1
|
Roussat M, Jungas T, Audouard C, Omerani S, Medevielle F, Agius E, Davy A, Pituello F, Bel-Vialar S. Control of G 2 Phase Duration by CDC25B Modulates the Switch from Direct to Indirect Neurogenesis in the Neocortex. J Neurosci 2023; 43:1154-1165. [PMID: 36596698 PMCID: PMC9962783 DOI: 10.1523/jneurosci.0825-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.
Collapse
Affiliation(s)
- Melanie Roussat
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Christophe Audouard
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sofiane Omerani
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Francois Medevielle
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Eric Agius
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Alice Davy
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Fabienne Pituello
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| | - Sophie Bel-Vialar
- Molecular, Cellular and Developmental biology unit (UMR 5077), Center for Integrative Biology, Université Paul Sabatier, Toulouse, cedex 09, France
| |
Collapse
|
2
|
Molina A, Bonnet F, Pignolet J, Lobjois V, Bel-Vialar S, Gautrais J, Pituello F, Agius E. Single-cell imaging of the cell cycle reveals CDC25B-induced heterogeneity of G1 phase length in neural progenitor cells. Development 2022; 149:275468. [DOI: 10.1242/dev.199660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Although lengthening of the cell cycle and G1 phase is a generic feature of tissue maturation during development, the underlying mechanism remains poorly understood. Here, we develop a time-lapse imaging strategy to measure the four cell cycle phases in single chick neural progenitor cells in their endogenous environment. We show that neural progenitors are widely heterogeneous with respect to cell cycle length. This variability in duration is distributed over all phases of the cell cycle, with the G1 phase contributing the most. Within one cell cycle, each phase duration appears stochastic and independent except for a correlation between S and M phase duration. Lineage analysis indicates that the majority of daughter cells may have a longer G1 phase than mother cells, suggesting that, at each cell cycle, a mechanism lengthens the G1 phase. We identify that the CDC25B phosphatase known to regulate the G2/M transition indirectly increases the duration of the G1 phase, partly through delaying passage through the restriction point. We propose that CDC25B increases the heterogeneity of G1 phase length, revealing a previously undescribed mechanism of G1 lengthening that is associated with tissue development.
Collapse
Affiliation(s)
- Angie Molina
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Frédéric Bonnet
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Julie Pignolet
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Valerie Lobjois
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Sophie Bel-Vialar
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Jacques Gautrais
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 2 , Toulouse 31062 CEDEX 9 , France
| | - Fabienne Pituello
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| | - Eric Agius
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier 1 Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD) , , Toulouse 31062 CEDEX 9 , France
| |
Collapse
|
3
|
Ding L, Zhao X, Xiong Q, Jiang X, Liu X, Ding K, Zhou P. Cdc25B is transcriptionally inhibited by IER5 through the NF-YB transcription factor in irradiation-treated HeLa cells. Toxicol Res (Camb) 2021; 10:875-884. [PMID: 34484679 DOI: 10.1093/toxres/tfab069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/09/2022] Open
Abstract
Cervical cancer (CC) is a type of pelvic malignant tumor that severely threatens women's health. Current evidence suggests that IER5, as a potential radiosensitizer, promotes irradiation-induced apoptosis in CC tissues in patients undergoing chemoradiotherapy. IER5 has been shown to be involved in the G2/M-phase transition. In the present study, we used Cdc25B as the breakthrough point to explore the underlying mechanism of IER5 in the cell cycle regulation of radiation-damaged HeLa cells. IER5 was evidently upregulated after irradiation, but Cdc25B was significantly downregulated. In monoclonal IER5-silenced HeLa cells, irradiation-induced downregulation of Cdc25B was attenuated. The effect of irradiation on Cdc25B promoter activity was determined by dual-luciferase reporter assays. The response elements on the Cdc25B promoter related to irradiation were predicted by JASPAR. These conserved sequences were mutated individually or in combination by splicing-by-overlap extension PCR, and their function was confirmed by dual-luciferase reporter assays. The enrichment efficiency of transcription factors after irradiation was determined by chromatin immunoprecipitation (ChIP) assay. Both Sp1/Sp3 and NF-YB binding sites were involved in irradiation-mediated regulation of Cdc25B. IER5 was involved in irradiation-mediated regulation of Cdc25B through the NF-YB binding site. Furthermore, ChIP assays showed that IER5 bound to the Cdc25B promoter, and the binding of IER5 to the Cdc25B promoter region in irradiation-induced HeLa cells induced the release of the coactivator p300 through interaction with NF-YB. Taken together, these findings indicate that IER5 is the transcriptional repressor that accelerates the downregulation of Cdc25B expression after irradiation.
Collapse
Affiliation(s)
- Lixin Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xianzhe Zhao
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Qiang Xiong
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xiaoyan Jiang
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Xiaodan Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, P. R. China
| | - Kuke Ding
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Xicheng District, Beijing 100088, P. R. China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, P. R. China
| |
Collapse
|
4
|
Chen HH, Liu YL, Liu XY, Zhang JL, Xu HJ. Functional Analysis of Nuclear Factor Y in the Wing-Dimorphic Brown Planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Front Genet 2020; 11:585320. [PMID: 33240330 PMCID: PMC7670041 DOI: 10.3389/fgene.2020.585320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with the ability to bind to a CCAAT box in nearly all eukaryotes. However, the function of NF-Y in the life-history traits of insects is unclear. Here, we identified three NF-Y subunits, NlNF-YA, NlNF-YB, and NlNF-YC, in the wing-dimorphic brown planthopper (BPH), Nilaparvata lugens. Spatio-temporal analysis indicated that NlNF-YA, NlNF-YB, and NlNF-YC distributed extensively in various body parts of fourth-instar nymphs, and were highly expressed at the egg stage. RNA interference (RNAi)-mediated silencing showed that knockdown of NlNF-YA, NlNF-YB, or NlNF-YC in third-instar nymphs significantly extended the fifth-instar duration, and decreased nymph-adult molting rate. The addition of 20-hydroxyecdysone could specifically rescue the defect in adult molting caused by NlNF-YARNAi, indicating that NlNF-Y might modulate the ecdysone signaling pathway in the BPH. In addition, NlNF-YARNAi, NlNF-YBRNAi, or NlNF-YCRNAi led to small and moderately malformed forewings and hindwings, and impaired the normal assembly of indirect flight muscles. Adult BPHs treated with NlNF-YARNAi, NlNF-YBRNAi, or NlNF-YCRNAi produced fewer eggs, and eggs laid by these BPHs had arrested embryogenesis. These findings deepen our understanding of NF-Y function in hemipteran insects.
