1
|
Mueller AU, Molina N, Darst SA. Real-time capture of σ N transcription initiation intermediates reveals mechanism of ATPase-driven activation by limited unfolding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637174. [PMID: 39974980 PMCID: PMC11839083 DOI: 10.1101/2025.02.07.637174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacterial σ factors bind RNA polymerase (E) to form holoenzyme (Eσ), conferring promoter specificity to E and playing a key role in transcription bubble formation. σN is unique among σ factors in its structure and functional mechanism, requiring activation by specialized AAA+ ATPases. EσN forms an inactive promoter complex where the N-terminal σN region I (σN-RI) threads through a small DNA bubble. On the opposite side of the DNA, the ATPase engages σN-RI within the pore of its hexameric ring. Here, we perform kinetics-guided structural analysis of de novo formed EσN initiation complexes and engineer a biochemical assay to measure ATPase-mediated σN-RI translocation during promoter melting. We show that the ATPase exerts mechanical action to translocate about 30 residues of σN-RI through the DNA bubble, disrupting inhibitory structures of σN to allow full transcription bubble formation. A local charge switch of σN-RI from positive to negative may help facilitate disengagement of the otherwise processive ATPase, allowing subsequent σN disentanglement from the DNA bubble.
Collapse
Affiliation(s)
- Andreas U. Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Nina Molina
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| |
Collapse
|
2
|
A Role for the RNA Polymerase Gene Specificity Factor σ 54 in the Uniform Colony Growth of Uropathogenic Escherichia coli. J Bacteriol 2022; 204:e0003122. [PMID: 35357162 PMCID: PMC9017345 DOI: 10.1128/jb.00031-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The canonical function of a bacterial sigma (σ) factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the σ54 factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the σ54-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation. Different activator ATPases couple diverse environmental cues to the σ54-RNAP to mediate adaptive changes in gene expression. Hence, the genes that rely upon σ54 for their transcription have a wide range of different functions suggesting that the repertoire of functions performed by genes, directly or indirectly affected by σ54, is not yet exhaustive. By comparing the growth patterns of prototypical enteropathogenic, uropathogenic, and nonpathogenic Escherichia coli strains devoid of σ54, we uncovered that the absence of σ54 results in two differently sized colonies that appear at different times specifically in the uropathogenic E. coli (UPEC) strain. Notably, UPEC bacteria devoid of individual activator ATPases of the σ54-RNAP do not phenocopy the σ54 mutant strain. Thus, it seems that σ54’s role as a determinant of uniform colony appearance in UPEC bacteria represents a putative non-canonical function of σ54 in regulating genetic information flow. IMPORTANCE RNA synthesis is the first step of gene expression. The multisubunit RNA polymerase (RNAP) is the central enzyme responsible for RNA synthesis in bacteria. The dissociable sigma (σ) factor subunit directs the RNAP to different sets of genes to allow their expression in response to various cellular needs. Of the seven σ factors in Escherichia coli and related bacteria, σ54 exists in a class of its own. This study has uncovered that σ54 is a determinant of the uniform growth of uropathogenic E. coli on solid media. This finding suggests a role for this σ54 in gene regulation that extends beyond its known function as an RNAP gene specificity factor.
Collapse
|
3
|
Payne SR, Pau DI, Whiting AL, Kim YJ, Pharoah BM, Moi C, Boddy CN, Bernal F. Inhibition of Bacterial Gene Transcription with an RpoN-Based Stapled Peptide. Cell Chem Biol 2018; 25:1059-1066.e4. [PMID: 29887265 DOI: 10.1016/j.chembiol.2018.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/06/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
In response to environmental and other stresses, the σ54 subunit of bacterial RNA polymerase (RNAP) controls expression of several genes that play a significant role in the virulence of both plant and animal pathogens. Recruitment of σ54 to RNAP initiates promoter-specific transcription via the double-stranded DNA denaturation mechanism of the cofactor. The RpoN box, a recognition helix found in the C-terminal region of σ54, has been identified as the component necessary for major groove insertion at the -24 position of the promoter. We employed the hydrocarbon stapled peptide methodology to design and synthesize stapled σ54 peptides capable of penetrating Gram-negative bacteria, binding the σ54 promoter, and blocking the interaction between endogenous σ54 and its target DNA sequence, thereby reducing transcription and activation of σ54 response genes.
