1
|
Wang R, Yu R, Chen B, Si F, Wang J, Xie C, Men C, Dong S, Li Z. Identification of host cell proteins that interact with the M protein of porcine epidemic diarrhea virus. Vet Microbiol 2020; 246:108729. [PMID: 32605758 PMCID: PMC7241372 DOI: 10.1016/j.vetmic.2020.108729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/03/2022]
Abstract
Interaction of PEDV M protein with host cellular proteins eIF3L, CDC42 and Rab11A was confirmed. PEDV replication may be regulated by eIF3L expression. 218 host cell proteins were designated putative PEDV M protein interacting proteins.
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that causes severe diarrhea in pigs of all ages and a high fatality rate in neonates. The PEDV membrane protein (M) plays crucial roles in viral assembly, viral budding and host immune regulation, most likely by interacting with host cell proteins that have yet to be identified. In this study, co-immunoprecipitation (Co-IP) using an M-specific monoclonal antibody, coupled with LC-MS/MS, was employed to identify M protein-interacting proteins in PEDV-infected cells. Three viral proteins (S, E and ORF3) and 218 host cell proteins were identified as putative M-interacting partners. Bioinformatic analysis showed that the identified host cell proteins were related to 131 signal pathways and 10 biological processes. In addition, interaction between translation initiation factor 3(eIF3L) and M protein was validated by Co-IP. Down-regulation of eIF3L expression significantly increased viral production, which suggests that eIF3L could be a negative regulator in PEDV replication. This interactome study of the PEDV M protein will serve to clarify its function during viral replication.
Collapse
Affiliation(s)
- Ruiyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China
| | - Ruisong Yu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China
| | - Bingqing Chen
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China
| | - Fusheng Si
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China
| | - Jian Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China
| | - Chunfang Xie
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China
| | - Chengfang Men
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China
| | - Shijuan Dong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China.
| | - Zhen Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106 China.
| |
Collapse
|
2
|
Panthu B, Denolly S, Faivre-Moskalenko C, Ohlmann T, Cosset FL, Jalinot P. Unlike for cellular mRNAs and other viral internal ribosome entry sites (IRESs), the eIF3 subunit e is not required for the translational activity of the HCV IRES. J Biol Chem 2020; 295:1843-1856. [PMID: 31929110 DOI: 10.1074/jbc.ra119.009502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/20/2019] [Indexed: 11/06/2022] Open
Abstract
Viruses depend on the host cell translation machinery for their replication, and one common strategy is the presence of internal ribosome entry sites (IRESs) in the viral RNAs, using different sets of host translation initiation factors. The hepatitis C virus (HCV) IRES binds eukaryotic translation initiation factor 3 (eIF3), but the exact functional role of the eIF3 complex and of its subunits remains to be precisely defined. Toward this goal, here we focused on eIF3 subunit e. We used an in vitro assay combining a ribosome-depleted rabbit reticulocyte lysate and ribosomes prepared from HeLa or Huh-7.5 cells transfected with either control or eIF3e siRNAs. eIF3e silencing reduced translation mediated by the 5'UTR of various cellular genes and HCV-like IRESs. However, this effect was not observed with the bona fide HCV IRES. Silencing of eIF3e reduced the intracellular levels of the c, d, and l subunits of eIF3 and their association with the eIF3 core subunit a. A pulldown analysis of eIF3 subunits associated with the HCV IRES disclosed similar effects and that the a subunit is critical for binding to the HCV IRES. Carrying out HCV infections of control and eIF3e-silenced Huh-7.5 cells, we found that in agreement with the in vitro findings, eIF3e silencing does not reduce HCV replication and viral protein expression. We conclude that unlike for host cellular mRNAs, the entire eIF3 is not required for HCV RNA translation, favoring viral expression under conditions of low eIF3e levels.
Collapse
Affiliation(s)
- Baptiste Panthu
- Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, LBMC, 46 Allée d'Italie Site Jacques Monod, F-69007 Lyon, France
| | - Solène Denolly
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR5308, ENS de Lyon, 46 Allée d'Italie Site Jacques Monod, F-69007 Lyon, France
| | - Cendrine Faivre-Moskalenko
- Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5672, Laboratoire de Physique, 46 Allée d'Italie Site Jacques Monod, F-69007 Lyon, France
| | - Théophile Ohlmann
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR5308, ENS de Lyon, 46 Allée d'Italie Site Jacques Monod, F-69007 Lyon, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1111, CNRS UMR5308, ENS de Lyon, 46 Allée d'Italie Site Jacques Monod, F-69007 Lyon, France.
| | - Pierre Jalinot
- Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, LBMC, 46 Allée d'Italie Site Jacques Monod, F-69007 Lyon, France.