Collapse
Affiliation(s)
- Hao-Hao Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Lai Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Yang Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Li Zhang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Jun Xu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Xiao Y, Yu Y, Gao D, Jin W, Jiang P, Li Y, Wang C, Song Y, Zhan P, Gu F, Zhang C, Wang B, Chen Y, Du B, Zhang R. Inhibition of CDC25B With WG-391D Impedes the Tumorigenesis of Ovarian Cancer. Front Oncol 2019; 9:236. [PMID: 31024841 PMCID: PMC6463794 DOI: 10.3389/fonc.2019.00236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Novel inhibitors are urgently needed for use as targeted therapies to improve the overall survival (OS) of patients with ovarian cancer. Here, we show that cell division cycle 25B (CDC25B) is over-expressed in ovarian tumors and associated with poor patient prognosis. All previously reported CDC25B inhibitors have been identified by their ability to reversibly inhibit the catalytic dephosphorylation activity of CDC25B in vitro; however, none of these compounds have entered clinical trials for ovarian cancer therapy. In this study, we synthesized a novel small molecule compound, WG-391D, that potently down-regulates CDC25B expression without affecting its catalytic dephosphorylation activity. The inhibition of CDC25B by WG-391D is irreversible, and WG-391D should therefore exhibit potent antitumor activity against ovarian cancer. WG-391D induces cell cycle progression arrest at the G2/M phase. Half maximal inhibitory concentration (IC50) values of WG-391D for inhibition of the proliferation and migration of eight representative ovarian cancer cell lines (SKOV3, ES2, OVCAR8, OVTOKO, A2780, IGROV1, HO8910PM, and MCAS) and five primary ovarian tumor cell lines (GFY004, GFY005, CZ001, CZ006, and CZ008) were lower than 10 and 1 μM, respectively. WG-391D inhibited tumor growth in nude mice inoculated with SKOV3 cells or a patient-derived xenograft (PDX). The underlying mechanisms were associated with the down-regulation of CDC25B and subsequent inactivation of cell division cycle 2 (CDC2) and the serine/threonine kinase, AKT. In conclusion, this study demonstrates that WG-391D exhibits strong antitumor activity against ovarian cancer and indicates that the down-regulation of CDC25B by inhibitors could provide a rationale for ovarian cancer therapy.
Collapse
Affiliation(s)
- Yangjiong Xiao
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yang Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wangrui Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Pengcheng Jiang
- Department of Gynecology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yuhong Li
- Department of Gynecology, The International Peace Maternity & Child Health Hospital, The China Welfare Institute, Shanghai Jiaotong University, Shanghai, China
| | - Chao Wang
- Department of Gynecology, The International Peace Maternity & Child Health Hospital, The China Welfare Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Fei Gu
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Cancan Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Bin Wang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| | - Yihua Chen
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Central Hospital of Southern Medical University, Shanghai, China
| |
Collapse
|
6
|
Bonnet F, Molina A, Roussat M, Azais M, Bel-Vialar S, Gautrais J, Pituello F, Agius E. Neurogenic decisions require a cell cycle independent function of the CDC25B phosphatase. eLife 2018; 7:32937. [PMID: 29969095 PMCID: PMC6051746 DOI: 10.7554/elife.32937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/08/2018] [Indexed: 01/06/2023] Open
Abstract
A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent of its action on the cell cycle.
Collapse
Affiliation(s)
- Frédéric Bonnet
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Angie Molina
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mélanie Roussat
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manon Azais
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative., Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sophie Bel-Vialar
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jacques Gautrais
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative., Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fabienne Pituello
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Eric Agius
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
7
|
Cicchillitti L, Manni I, Mancone C, Regazzo G, Spagnuolo M, Alonzi T, Carlomosti F, Dell'Anna ML, Dell'Omo G, Picardo M, Ciana P, Capogrossi MC, Tripodi M, Magenta A, Rizzo MG, Gurtner A, Piaggio G. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation. Oncotarget 2018; 8:2628-2646. [PMID: 27793050 PMCID: PMC5356829 DOI: 10.18632/oncotarget.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Mancone
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy.,Department of Cellular Biotechnologies and Haematology, Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Manuela Spagnuolo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Tonino Alonzi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy
| | - Fabrizio Carlomosti
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, 00167 Rome, Italy
| | - Maria Lucia Dell'Anna
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Giulia Dell'Omo
- Department of Oncology and Hemato-Oncology and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases, Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Maurizio C Capogrossi
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, Via dei Monti di Creta 104, Rome 00167, Italy Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy.,Department of Cellular Biotechnologies and Haematology, Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Magenta
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, Via dei Monti di Creta 104, Rome 00167, Italy Rome, Italy
| | - Maria Giulia Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Aymone Gurtner
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
8
|
Gurtner A, Manni I, Piaggio G. NF-Y in cancer: Impact on cell transformation of a gene essential for proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:604-616. [PMID: 27939755 DOI: 10.1016/j.bbagrm.2016.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