Collapse
Affiliation(s)
- Sterling R Payne
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Daniel I Pau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Amanda L Whiting
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ye Joon Kim
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Blaze M Pharoah
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Christina Moi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Federico Bernal
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
4
|
Targeting the alternative sigma factor RpoN to combat virulence in Pseudomonas aeruginosa. Sci Rep 2017; 7:12615. [PMID: 28974743 PMCID: PMC5626770 DOI: 10.1038/s41598-017-12667-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that infects immunocompromised and cystic fibrosis patients. Treatment is difficult due to antibiotic resistance, and new antimicrobials are needed to treat infections. The alternative sigma factor 54 (σ54, RpoN), regulates many virulence-associated genes. Thus, we evaluated inhibition of virulence in P. aeruginosa by a designed peptide (RpoN molecular roadblock, RpoN*) which binds specifically to RpoN consensus promoters. We expected that RpoN* binding to its consensus promoter sites would repress gene expression and thus virulence by blocking RpoN and/or other transcription factors. RpoN* reduced transcription of approximately 700 genes as determined by microarray analysis, including genes related to virulence. RpoN* expression significantly reduced motility, protease secretion, pyocyanin and pyoverdine production, rhamnolipid production, and biofilm formation. Given the effectiveness of RpoN* in vitro, we explored its effects in a Caenorhabditis elegans–P. aeruginosa infection model. Expression of RpoN* protected C. elegans in a paralytic killing assay, whereas worms succumbed to paralysis and death in its absence. In a slow killing assay, which mimics establishment and proliferation of an infection, C. elegans survival was prolonged when RpoN* was expressed. Thus, blocking RpoN consensus promoter sites is an effective strategy for abrogation of P. aeruginosa virulence.
Collapse
|
5
|
Crystal structure of Aquifex aeolicus σ N bound to promoter DNA and the structure of σ N-holoenzyme. Proc Natl Acad Sci U S A 2017; 114:E1805-E1814. [PMID: 28223493 DOI: 10.1073/pnas.1619464114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial σ factors confer promoter specificity to the RNA polymerase (RNAP). One alternative σ factor, σN, is unique in its structure and functional mechanism, forming transcriptionally inactive promoter complexes that require activation by specialized AAA+ ATPases. We report a 3.4-Å resolution X-ray crystal structure of a σN fragment in complex with its cognate promoter DNA, revealing the molecular details of promoter recognition by σN The structure allowed us to build and refine an improved σN-holoenzyme model based on previously published 3.8-Å resolution X-ray data. The improved σN-holoenzyme model reveals a conserved interdomain interface within σN that, when disrupted by mutations, leads to transcription activity without activator intervention (so-called bypass mutants). Thus, the structure and stability of this interdomain interface are crucial for the role of σN in blocking transcription activity and in maintaining the activator sensitivity of σN.
Collapse
|
6
|
A perspective on the enhancer dependent bacterial RNA polymerase. Biomolecules 2015; 5:1012-9. [PMID: 26010401 PMCID: PMC4496707 DOI: 10.3390/biom5021012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/15/2015] [Indexed: 11/16/2022] Open
Abstract
Here we review recent findings and offer a perspective on how the major variant RNA polymerase of bacteria, which contains the sigma54 factor, functions for regulated gene expression. We consider what gaps exist in our understanding of its genetic, biochemical and biophysical functioning and how they might be addressed.
