstrated that 8-oxo-2'-deoxyguanosine lesions were elevated in hypoxic cells 3 and 24 hours after potassium bromate (KBrO3) treatment when compared with aerobic cells. Correspondingly, decreased clonogenic survival was observed following exposure to the DNA base damaging agents H2O2 and MMS, but not to the microtubule interfering agent paclitaxel. Thus, a persistent downregulation of BER components by the microenvironment modifies and facilitates a mutator phenotype, driving genetic instability and cancer progression. IMPLICATIONS Aberrant BER is a contributing factor for the observed genetic instability in hypoxic tumor cells.
Collapse
Affiliation(s)
- Norman Chan
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Mohsin Ali
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Gordon P McCallum
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Ramya Kumareswaran
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robert G Bristow
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Nakabeppu Y. Cellular levels of 8-oxoguanine in either DNA or the nucleotide pool play pivotal roles in carcinogenesis and survival of cancer cells. Int J Mol Sci 2014; 15:12543-57. [PMID: 25029543 PMCID: PMC4139859 DOI: 10.3390/ijms150712543] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 01/06/2023] Open
Abstract
8-Oxoguanine, a major oxidized base lesion formed by reactive oxygen species, causes G to T transversion mutations or leads to cell death in mammals if it accumulates in DNA. 8-Oxoguanine can originate as 8-oxo-dGTP, formed in the nucleotide pool, or by direct oxidation of the DNA guanine base. MTH1, also known as NUDT1, with 8-oxo-dGTP hydrolyzing activity, 8-oxoguanine DNA glycosylase (OGG1) an 8-oxoG DNA glycosylase, and MutY homolog (MUTYH) with adenine DNA glycosylase activity, minimize the accumulation of 8-oxoG in DNA; deficiencies in these enzymes increase spontaneous and induced tumorigenesis susceptibility. However, different tissue types have different tumorigenesis susceptibilities. These can be reversed by combined deficiencies in the defense systems, because cell death induced by accumulation of 8-oxoG in DNA is dependent on MUTYH, which can be suppressed by MTH1 and OGG1. In cancer cells encountering high oxidative stress levels, a high level of 8-oxo-dGTP accumulates in the nucleotide pool, and cells therefore express increased levels of MTH1 in order to eliminate 8-oxo-dGTP. Suppression of MTH1 may be an efficient strategy for killing cancer cells; however, because MTH1 and OGG1 protect normal tissues from oxidative-stress-induced cell death, it is important that MTH1 inhibition does not increase the risk of healthy tissue degeneration.
Collapse
Affiliation(s)
- Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, and Research Center for Nucleotide Pool, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| |
Collapse
|
43
|
Engstrom LM, Brinkmeyer MK, Ha Y, Raetz AG, Hedman B, Hodgson KO, Solomon EI, David SS. A zinc linchpin motif in the MUTYH glycosylase interdomain connector is required for efficient repair of DNA damage. J Am Chem Soc 2014; 136:7829-32. [PMID: 24841533 PMCID: PMC4063174 DOI: 10.1021/ja502942d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammalian MutY glycosylases have a unique architecture that features an interdomain connector (IDC) that joins the catalytic N-terminal domain and 8-oxoguanine (OG) recognition C-terminal domain. The IDC has been shown to be a hub for interactions with protein partners involved in coordinating downstream repair events and signaling apoptosis. Herein, a previously unidentified zinc ion and its coordination by three Cys residues of the IDC region of eukaryotic MutY organisms were characterized by mutagenesis, ICP-MS, and EXAFS. In vitro kinetics and cellular assays on WT and Cys to Ser mutants have revealed an important function for zinc coordination on overall protein stability, iron-sulfur cluster insertion, and ability to mediate DNA damage repair. We propose that this "zinc linchpin" motif serves to structurally organize the IDC and coordinate the damage recognition and base excision functions of the C- and N-terminal domains.