NF-Y is a ubiquitous heterotrimeric transcription factor with a binding affinity for the CCAAT consensus motif, one of the most common cis-acting element in the promoter and enhancer regions of eukaryote genes in direct (CCAAT) or reverse (ATTGG) orientation. NF-Y consists of three subunits, NF-YA, the regulatory subunit of the trimer, NF-YB, and NF-YC, all required for CCAAT binding. Growing evidence in cells and animal models support the notion that NF-Y, driving transcription of a plethora of cell cycle regulatory genes, is a key player in the regulation of proliferation. Proper control of cellular growth is critical for cancer prevention and uncontrolled proliferation is a hallmark of cancer cells. Indeed, during cell transformation aberrant molecular pathways disrupt mechanisms controlling proliferation and many growth regulatory genes are altered in tumors. Here, we review bioinformatics, molecular and functional evidence indicating the involvement of the cell cycle regulator NF-Y in cancer-associated pathways. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Aymone Gurtner
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, UOSD SAFU, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
9
|
Mojsin M, Topalovic V, Marjanovic Vicentic J, Stevanovic M. Transcription factor NF-Y inhibits cell growth and decreases SOX2 expression in human embryonal carcinoma cell line NT2/D1. BIOCHEMISTRY (MOSCOW) 2015; 80:202-7. [PMID: 25756534 DOI: 10.1134/s0006297915020066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transcription factor NF-Y belongs to the embryonic stem cell transcription factor circuitry due to its role in the regulation of cell proliferation. We investigated the role of NF-Y in pluripotency maintenance using NT2/D1 cells as one of the best-characterized human embryonal carcinoma cell line. We investigated the efficiency of protein transduction and analyzed the effects of forced expression of short isoform of NF-Y A-subunit (NF-YAs) on NT2/D1 cell growth and expression of SOX2. We found that protein transduction is an efficient method for NF-Y overexpression in NT2/D1 cells. Next, we analyzed the effect of NF-YAs overexpression on NT2/D1 cell viability and detected significant reduction in cell growth. The negative effect of NF-YAs overexpression on NT2/D1 cell pluripotency maintenance was confirmed by the decrease in the level of the pluripotency marker SOX2. Finally, we checked the p53 status and determined that the NF-Y-induced inhibition of NT2/D1 cell growth is p53-independent.
Collapse
Affiliation(s)
- M Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
| | | | | | | |
Collapse
|
10
|
Jiang X, Nevins JR, Shats I, Chi JT. E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program. PLoS One 2015; 10:e0127951. [PMID: 26039627 PMCID: PMC4454684 DOI: 10.1371/journal.pone.0127951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/22/2015] [Indexed: 11/18/2022] Open
Abstract
The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E2F1-mediated transcription identified a large group of genes that are co-regulated by E2F1 and NFYB. We also provide evidence that knockdown of NFYB enhances E2F1-induced apoptosis, suggesting a pro-survival function of the NFYB/E2F1 joint transcriptional program. Bioinformatic analysis suggests that deregulation of these NFY-dependent E2F1 target genes might play a role in sarcomagenesis as well as drug resistance.
Collapse
Affiliation(s)
- Xiaolei Jiang
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Joseph Roy Nevins
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Igor Shats
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JTC); (IS)
| | - Jen-Tsan Chi
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- * E-mail: (JTC); (IS)
| |
Collapse
|
11
|
Ishikawa Y, Sakurai H. Heat-induced expression of the immediate-early gene IER5 and its involvement in the proliferation of heat-shocked cells. FEBS J 2014; 282:332-40. [PMID: 25355627 DOI: 10.1111/febs.13134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/16/2014] [Accepted: 10/27/2014] [Indexed: 01/15/2023]
Abstract
The serum-inducible and growth factor-inducible gene IER5 encodes a protein that acts as a regulator of cell proliferation. Expression of IER5 is also induced by treatment of cells with ionizing radiation and anticancer agents. In this study, we demonstrate the expression and function of IER5 in heat-shocked cells. Heat treatment causes robust expression of IER5 in a heat shock factor (HSF)1-dependent manner. HSF1 is the master transcriptional regulator of chaperone genes, and the IER5 promoter contains the binding sequence for HSF1 and is bound by heat-activated HSF1. Proteotoxic stressors, such as celastrol and MG132, are known to activate HSF1, and are potent inducers of HSF1 binding and IER5 expression. Overexpression of IER5 leads to upregulation of chaperone gene expression and to an increase in refolding of heat-denatured proteins. Cells expressing IER5 efficiently recover viability after heat challenge. These observations suggest that HSF1-mediated IER5 expression is involved in the expression of chaperone genes and in recovery from thermal stress.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Japan
| | | |
Collapse
|
12
|
Agius E, Bel-Vialar S, Bonnet F, Pituello F. Cell cycle and cell fate in the developing nervous system: the role of CDC25B phosphatase. Cell Tissue Res 2014; 359:201-13. [PMID: 25260908 DOI: 10.1007/s00441-014-1998-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/04/2014] [Indexed: 12/20/2022]
Abstract
Deciphering the core machinery of the cell cycle and cell division has been primarily the focus of cell biologists, while developmental biologists have identified the signaling pathways and transcriptional programs controlling cell fate choices. As a result, until recently, the interplay between these two fundamental aspects of biology have remained largely unexplored. Increasing data show that the cell cycle and regulators of the core cell cycle machinery are important players in cell fate decisions during neurogenesis. Here, we summarize recent data describing how cell cycle dynamics affect the switch between proliferation and differentiation, with an emphasis on the roles played by the cell cycle regulators, the CDC25 phosphatases.