Collapse
|
7
|
Mitra A, Fay PA, Morgan JK, Vendura KW, Versaggi SL, Riordan JT. Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli. PLoS One 2012; 7:e46288. [PMID: 23029465 PMCID: PMC3459932 DOI: 10.1371/journal.pone.0046288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is dependent on acid resistance for gastric passage and low oral infectious dose, and the locus of enterocyte effacement (LEE) for intestinal colonization. Mutation of rpoN, encoding sigma factor N (σ(N)), dramatically alters the growth-phase dependent regulation of both acid resistance and the LEE. This study reports on the determinants of σ(N)-directed acid resistance and LEE expression, and the underlying mechanism attributable to this phenotype. Glutamate-dependent acid resistance (GDAR) in TW14359ΔrpoN correlated with increased expression of the gadX-gadW regulatory circuit during exponential growth, whereas upregulation of arginine-dependent acid resistance (ADAR) genes adiA and adiC in TW14359ΔrpoN did not confer acid resistance by the ADAR mechanism. LEE regulatory (ler), structural (espA and cesT) and effector (tir) genes were downregulated in TW14359ΔrpoN, and mutation of rpoS encoding sigma factor 38 (σ(S)) in TW14359ΔrpoN restored acid resistance and LEE genes to WT levels. Stability, but not the absolute level, of σ(S) was increased in TW14359ΔrpoN; however, increased stability was not solely attributable to the GDAR and LEE expression phenotype. Complementation of TW14359ΔrpoN with a σ(N) allele that binds RNA polymerase (RNAP) but not DNA, did not restore WT levels of σ(S) stability, gadE, ler or GDAR, indicating a dependence on transcription from a σ(N) promoter(s) and not RNAP competition for the phenotype. Among a library of σ(N) enhancer binding protein mutants, only TW14359ΔntrC, inactivated for nitrogen regulatory protein NtrC, phenocopied TW14359ΔrpoN for σ(S) stability, GDAR and ler expression. The results of this study suggest that during exponential growth, NtrC-σ(N) regulate GDAR and LEE expression through downregulation of σ(S) at the post-translational level; likely by altering σ(S) stability or activity. The regulatory interplay between NtrC, other EBPs, and σ(N)-σ(S), represents a mechanism by which EHEC can coordinate GDAR, LEE expression and other cellular functions, with nitrogen availability and physiologic stimuli.
Collapse
Affiliation(s)
- Avishek Mitra
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Pamela A. Fay
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Jason K. Morgan
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Khoury W. Vendura
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - Salvatore L. Versaggi
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| | - James T. Riordan
- Department of Cell Biology, Microbiology, and Molecular Biology (CMMB), University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
8
|
Xiao Y, Wigneshweraraj SR, Weinzierl R, Wang YP, Buck M. Construction and functional analyses of a comprehensive sigma54 site-directed mutant library using alanine-cysteine mutagenesis. Nucleic Acids Res 2009; 37:4482-97. [PMID: 19474350 PMCID: PMC2715252 DOI: 10.1093/nar/gkp419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 11/14/2022] Open
Abstract
The sigma(54) factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to initiate transcription unless acted on by an activator protein. sigma(54) is closely involved in many steps of activator-dependent transcription, such as core RNAP binding, promoter recognition, activator interaction and open complex formation. To systematically define sigma(54) residues that contribute to each of these functions and to generate a resource for site specific protein labeling, a complete mutant library of sigma(54) was constructed by alanine-cysteine scanning mutagenesis. Amino acid residues from 3 to 476 of Cys(-)sigma(54) were systematically mutated to alanine and cysteine in groups of two adjacent residues at a time. The influences of each substitution pair upon the functions of sigma(54) were analyzed in vivo and in vitro and the functions of many residues were revealed for the first time. Increased sigma(54) isomerization activity seldom corresponded with an increased transcription activity of the holoenzyme, suggesting the steps after sigma(54) isomerization, likely to be changes in core RNAP structure, are also strictly regulated or rate limiting to open complex formation. A linkage between core RNAP-binding activity and activator responsiveness indicates that the sigma(54)-core RNAP interface changes upon activation.
Collapse
Affiliation(s)
- Yan Xiao
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Siva R. Wigneshweraraj
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Robert Weinzierl
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Yi-Ping Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Doucleff M, Pelton JG, Lee PS, Nixon BT, Wemmer DE. Structural basis of DNA recognition by the alternative sigma-factor, sigma54. J Mol Biol 2007; 369:1070-8. [PMID: 17481658 PMCID: PMC2680387 DOI: 10.1016/j.jmb.2007.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/31/2007] [Accepted: 04/03/2007] [Indexed: 11/15/2022]
Abstract
The sigma subunit of bacterial RNA polymerase (RNAP) regulates gene expression by directing RNAP to specific promoters. Unlike sigma(70)-type proteins, the alternative sigma factor, sigma(54), requires interaction with an ATPase to open DNA. We present the solution structure of the C-terminal domain of sigma(54) bound to the -24 promoter element, in which the conserved RpoN box motif inserts into the major groove of the DNA. This structure elucidates the basis for sequence specific recognition of the -24 element, orients sigma(54) on the promoter, and suggests how the C-terminal domain of sigma(54) interacts with RNAP.