Collapse
Affiliation(s)
- Lisa M Engstrom
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jin J, Hwang BJ, Chang PW, Toth EA, Lu AL. Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast. DNA Repair (Amst) 2014; 15:1-10. [PMID: 24559510 PMCID: PMC3967872 DOI: 10.1016/j.dnarep.2014.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9-Rad1-Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I(261) of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E(262) of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3'-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Po-Wen Chang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eric A Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD 20850, USA
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
45
|
Lee AJ, Warshaw DM, Wallace SS. Insights into the glycosylase search for damage from single-molecule fluorescence microscopy. DNA Repair (Amst) 2014; 20:23-31. [PMID: 24560296 DOI: 10.1016/j.dnarep.2014.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
The first step of base excision repair utilizes glycosylase enzymes to find damage within a genome. A persistent question in the field of DNA repair is how glycosylases interact with DNA to specifically find and excise target damaged bases with high efficiency and specificity. Ensemble studies have indicated that glycosylase enzymes rely upon both sliding and distributive modes of search, but ensemble methods are limited in their ability to directly observe these modes. Here we review insights into glycosylase scanning behavior gathered through single-molecule fluorescence studies of enzyme interactions with DNA and provide a context for these results in relation to ensemble experiments.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, The University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Burlington, VT 05405-0075, USA.
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
46
|
Scott TL, Rangaswamy S, Wicker CA, Izumi T. Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 2014; 20:708-26. [PMID: 23901781 PMCID: PMC3960848 DOI: 10.1089/ars.2013.5529] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are generated by exogenous and environmental genotoxins, but also arise from mitochondria as byproducts of respiration in the body. ROS generate DNA damage of which pathological consequence, including cancer is well established. Research efforts are intense to understand the mechanism of DNA base excision repair, the primary mechanism to protect cells from genotoxicity caused by ROS. RECENT ADVANCES In addition to the notion that oxidative DNA damage causes transformation of cells, recent studies have revealed how the mitochondrial deficiencies and ROS generation alter cell growth during the cancer transformation. CRITICAL ISSUES The emphasis of this review is to highlight the importance of the cellular response to oxidative DNA damage during carcinogenesis. Oxidative DNA damage, including 7,8-dihydro-8-oxoguanine, play an important role during the cellular transformation. It is also becoming apparent that the unusual activity and subcellular distribution of apurinic/apyrimidinic endonuclease 1, an essential DNA repair factor/redox sensor, affect cancer malignancy by increasing cellular resistance to oxidative stress and by positively influencing cell proliferation. FUTURE DIRECTIONS Technological advancement in cancer cell biology and genetics has enabled us to monitor the detailed DNA repair activities in the microenvironment. Precise understanding of the intracellular activities of DNA repair proteins for oxidative DNA damage should provide help in understanding how mitochondria, ROS, DNA damage, and repair influence cancer transformation.
Collapse
Affiliation(s)
- Timothy L Scott
- Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
47
|
Hwang BJ, Shi G, Lu AL. Mammalian MutY homolog (MYH or MUTYH) protects cells from oxidative DNA damage. DNA Repair (Amst) 2013; 13:10-21. [PMID: 24315136 DOI: 10.1016/j.dnarep.2013.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022]
Abstract
MutY DNA glycosylase homologs (MYH or MUTYH) reduce G:C to T:A mutations by removing misincorporated adenines or 2-hydroxyadenines paired with guanine or 8-oxo-7,8-dihydroguanine (8-oxo-G). Mutations in the human MYH (hMYH) gene are associated with the colorectal cancer predisposition syndrome MYH-associated polyposis. To examine the function of MYH in human cells, we regulated MYH gene expression by knockdown or overproduction. MYH knockdown human HeLa cells are more sensitive to the killing effects of H2O2 than the control cells. In addition, hMYH knockdown cells have altered cell morphology, display enhanced susceptibility to apoptosis, and have altered DNA signaling activation in response to oxidative stress. The cell cycle progression of hMYH knockdown cells is also different from that of the control cells following oxidative stress. Moreover, hMYH knockdown cells contain higher levels of 8-oxo-G lesions than the control cells following H2O2 treatment. Although MYH does not directly remove 8-oxo-G, MYH may generate favorable substrates for other repair enzymes. Overexpression of mouse Myh (mMyh) in human mismatch repair defective HCT15 cells makes the cells more resistant to killing and refractory to apoptosis by oxidative stress than the cells transfected with vector. In conclusion, MYH is a vital DNA repair enzyme that protects cells from oxidative DNA damage and is critical for a proper cellular response to DNA damage.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Gouli Shi
- University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, United States
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201, United States.