Collapse
Affiliation(s)
- Eric Agius
- Université Toulouse 3; Centre de Biologie du Développement (CBD), 118 route de Narbonne, 31062, Toulouse, France
| | | | | | | |
Collapse
|
13
|
Doxorubicin promotes transcriptional upregulation of Cdc25B in cancer cells by releasing Sp1 from the promoter. Oncogene 2012; 32:5123-8. [PMID: 23160377 DOI: 10.1038/onc.2012.524] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023]
Abstract
Cdc25B phosphatases have a key role in G2/M cell-cycle progression by activating the CDK1-cyclinB1 complexes and functioning as important targets of checkpoints. Overexpression of Cdc25B results in a bypass of the G2/M checkpoint and illegitimate entry into mitosis. It can also cause replicative stress, which leads to genomic instability. Thus, fine-tuning of the Cdc25B expression level is critical for correct cell-cycle arrest in response to DNA damage. In response to genotoxic stress, Cdc25B is mainly regulated by post-transcriptional mechanisms affecting either Cdc25B protein stability or translation. Here, we show that upon DNA damage Cdc25B can be regulated at the transcriptional level. Although ionizing radiation downregulates Cdc25B in a p53-dependent pathway, doxorubicin transcriptionally upregulates Cdc25B in p53-proficient cancer cells. We show that in the presence of wild-type p53, doxorubicin activates the Cdc25B promoter by preventing the binding of Sp1 and increasing the binding of NF-Y on the Cdc25B promoter, thus preventing p53 from downregulating this promoter. Our results highlight the mechanistically distinct regulation of the three Cdc25 phosphatases by checkpoint signalling following doxorubicin treatment.
Collapse
|
14
|
Xu H, Fu J, Ha SW, Ju D, Zheng J, Li L, Xie Y. The CCAAT box-binding transcription factor NF-Y regulates basal expression of human proteasome genes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:818-25. [PMID: 22285817 DOI: 10.1016/j.bbamcr.2012.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 01/04/2023]
Abstract
Protein degradation by the proteasome plays an important role in all major cellular pathways. Aberrant proteasome activity is associated with numerous human diseases including cancer and neurological disorders, but the underlying mechanism is virtually unclear. At least part of the reason for this is due to lack of understanding of the regulation of human proteasome genes. In this study, we found that a large set of human proteasome genes carry the CCAAT box in their promoters. We further demonstrated that the basal expression of these CCAAT box-containing proteasome genes is regulated by the transcription factor NF-Y. Knockdown of NF-YA, an essential subunit of NF-Y, reduced proteasome gene expression and compromised the cellular proteasome activity. In addition, we showed that knockdown of NF-YA sensitized breast cancer cells to the proteasome inhibitor MG132. This study unveils a new role for NF-Y in the regulation of human proteasome genes and suggests that NF-Y may be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Haiming Xu
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Transcriptional repression of Cdc25B by IER5 inhibits the proliferation of leukemic progenitor cells through NF-YB and p300 in acute myeloid leukemia. PLoS One 2011; 6:e28011. [PMID: 22132193 PMCID: PMC3223216 DOI: 10.1371/journal.pone.0028011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/29/2011] [Indexed: 11/23/2022] Open
Abstract
The immediately-early response gene 5 (IER5) has been reported to be induced by γ-ray irradiation and to play a role in the induction of cell death caused by radiation. We previously identified IER5 as one of the 2,3,4-tribromo-3-methyl-1-phenylphospholane 1-oxide (TMPP)-induced transcriptional responses in AML cells, using microarrays that encompassed the entire human genome. However, the biochemical pathway and mechanisms of IER5 function in regulation of the cell cycle remain unclear. In this study, we investigated the involvement of IER5 in the cell cycle and in cell proliferation of acute myeloid leukemia (AML) cells. We found that the over-expression of IER5 in AML cell lines and in AML-derived ALDHhi (High Aldehyde Dehydrogenase activity)/CD34+ cells inhibited their proliferation compared to control cells, through induction of G2/M cell cycle arrest and a decrease in Cdc25B expression. Moreover, the over-expression of IER5 reduced colony formation of AML-derived ALDHhi/CD34+ cells due to a decrease in Cdc25B expression. In addition, over-expression of Cdc25B restored TMPP inhibitory effects on colony formation in IER5-suppressed AML-derived ALDHhi/CD34+ cells. Furthermore, the IER5 reduced Cdc25B mRNA expression through direct binding to Cdc25B promoter and mediated its transcriptional attenuation through NF-YB and p300 transcriptinal factors. In summary, we found that transcriptional repression mediated by IER5 regulates Cdc25B expression levels via the release of NF-YB and p300 in AML-derived ALDHhi/CD34+ cells, resulting in inhibition of AML progenitor cell proliferation through modulation of cell cycle. Thus, the induction of IER5 expression represents an attractive target for AML therapy.
Collapse
|
16
|
Abstract
Cdc25B phosphatases function as key players in G2/M cell cycle progression by activating the CDK1-cyclinB1 complexes. They also have an essential role in recovery from the G2/M checkpoint activated in response to DNA damage. Overexpression of Cdc25B results in bypass of the G2/M checkpoint and illegitimate entry into mitosis, and also causes replicative stress, leading to genomic instability. Thus, fine-tuning of Cdc25B expression level is critical for correct cell cycle progression and G2 checkpoint recovery. However, the transcriptional regulation of Cdc25B remains largely unknown. Earlier studies have shown that the tumor suppressor p53 overexpression transcriptionally represses Cdc25B; however, the molecular mechanism of this repression has not yet been elucidated, although it was suggested to occur through the induction of p21. Here we show that Cdc25B is downregulated by the basal level of p53 in multiple cell types. This downregulation also occurs in p21-/- cell lines, indicating that p21 is not required for p53-mediated regulation of Cdc25B. Deletion and mutation analyses of the Cdc25B promoter revealed that downregulation by p53 is dependent on the presence of functional Sp1/Sp3 and NF-Y binding sites. Furthermore, chromatin immunoprecipitation analyses show that p53 binds to the Cdc25B promoter and mediates transcriptional attenuation through the Sp1 and NF-Y transcription factors. Our results suggest that the inability to downregulate Cdc25B after loss of p53 might contribute to tumorigenesis.