Collapse
Affiliation(s)
- Michaeleen Doucleff
- Physical Biosciences Division, Lawrence Berkeley National Laboratory and the Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jeffrey G. Pelton
- Physical Biosciences Division, Lawrence Berkeley National Laboratory and the Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Peter S. Lee
- Physical Biosciences Division, Lawrence Berkeley National Laboratory and the Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David E. Wemmer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory and the Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Chen B, Doucleff M, Wemmer DE, De Carlo S, Huang HH, Nogales E, Hoover TR, Kondrashkina E, Guo L, Nixon BT. ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54. Structure 2007; 15:429-40. [PMID: 17437715 PMCID: PMC2680074 DOI: 10.1016/j.str.2007.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/01/2006] [Accepted: 02/22/2007] [Indexed: 11/28/2022]
Abstract
Transcription initiation by the sigma54 form of bacterial RNA polymerase requires hydrolysis of ATP by an enhancer binding protein (EBP). We present SAS-based solution structures of the ATPase domain of the EBP NtrC1 from Aquifex aeolicus in different nucleotide states. Structures of apo protein and that bound to AMPPNP or ADP-BeF(x) (ground-state mimics), ADP-AlF(x) (a transition-state mimic), or ADP (product) show substantial changes in the position of the GAFTGA loops that contact polymerase, particularly upon conversion from the apo state to the ADP-BeF(x) state, and from the ADP-AlF(x) state to the ADP state. Binding of the ATP analogs stabilizes the oligomeric form of the ATPase and its binding to sigma54, with ADP-AlF(x) having the largest effect. These data indicate that ATP binding promotes a conformational change that stabilizes complexes between EBPs and sigma54, while subsequent hydrolysis and phosphate release drive the conformational change needed to open the polymerase/promoter complex.
Collapse
Affiliation(s)
- Baoyu Chen
- Integrative Biosciences Graduate Degree Program – Chemical Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michaeleen Doucleff
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sacha De Carlo
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hector H. Huang
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eva Nogales
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Elena Kondrashkina
- BioCAT at APS/Argonne National Lab, Illinois Institute of Technology, 9700 S. Cass Ave, Argonne, IL 60439, USA
| | - Liang Guo
- BioCAT at APS/Argonne National Lab, Illinois Institute of Technology, 9700 S. Cass Ave, Argonne, IL 60439, USA
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Leach RN, Gell C, Wigneshweraraj S, Buck M, Smith A, Stockley PG. Mapping ATP-dependent activation at a sigma54 promoter. J Biol Chem 2006; 281:33717-26. [PMID: 16926155 DOI: 10.1074/jbc.m605731200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma(54) promoter specificity factor is distinct from other bacterial RNA polymerase (RNAP) sigma factors in that it forms a transcriptionally silent closed complex upon promoter binding. Transcriptional activation occurs through a nucleotide-dependent isomerization of sigma(54), mediated via its interactions with an enhancer-binding activator protein that utilizes the energy released in ATP hydrolysis to effect structural changes in sigma(54) and core RNA polymerase. The organization of sigma(54)-promoter and sigma(54)-RNAP-promoter complexes was investigated by fluorescence resonance energy transfer assays using sigma(54) single cysteine-mutants labeled with an acceptor fluorophore and donor fluorophore-labeled DNA sequences containing mismatches that mimic nifH early- and late-melted promoters. The results show that sigma(54) undergoes spatial rearrangements of functionally important domains upon closed complex formation. sigma(54) and sigma(54)-RNAP promoter complexes reconstituted with the different mismatched DNA constructs were assayed by the addition of the activator phage shock protein F in the presence or absence of ATP and of non-hydrolysable analogues. Nucleotide-dependent alterations in fluorescence resonance energy transfer efficiencies identify different functional states of the activator-sigma(54)-RNAP-promoter complex that exist throughout the mechano-chemical transduction pathway of transcriptional activation, i.e. from closed to open promoter complexes. The results suggest that open complex formation only occurs efficiently on replacement of a repressive fork junction with down-stream melted DNA.