| |
Collapse
|
48
|
Luncsford PJ, Manvilla BA, Patterson DN, Malik SS, Jin J, Hwang BJ, Gunther R, Kalvakolanu S, Lipinski LJ, Yuan W, Lu W, Drohat AC, Lu AL, Toth EA. Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions. DNA Repair (Amst) 2013; 12:1043-52. [PMID: 24209961 DOI: 10.1016/j.dnarep.2013.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
Abstract
MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or G(o)) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar-phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5' to the AP site. Because AP sites are mutagenic and cytotoxic, they must be processed by APE1 immediately after the action of MYH glycosylase. Our recent reports show that the interdomain connector (IDC) of human MYH (hMYH) maintains interactions with hAPE1 and the human checkpoint clamp Rad9-Rad1-Hus1 (9-1-1) complex. In this study, we used NMR chemical shift perturbation experiments to determine hMYH-binding site on hAPE1. Chemical shift perturbations indicate that the hMYH IDC peptide binds to the DNA-binding site of hAPE1 and an additional site which is distal to the APE1 DNA-binding interface. In these two binding sites, N212 and Q137 of hAPE1 are key mediators of the MYH/APE1 interaction. Intriguingly, despite the fact that hHus1 and hAPE1 both interact with the MYH IDC, hHus1 does not compete with hAPE1 for binding to hMYH. Rather, hHus1 stabilizes the hMYH/hAPE1 complex both in vitro and in cells. This is consistent with a common theme in BER, namely that the assembly of protein-DNA complexes enhances repair by efficiently coordinating multiple enzymatic steps while simultaneously minimizing the release of harmful repair intermediates.
Collapse
Affiliation(s)
- Paz J Luncsford
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jansson K, Alao JP, Viktorsson K, Warringer J, Lewensohn R, Sunnerhagen P. A role for Myh1 in DNA repair after treatment with strand-breaking and crosslinking chemotherapeutic agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:327-337. [PMID: 23677513 DOI: 10.1002/em.21784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 04/16/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The highly conserved DNA glycosylase MutY is implicated in repair of oxidative DNA damage, in particular in removing adenines misincorporated opposite 7,8-dihydro-8-oxoguanine (8-oxo-G). The MutY homologues (MutYH) physically associate with proteins implicated in replication, DNA repair, and checkpoint signaling, specifically with the DNA damage sensor complex 9-1-1 proteins. Here, we ask whether MutYH could have a broader function in sensing and repairing different types of DNA damage induced by conventional chemotherapeutics. Thus, we examined if deletion of the Schizosaccharomyces pombe MutY homologue, Myh1, alone or in combination with deletion of either component of the 9-1-1 sensor complex, influences survival after exposure to different classes of DNA damaging chemotherapeutics that do not act primarily by causing 8-oxoG lesions. We show that Myh1 contributes to survival on genotoxic stresses induced by the oxidizing, DNA double strand break-inducing, bleomycins, or the DNA crosslinking platinum compounds, particularly in a rad1 mutant background. Exposure of cells to cisplatin leads to a moderate overall accumulation of Myh1 protein. Interestingly, we found that DNA damage induced by phleomycin results in increased chromatin association of Myh1. Further, we demonstrate that Myh1 relocalizes to the nucleus after exposure to hydrogen peroxide or chemotherapeutics, most prominently seen after phleomycin treatment. These observations indicate a wider role of Myh1 in DNA repair and DNA damage-induced checkpoint activation than previously thought.
Collapse
Affiliation(s)
- Kristina Jansson
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
MUTYH-associated colorectal cancer and adenomatous polyposis. Surg Today 2013; 44:593-600. [PMID: 23605219 DOI: 10.1007/s00595-013-0592-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/04/2013] [Indexed: 12/28/2022]
Abstract
MUTYH-associated polyposis (MAP) was first described in 2002. MUTYH is a component of a base excision repair system that protects the genomic information from oxidative damage. When the MUTYH gene product is impaired by bi-allelic germline mutation, it leads to the mutation of cancer-related genes, such as the APC and/or the KRAS genes, via G to T transversion. MAP is a hereditary colorectal cancer syndrome inherited in an autosomal-recessive fashion. The clinical features of MAP include the presence of 10-100 adenomatous polyps in the colon, and early onset of colorectal cancer. Ethnic and geographical differences in the pattern of the MUTYH gene mutations have been suggested. In Caucasian patients, c.536A>G (Y179C) and c.1187G>A (G396D) mutations are frequently detected. In the Asian population, Y179C and G396D are uncommon, whereas other variants are suggested to be the major causes of MAP. We herein review the literature on MUTYH-associated colorectal cancer and adenomatous polyposis.
Collapse
|