Collapse
|
17
|
Tsuchimoto T, Sakata KI, Someya M, Yamamoto H, Hirayama R, Matsumoto Y, Furusawa Y, Hareyama M. Gene expression associated with DNA-dependent protein kinase activity under normoxia, hypoxia, and reoxygenation. JOURNAL OF RADIATION RESEARCH 2011; 52:464-471. [PMID: 21905307 DOI: 10.1269/jrr.10137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Tadashi Tsuchimoto
- Department of Radiology, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Gurtner A, Fuschi P, Martelli F, Manni I, Artuso S, Simonte G, Ambrosino V, Antonini A, Folgiero V, Falcioni R, Sacchi A, Piaggio G. Transcription factor NF-Y induces apoptosis in cells expressing wild-type p53 through E2F1 upregulation and p53 activation. Cancer Res 2010; 70:9711-20. [PMID: 20952509 DOI: 10.1158/0008-5472.can-10-0721] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CCAAT-binding transcription factor NF-Y plays a central role in regulating cellular proliferation by controlling the expression of genes required for cell-cycle progression such as cyclin A, cyclin B1, cyclin B2, cdc25A, cdc25C, and cdk1. Here we show that unrestricted NF-Y activity leads to apoptosis in an E2F1- and wild-type p53 (wtp53)-dependent manner. Unrestricted NF-Y activity induced an increase in E2F1 mRNA and protein levels. Furthermore, NF-Y directly bound the E2F1 promoter and this correlated with the appearance of open chromatin marks. The ability of NF-Y to induce apoptosis was impaired in cells lacking E2F1 and wtp53. Moreover, NF-Y overexpression elicited phosphorylation of wt p53Ser18 in an E2F1-dependent manner. Our findings establish that NF-Y acts upstream of E2F1 in p53-mediated apoptosis.
Collapse
Affiliation(s)
- Aymone Gurtner
- Experimental Oncology Department, Istituto Regina Elena, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Attenuation of Forkhead signaling by the retinal determination factor DACH1. Proc Natl Acad Sci U S A 2010; 107:6864-9. [PMID: 20351289 DOI: 10.1073/pnas.1002746107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Drosophila Dachshund (Dac) gene, cloned as a dominant inhibitor of the hyperactive growth factor mutant ellipse, encodes a key component of the retinal determination gene network that governs cell fate. Herein, cyclic amplification and selection of targets identified a DACH1 DNA-binding sequence that resembles the FOX (Forkhead box-containing protein) binding site. Genome-wide in silico promoter analysis of DACH1 binding sites identified gene clusters populating cellular pathways associated with the cell cycle and growth factor signaling. ChIP coupled with high-throughput sequencing mapped DACH1 binding sites to corresponding gene clusters predicted in silico and identified as weight matrix resembling the cyclic amplification and selection of targets-defined sequence. DACH1 antagonized FOXM1 target gene expression, promoter occupancy in the context of local chromatin, and contact-independent growth. Attenuation of FOX function by the cell fate determination pathway has broad implications given the diverse role of FOX proteins in cellular biology and tumorigenesis.
Collapse
|
20
|
Characterization of the murine Ephrin-B2 promoter. Gene 2009; 437:54-9. [DOI: 10.1016/j.gene.2009.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/17/2009] [Accepted: 02/20/2009] [Indexed: 11/17/2022]
|
21
|
Manni I, Caretti G, Artuso S, Gurtner A, Emiliozzi V, Sacchi A, Mantovani R, Piaggio G. Posttranslational regulation of NF-YA modulates NF-Y transcriptional activity. Mol Biol Cell 2008; 19:5203-13. [PMID: 18815279 DOI: 10.1091/mbc.e08-03-0295] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
NF-Y binds to CCAAT motifs in the promoter region of a variety of genes involved in cell cycle progression. The NF-Y complex comprises three subunits, NF-YA, -YB, and -YC, all required for DNA binding. Expression of NF-YA fluctuates during the cell cycle and is down-regulated in postmitotic cells, indicating its role as the regulatory subunit of the complex. Control of NF-YA accumulation is posttranscriptional, NF-YA mRNA being relatively constant. Here we show that the levels of NF-YA protein are regulated posttranslationally by ubiquitylation and acetylation. A NF-YA protein carrying four mutated lysines in the C-terminal domain is more stable than the wild-type form, indicating that these lysines are ubiquitylated Two of the lysines are acetylated in vitro by p300, suggesting a competition between ubiquitylation and acetylation of overlapping residues. Interestingly, overexpression of a degradation-resistant NF-YA protein leads to sustained expression of mitotic cyclin complexes and increased cell proliferation, indicating that a tight regulation of NF-YA levels contributes to regulate NF-Y activity.
Collapse
Affiliation(s)
- Isabella Manni
- Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, 00158 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Scian MJ, Carchman EH, Mohanraj L, Stagliano KER, Anderson MAE, Deb D, Crane BM, Kiyono T, Windle B, Deb SP, Deb S. Wild-type p53 and p73 negatively regulate expression of proliferation related genes. Oncogene 2007; 27:2583-93. [PMID: 17982488 DOI: 10.1038/sj.onc.1210898] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
When normal cells come under stress, the wild-type (WT) p53 level increases resulting in the regulation of gene expression responsible for growth arrest or apoptosis. Here we show that elevated levels of WT p53 or its homologue, p73, inhibit expression of a number of cell cycle regulatory and growth promoting genes. Our analysis also identified a group of genes whose expression is differentially regulated by WT p53 and p73. We have infected p53-null H1299 human lung carcinoma cells with recombinant adenoviruses expressing WT p53, p73 or beta-galactosidase, and have undertaken microarray hybridization analyses to identify genes whose expression profile is altered by p53 or p73. Quantitative real-time PCR verified the repression of E2F-5, centromere protein A and E, minichromosome maintenance proteins (MCM)-2, -3, -5, -6 and -7 and human CDC25B after p53 expression. 5-Fluorouracil treatment of colon carcinoma HCT116 cells expressing WT p53 results in a reduction of the cyclin B2 protein level suggesting that DNA damage may indeed cause repression of these genes. Transient transcriptional assays verified that WT p53 repressed promoters of a number of these genes. Interestingly, a gain-of-function p53 mutant instead upregulated a number of these promoters in transient transfection. Using promoter deletion mutants of MCM-7 we have found that WT p53-mediated repression needs a minimal promoter that contains a single E2F site and surrounding sequences. However, a single E2F site cannot be significantly repressed by WT p53. Many of the genes identified are also repressed by p21. Thus, our work shows that WT p53 and p73 repress a number of growth-related genes and that in many instances this repression may be through the induction of p21.