Collapse
Affiliation(s)
- Robert N Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
12
|
Poggio S, Osorio A, Dreyfus G, Camarena L. Transcriptional specificity of RpoN1 and RpoN2 involves differential recognition of the promoter sequences and specific interaction with the cognate activator proteins. J Biol Chem 2006; 281:27205-15. [PMID: 16854992 DOI: 10.1074/jbc.m601735200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four RpoN factors of Rhodobacter sphaeroides are functionally specialized. In this bacterium, RpoN1 and RpoN2 are specifically required for the transcription of the nitrogen fixation and flagellar genes, respectively. Analysis of the promoter sequences recognized by each of these RpoN proteins revealed some significant differences. To investigate the functional relevance of these differences, the flagellar promoter fliOp was sequentially mutagenized to resemble the nitrogen fixation promoter nifUp. Our results indicate that the promoter sequences recognized by these sigma factors have diverged enough so that particular positions of the promoter sequence are differentially recognized. In this regard, we demonstrate that the identity of the -11-position is critical for promoter discrimination by RpoN1 and RpoN2. Accordingly, purified RpoN proteins with a deletion of Region I, which has been involved in the recognition of the -11-position, did not show differential binding of fliOp and nifUp promoters. Substitution of the flagellar enhancer region located upstream fliOp by the enhancer region of nifUp allowed us to demonstrate that RpoN1 and RpoN2 interact specifically with their respective activator protein. In conclusion, two different molecular mechanisms underlie the transcriptional specialization of these sigma factors.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México D. F., México
| | | | | | | |
Collapse
|
13
|
Doucleff M, Malak LT, Pelton JG, Wemmer DE. The C-terminal RpoN domain of sigma54 forms an unpredicted helix-turn-helix motif similar to domains of sigma70. J Biol Chem 2005; 280:41530-6. [PMID: 16210314 DOI: 10.1074/jbc.m509010200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The "sigma" subunit of prokaryotic RNA polymerase allows gene-specific transcription initiation. Two sigma families have been identified, sigma70 and sigma54, which use distinct mechanisms to initiate transcription and share no detectable sequence homology. Although the sigma70-type factors have been well characterized structurally by x-ray crystallography, no high resolution structural information is available for the sigma54-type factors. Here we present the NMR-derived structure of the C-terminal domain of sigma54 from Aquifex aeolicus. This domain (Thr-323 to Gly-389), which contains the highly conserved RpoN box sequence, consists of a poorly structured N-terminal tail followed by a three-helix bundle, which is surprisingly similar to domains of the sigma70-type proteins. Residues of the RpoN box, which have previously been shown to be critical for DNA binding, form the second helix of an unpredicted helix-turn-helix motif. The homology of this structure with other DNA-binding proteins, combined with previous biochemical data, suggests how the C-terminal domain of sigma54 binds to DNA.
Collapse
Affiliation(s)
- Michaeleen Doucleff
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
14
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Burrows PC, Severinov K, Buck M, Wigneshweraraj SR. Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting. EMBO J 2004; 23:4253-63. [PMID: 15470504 PMCID: PMC524386 DOI: 10.1038/sj.emboj.7600406] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022] Open
Abstract
Sigma factors, the key regulatory components of the bacterial RNA polymerase (RNAP), direct promoter DNA binding and DNA melting. The sigma(54)-RNAP forms promoter complexes in which DNA melting is only triggered by an activator and ATP hydrolysis-driven reorganisation of an initial sigma(54)-RNAP-promoter complex. We report that an initial bacterial RNAP-DNA complex can be reorganised by an activator to form an intermediate transcription initiation complex where full DNA melting has not yet occurred. Using sigma(54) as a chemical nuclease we now show that the reorganisation of the initial sigma(54)-RNAP-promoter complex occurs upon interaction with the activator at the transition point of ATP hydrolysis. We demonstrate that this reorganisation event is an early step in the transcription initiation pathway that occurs independently of RNAP parts normally associated with stable DNA melting and open complex formation. Using photoreactive DNA probes, we provide evidence that within this reorganised sigma(54)-RNAP-promoter complex, DNA contacts across the 'to be melted' sequences are made by the sigma(54) subunit. Strikingly, the activator protein, but not core RNAP subunits, is close to these DNA sequences.