Collapse
Affiliation(s)
- M J Scian
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Variations in intracellular levels of TATA binding protein can affect specific genes by different mechanisms. Mol Cell Biol 2007; 28:83-92. [PMID: 17954564 DOI: 10.1128/mcb.00809-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that reduced intracellular levels of the TATA binding protein (TBP), brought about by tbp heterozygosity in DT40 cells, resulted in a mitotic delay reflecting reduced expression of the mitotic regulator cdc25B but did not significantly affect overall transcription. Here we extend these findings in several ways. We first provide evidence that the decrease in cdc25B expression reflects reduced activity of the cdc25B core promoter in the heterozygous (TBP-het) cells. Strikingly, mutations in a previously described repressor element that overlaps the TATA box restored promoter activity in TBP-het cells, supporting the idea that the sensitivity of this promoter to TBP levels reflects a competition between TBP and the repressor for DNA binding. To determine whether cells might have mechanisms to compensate for fluctuations in TBP levels, we next examined expression of the two known vertebrate TBP homologues, TLP and TBP2. Significantly, mRNAs encoding both were significantly overexpressed relative to levels observed in wild-type cells. In the case of TLP, this was shown to reflect regulation of the core promoter by both TBP and TLP. Together, our results indicate that variations in TBP levels can affect the transcription of specific promoters in distinct ways, but overall transcription may be buffered by corresponding alterations in the expression of TBP homologues.
Collapse
|
24
|
Kieffer I, Lorenzo C, Dozier C, Schmitt E, Ducommun B. Differential mitotic degradation of the CDC25B phosphatase variants. Oncogene 2007; 26:7847-58. [PMID: 17599046 DOI: 10.1038/sj.onc.1210596] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CDC25 phosphatases control cell-cycle progression by dephosphorylating and activating cyclin-dependent kinases. CDC25B, one of the three members of this family in human cells, is thought to regulate initial mitotic events. CDC25B is an unstable protein whose proteasomal degradation is proposed to be controlled by beta-TrCP. Here, we have investigated the regulation of CDC25B during mitosis, using time-lapse video microscopy. We found that CDC25B expression is high during early mitosis, and that its degradation occurs after the metaphase-anaphase transition and cyclin B1 destruction. We also show that CDC25B degradation after metaphase is dependent on the integrity of the KEN-box and RRKSE motifs that are located within the alternatively spliced B domain, and that the CDC25B2 splice variant, that lacks this domain, is stable during mitosis. Furthermore, we show that the N-terminal region of CDC25B, encompassing the B domain, undergoes major conformational changes during mitosis that can be monitored by intramolecular fluorescence resonance energy transfer variation of specific CDC25B biosensors. This study demonstrates that CDC25B splice variants have differential mitotic stabilities, a feature that is likely to have major consequences on the local control of cyclin-dependent kinase-cyclin activities during mitotic progression.
Collapse
Affiliation(s)
- I Kieffer
- LBCMCP-CNRS UMR5088-IFR109 Institut d'Exploration Fonctionnelle des Génomes, Université Paul Sabatier, 118 route de Narbonne, Toulouse, France
| | | | | | | | | |
Collapse
|
25
|
Takenoyama M, Baurain JF, Yasuda M, So T, Sugaya M, Hanagiri T, Sugio K, Yasumoto K, Boon T, Coulie PG. A point mutation in the NFYC gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human squamous cell lung carcinoma. Int J Cancer 2006; 118:1992-7. [PMID: 16287085 DOI: 10.1002/ijc.21594] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have identified an antigen recognized by cytolytic T lymphocytes (CTL) on the autologous tumor cells of a nonsmall cell lung cancer patient. The antigenic peptide, presented by HLA-B*5201 molecules, was encoded by a mutated sequence in the gene coding for the C subunit of transcription factor NF-Y. The mutation was present in the tumor sample from which the cell line was derived, and appeared to be unique to the tumor of this patient. In a lymph node draining the tumor, precursors of CTL recognizing the autologous tumor cells were detected at a frequency of about 1/30,000 of the CD8 cells, and 85% of them recognized the mutated NF-YC peptide, suggesting that the patient mounted a T cell response against this antigen. These results strengthened the notion that unique tumor-specific antigens are highly represented not only in melanoma but also in other types of tumors, like nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Mitsuhiro Takenoyama
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cui X, Zhang J, Ma P, Myers DE, Goldberg IG, Sittler KJ, Barb JJ, Munson PJ, Cintron ADP, McCoy JP, Wang S, Danner RL. cGMP-independent nitric oxide signaling and regulation of the cell cycle. BMC Genomics 2005; 6:151. [PMID: 16269079 PMCID: PMC1312313 DOI: 10.1186/1471-2164-6-151] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 11/03/2005] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Regulatory functions of nitric oxide (NO*) that bypass the second messenger cGMP are incompletely understood. Here, cGMP-independent effects of NO* on gene expression were globally examined in U937 cells, a human monoblastoid line that constitutively lacks soluble guanylate cyclase. Differentiated U937 cells (>80% in G0/G1) were exposed to S-nitrosoglutathione, a NO* donor, or glutathione alone (control) for 6 h without or with dibutyryl-cAMP (Bt2cAMP), and then harvested to extract total RNA for microarray analysis. Bt2cAMP was used to block signaling attributable to NO*-induced decreases in cAMP. RESULTS NO* regulated 110 transcripts that annotated disproportionately to the cell cycle and cell proliferation (47/110, 43%) and more frequently than expected contained AU-rich, post-transcriptional regulatory elements (ARE). Bt2cAMP regulated 106 genes; cell cycle gene enrichment did not reach significance. Like NO*, Bt2cAMP was associated with ARE-containing transcripts. A comparison of NO* and Bt2cAMP effects showed that NO* regulation of cell cycle genes was independent of its ability to interfere with cAMP signaling. Cell cycle genes induced by NO* annotated to G1/S (7/8) and included E2F1 and p21/Waf1/Cip1; 6 of these 7 were E2F target genes involved in G1/S transition. Repressed genes were G2/M associated (24/27); 8 of 27 were known targets of p21. E2F1 mRNA and protein were increased by NO*, as was E2F1 binding to E2F promoter elements. NO* activated p38 MAPK, stabilizing p21 mRNA (an ARE-containing transcript) and increasing p21 protein; this increased protein binding to CDE/CHR promoter sites of p21 target genes, repressing key G2/M phase genes, and increasing the proportion of cells in G2/M. CONCLUSION NO* coordinates a highly integrated program of cell cycle arrest that regulates a large number of genes, but does not require signaling through cGMP. In humans, antiproliferative effects of NO* may rely substantially on cGMP-independent mechanisms. Stress kinase signaling and alterations in mRNA stability appear to be major pathways by which NO* regulates the transcriptome.
Collapse
Affiliation(s)
- Xiaolin Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianhua Zhang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Penglin Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Intensive Care Unit of the Military 309th Hospital, Haidian District of Beijing, People's Republic of China
| | - Daniela E Myers
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Ilana G Goldberg
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly J Sittler
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer J Barb
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland, USA
| | - Ana del Pilar Cintron
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuibang Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert L Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Oguri T, Nemoto K, Bansal P, Wipf P, Lazo JS. Induction of Cdc25B expression by epidermal growth factor and transforming growth factor-α. Biochem Pharmacol 2004; 68:2221-7. [PMID: 15498512 DOI: 10.1016/j.bcp.2004.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 08/07/2004] [Indexed: 11/19/2022]
Abstract
The dual specificity protein phosphatase Cdc25B regulates of the mitotic cell cycle checkpoint and is over expressed in human tumors. Given the importance of growth factors in initiating and sustaining cell proliferation, we examined their effects on Cdc25B protein expression in human cancer cells. Within 1h after epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) treatment, Cdc25B protein levels increased in growth factor responsive A549 and SCC25 cells, but not in non-responsive MDA-MB-231 cells. A functional consequence of elevated Cdc25B was implied by the concomitant decrease in phosphorylated cyclin dependent kinase, a known Cdc25B substrate, after growth factor treatment of A549 and SCC25 cells. The EGF-mediated induction of Cdc25B required a functional EGF receptor (ErbB1), as mouse embryonic fibroblasts lacking ErbB1 did not have increased Cdc25B levels after EGF treatment. Moreover, the EGFR receptor-selective tyrosine kinase inhibitor AG1478 and mitogen activated kinase kinase inhibitor U0126 blocked growth factor-mediated Cdc25B induction. Thus, EGF and TGF-alpha appear to induce cellular Cdc25B through the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Tetsuya Oguri
- Departments of Pharmacology and Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
28
|
Gurtner A, Manni I, Fuschi P, Mantovani R, Guadagni F, Sacchi A, Piaggio G. Requirement for down-regulation of the CCAAT-binding activity of the NF-Y transcription factor during skeletal muscle differentiation. Mol Biol Cell 2003; 14:2706-15. [PMID: 12857858 PMCID: PMC165670 DOI: 10.1091/mbc.e02-09-0600] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
NF-Y is composed of three subunits, NF-YA, NF-YB, and NF-YC, all required for DNA binding. All subunits are expressed in proliferating skeletal muscle cells, whereas NF-YA alone is undetectable in terminally differentiated cells in vitro. By immunohistochemistry, we show that the NF-YA protein is not expressed in the nuclei of skeletal and cardiac muscle cells in vivo. By chromatin immunoprecipitation experiments, we demonstrate herein that NF-Y does not bind to the CCAAT boxes of target promoters in differentiated muscle cells. Consistent with this, the activity of these promoters is down-regulated in differentiated muscle cells. Finally, forced expression of the NF-YA protein in cells committed to differentiate leads to an impairment in the down-regulation of cyclin A, cyclin B1, and cdk1 expression and is accompanied by a delay in myogenin expression. Thus, our results indicate that the suppression of NF-Y function is of crucial importance for the inhibition of several cell cycle genes and the induction of the early muscle-specific program in postmitotic muscle cells.
Collapse
Affiliation(s)
- Aymone Gurtner
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Schmidt EE, Bondareva AA, Radke JR, Capecchi MR. Fundamental cellular processes do not require vertebrate-specific sequences within the TATA-binding protein. J Biol Chem 2003; 278:6168-74. [PMID: 12471023 DOI: 10.1074/jbc.m211205200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 180-amino acid core of the TATA-binding protein (TBPcore) is conserved from Archae bacteria to man. Vertebrate TBPs contain, in addition, a large and highly conserved N-terminal region that is not found in other phyla. We have generated a line of mice in which the tbp allele is replaced with a version, tbp(Delta N), which lacks 111 of 135 N-terminal amino acid residues. Most tbp(Delta N/Delta N) fetuses die in midgestation. To test whether a disruption of general cellular processes contributed to this fetal loss, primary fibroblast cultures were established from +/+, Delta N/+, and Delta N/Delta N fetuses. The cultures exhibited no genotype-dependent differences in proliferation or in expression of the proliferative markers dihydrofolate reductase (DHFR) mRNA (S phase-specific) and cdc25B mRNA (G(2)-specific). The mutation had no effect on transcription initiation site fidelity by either RNA polymerase II (pol II) or pol III. Moreover, the mutation did not cause differences in levels of U6 RNA, a pol III-dependent component of the splicing machinery, in mRNA splicing efficiency, in expression of housekeeping genes from either TATA-containing or TATA-less promoters, or in global gene expression. Our results indicated that general eukaryotic cell functions are unaffected by deletion of these vertebrate-specific sequences from TBP. Thus, all activities of this polypeptide domain must either be compensated for by redundant activities or be restricted to situations that are not represented by primary fibroblasts.