Collapse
Affiliation(s)
| | - Konstantin Severinov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5442; Fax: +44 207 594 5419; E-mail:
| | - Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5366; Fax: +44 207 594 5419; E-mail:
| |
Collapse
|
16
|
Wigneshweraraj SR, Burrows PC, Nechaev S, Zenkin N, Severinov K, Buck M. Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain. EMBO J 2004; 23:4264-74. [PMID: 15470503 PMCID: PMC524387 DOI: 10.1038/sj.emboj.7600407] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022] Open
Abstract
We used bacteriophage T7-encoded transcription inhibitor gene protein 2 (gp2) as a probe to study the contribution of the Escherichia coli RNA polymerase (RNAP) beta' subunit jaw domain--the site of gp2 binding--to activator and ATP hydrolysis-dependent open complex formation by the sigma(54)-RNAP. We show that, unlike sigma(70)-dependent transcription, activated transcription by sigma(54)-RNAP is resistant to gp2. In contrast, activator and ATP hydrolysis-independent transcription by sigma(54)-RNAP is highly sensitive to gp2. We provide evidence that an activator- and ATP hydrolysis-dependent conformational change involving the beta' jaw domain and promoter DNA is the basis for gp2-resistant transcription by sigma(54)-RNAP. Our results establish that accessory factors bound to the upstream face of the RNAP, communicate with the beta' jaw domain, and that such communication is subjected to regulation.
Collapse
Affiliation(s)
| | | | | | - Nikolay Zenkin
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
| | - Konstantin Severinov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ 08904, USA. Tel.: +1 732 445 6095; Fax: +1 732 445 573; E-mail:
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5442; Fax: +44 207 594 5419; E-mail:
| |
Collapse
|
17
|
Burrows PC, Severinov K, Ishihama A, Buck M, Wigneshweraraj SR. Mapping sigma 54-RNA polymerase interactions at the -24 consensus promoter element. J Biol Chem 2003; 278:29728-43. [PMID: 12750380 DOI: 10.1074/jbc.m303596200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma 54 promoter specificity factor is distinct from sigma 70-type factors. The sigma 54-RNA polymerase binds to promoters with conserved sequence elements at -24 and -12 and utilizes specialized enhancer-binding activators to convert, through an ATP-dependent process, closed promoter complexes to open promoter complexes. The interface between sigma 54-RNA polymerase and promoter DNA is poorly characterized, contrasting with sigma 70. Here, sigma 54 was modified with strategically positioned cleavage reagents to provide physical evidence that the highly conserved RpoN box motif of sigma 54 is close to and may therefore interact with the consensus -24 promoter element. We show that the spatial relationship between the sigma 54-RNA polymerase and the -24 promoter element remains unchanged during closed to open complex conversion and transcription initiation but changes during the early elongation phase. In contrast, the spatial relationship between sigma 54-RNA polymerase and the consensus -12 promoter element changes upon conversion of the closed promoter complex to an open one. We provide evidence that some -12 promoter region-sigma 54 interactions are dependent upon either the core RNA polymerase or a fork junction DNA structure at the -12-position, indicating that DNA fork junctions can substitute for core RNAP. We also show the beta-subunit flap domain contributes to different sets of sigma-promoter DNA interactions at sigma 54- and sigma 70-dependent promoters.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Wigneshweraraj SR, Casaz P, Buck M. Correlating protein footprinting with mutational analysis in the bacterial transcription factor sigma54 (sigmaN). Nucleic Acids Res 2002; 30:1016-28. [PMID: 11842114 PMCID: PMC100328 DOI: 10.1093/nar/30.4.1016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein footprints of the enhancer-dependent sigma54 protein, upon binding the Escherichia coli RNA polymerase core enzyme or upon forming closed promoter complexes, identified surface-exposed residues in sigma54 of potential functional importance at the interface between sigma54 and core RNA polymerases (RNAP) or DNA. We have now characterised alanine and glycine substitution mutants at several of these positions. Properties of the mutant sigma54s correlate protein footprints to activity. Some mutants show elevated DNA binding suggesting that promoter binding by holoenzyme may be limited to enable normal functioning. One such mutant (F318A) within the DNA binding domain of sigma54 shows a changed interaction with the promoter regulatory region implicated in transcription silencing and fails to silence transcription in vitro. It appears specifically defective in preferentially binding to a repressive DNA structure believed to restrict RNA polymerase isomerisation and is largely intact for activator responsiveness. Two mutants, one in the regulatory region I and the other within core interacting sequences of sigma54, failed to stably bind the activator in the presence of ADP-aluminium fluoride, an analogue of ATP in the transition state for hydrolysis. Overall, the data presented describe a collection sigma54 mutants that have escaped previous analysis and display an array of properties which allows the role of surface-exposed residues in the regulation of open complex formation and promoter DNA binding to be better understood. Their properties support the view that the interface between sigma54 and core RNAP is functionally specialised.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|