Collapse
Affiliation(s)
- Edward E Schmidt
- Department of Veterinary Molecular Biology, Marsh Laboratories, Montana State University, Bozeman, Montana 59717, USA.
| | | | | | | |
Collapse
|
30
|
Han X, Amar S. Identification of genes differentially expressed in cultured human periodontal ligament fibroblasts vs. human gingival fibroblasts by DNA microarray analysis. J Dent Res 2002; 81:399-405. [PMID: 12097432 DOI: 10.1177/154405910208100609] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite their similar spindle-shaped appearance, periodontal ligament fibroblasts (PDLF) and gingival fibroblasts (GF) appear to display distinct functional activities in the maintenance of tissue integrity and during inflammatory/immune responses. We postulated that different characteristics of PDLF and GF are defined by the differential expression of specific genes. To test this, we investigated the possible variance of gene expression profile between cultured PDLF and GF, using DNA microarray technology. One hundred sixty-three genes were found differentially expressed by at least three-fold between PDLF and GF. Genes encoding transmembrane proteins and cytoskeleton-related proteins tended to be up-regulated in PDLF, whereas genes encoding cell-cycle regulation proteins and metabolism-related proteins tended to be up-regulated in GF. We concluded that PDLF and GF appear to display different gene expression patterns that may reflect intrinsic functional differences of the two cell populations and may well coordinate with their tissue-specific activities.
Collapse
Affiliation(s)
- X Han
- Department of Periodontology & Oral Biology, Goldman School of Dental Medicine, Boston University, 100 East Newton Street, G05, Boston, MA 02118, USA
| | | |
Collapse
|
31
|
Haugwitz U, Wasner M, Wiedmann M, Spiesbach K, Rother K, Mössner J, Engeland K. A single cell cycle genes homology region (CHR) controls cell cycle-dependent transcription of the cdc25C phosphatase gene and is able to cooperate with E2F or Sp1/3 sites. Nucleic Acids Res 2002; 30:1967-76. [PMID: 11972334 PMCID: PMC113852 DOI: 10.1093/nar/30.9.1967] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cdc25C phosphatase participates in regulating transition from the G2 phase of the cell cycle to mitosis by dephosphorylating cyclin-dependent kinase 1. The tumor suppressor p53 down-regulates expression of cdc25C as part of G2/M checkpoint control. Transcription of cdc25C oscillates during the cell cycle with no expression in resting cells and maximum transcription in G2. We had identified earlier a new mechanism of cell cycle-dependent transcription that is regulated by a cell cycle-dependent element (CDE) in conjunction with a cell cycle genes homology region (CHR). The human cdc25C gene was the first example. CDE/CHR tandem elements have since been found in promoters of many cell cycle genes. Here we show that the mouse cdc25C gene is regulated by a CHR but does not hold a CDE. Therefore, it is the first identified gene with CHR-dependent transcriptional regulation during the cell cycle not relying on a CDE located upstream of it. The CHR leads to repression of cdc25C transcription early in the cell cycle and directs a release of this repression in G2. Furthermore, we find that this CHR can cooperate in cell cycle-dependent transcription with elements placed directly upstream of it binding E2F, Sp1 or Sp3 transcription factors.
Collapse
Affiliation(s)
- Ulrike Haugwitz
- Department of Internal Medicine II, University of Leipzig, Max Bürger Research Center, Johannisallee 30, D-04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Um M, Yamauchi J, Kato S, Manley JL. Heterozygous disruption of the TATA-binding protein gene in DT40 cells causes reduced cdc25B phosphatase expression and delayed mitosis. Mol Cell Biol 2001; 21:2435-48. [PMID: 11259592 PMCID: PMC86876 DOI: 10.1128/mcb.21.7.2435-2448.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TATA-binding protein (TBP) is a key general transcription factor required for transcription by all three nuclear RNA polymerases. Although it has been intensively analyzed in vitro and in Saccharomyces cerevisiae, in vivo studies of vertebrate TBP have been limited. We applied gene-targeting techniques using chicken DT40 cells to generate heterozygous cells with one copy of the TBP gene disrupted. Such TBP-heterozygous (TBP-Het) cells showed unexpected phenotypic abnormalities, resembling those of cells with delayed mitosis: a significantly lower growth rate, larger size, more G2/-M- than G1-phase cells, and a high proportion of sub-G1, presumably apoptotic, cells. Further evidence for delayed mitosis in TBP-Het cells was provided by the differential effects of several cell cycle-arresting drugs. To determine the cause of these defects, we first examined the status of cdc2 kinase, which regulates the G2/M transition, and unexpectedly observed more hyperphosphorylated, inactive cdc2 in TBP-Het cells. Providing an explanation for this, mRNA and protein levels of cdc25B, the trigger cdc2 phosphatase, were significantly and specifically reduced. These properties were all due to decreased TBP levels, as they could be rescued by expression of exogeneous TBP, including, in most but not all cases, a mutant form lacking the species-specific N-terminal domain. Our results indicate that small changes in TBP concentration can have profound effects on cell growth in vertebrate cells.
Collapse
Affiliation(s)
- M Um
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
33
|
Biochemical Genetics. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|