| |
Collapse
|
3
|
Rezende AM, Assis LA, Nunes EC, da Costa Lima TD, Marchini FK, Freire ER, Reis CRS, de Melo Neto OP. The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates--identification of conserved and divergent features based on orthologue analysis. BMC Genomics 2014; 15:1175. [PMID: 25539953 PMCID: PMC4320536 DOI: 10.1186/1471-2164-15-1175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022] Open
Abstract
Background The initiation of translation in eukaryotes is supported by the action of several eukaryotic Initiation Factors (eIFs). The largest of these is eIF3, comprising of up to thirteen polypeptides (eIF3a through eIF3m), involved in multiple stages of the initiation process. eIF3 has been better characterized from model organisms, but is poorly known from more diverged groups, including unicellular lineages represented by known human pathogens. These include the trypanosomatids (Trypanosoma and Leishmania) and other protists belonging to the taxonomic supergroup Excavata (Trichomonas and Giardia sp.). Results An in depth bioinformatic search was carried out to recover the full content of eIF3 subunits from the available genomes of L. major, T. brucei, T. vaginalis and G. duodenalis. The protein sequences recovered were then submitted to homology analysis and alignments comparing them with orthologues from representative eukaryotes. Eleven putative eIF3 subunits were found from both trypanosomatids whilst only five and four subunits were identified from T. vaginalis and G. duodenalis, respectively. Only three subunits were found in all eukaryotes investigated, eIF3b, eIF3c and eIF3i. The single subunit found to have a related Archaean homologue was eIF3i, the most conserved of the eIF3 subunits. The sequence alignments revealed several strongly conserved residues/region within various eIF3 subunits of possible functional relevance. Subsequent biochemical characterization of the Leishmania eIF3 complex validated the bioinformatic search and yielded a twelfth eIF3 subunit in trypanosomatids, eIF3f (the single unidentified subunit in trypanosomatids was then eIF3m). The biochemical data indicates a lack of association of the eIF3j subunit to the complex whilst highlighting the strong interaction between eIF3 and eIF1. Conclusions The presence of most eIF3 subunits in trypanosomatids is consistent with an early evolution of a fully functional complex. Simplified versions in other excavates might indicate a primordial complex or secondary loss of selected subunits, as seen for some fungal lineages. The conservation in eIF3i sequence might indicate critical functions within eIF3 which have been overlooked. The identification of eIF3 subunits from distantly related eukaryotes provides then a basis for the study of conserved/divergent aspects of eIF3 function, leading to a better understanding of eukaryotic translation initiation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1175) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Osvaldo P de Melo Neto
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Avenida Professor Moraes Rego s/n, Cidade Universitária, Recife, PE 50670-420, Brazil.
| |
Collapse
|
4
|
Villa N, Do A, Hershey JWB, Fraser CS. Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. J Biol Chem 2013; 288:32932-40. [PMID: 24092755 DOI: 10.1074/jbc.m113.517011] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recruitment of mRNA to the 40S ribosomal subunit requires the coordinated interaction of a large number of translation initiation factors. In mammals, the direct interaction between eukaryotic initiation factor 4G (eIF4G) and eIF3 is thought to act as the molecular bridge between the mRNA cap-binding complex and the 40S subunit. A discrete ∼90 amino acid domain in eIF4G is responsible for binding to eIF3, but the identity of the eIF3 subunit(s) involved is less clear. The eIF3e subunit has been shown to directly bind eIF4G, but the potential role of other eIF3 subunits in stabilizing this interaction has not been investigated. It is also not clear if the eIF4A helicase plays a role in stabilizing the interaction between eIF4G and eIF3. Here, we have used a fluorescence anisotropy assay to demonstrate that eIF4G binds to eIF3 independently of eIF4A binding to the middle region of eIF4G. By using a site-specific cross-linking approach, we unexpectedly show that the eIF4G-binding surface in eIF3 is comprised of the -c, -d and -e subunits. Screening multiple cross-linker positions reveals that eIF4G contains two distinct eIF3-binding subdomains within the previously identified eIF3-binding domain. Finally, by employing an eIF4G-dependent translation assay, we establish that both of these subdomains are required for efficient mRNA recruitment to the ribosome and stimulate translation. Our study reveals unexpected complexity to the eIF3-eIF4G interaction that provides new insight into the regulation of mRNA recruitment to the human ribosome.
Collapse
Affiliation(s)
- Nancy Villa
- From the Department of Molecular and Cell Biology, College of Biological Sciences, and
| | | | | | | |
Collapse
|
5
|
Morais AT, Terzian AC, Duarte DV, Bronzoni RV, Madrid MC, Gavioli AF, Gil LH, Oliveira AG, Zanelli CF, Valentini SR, Rahal P, Nogueira ML. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication. Virol J 2013; 10:205. [PMID: 23800076 PMCID: PMC3698205 DOI: 10.1186/1743-422x-10-205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 06/20/2013] [Indexed: 12/12/2022] Open
Abstract
Background Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Conclusions Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication.
Collapse
Affiliation(s)
- Ana Ts Morais
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto-FAMERP, Av. Brigadeiro Faria Lima 5416, São José do Rio Preto, SP 15090-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The translational factor eIF3f: the ambivalent eIF3 subunit. Cell Mol Life Sci 2013; 70:3603-16. [PMID: 23354061 PMCID: PMC3771369 DOI: 10.1007/s00018-013-1263-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 11/15/2022]
Abstract
The regulation of the protein synthesis has a crucial role in governing the eukaryotic cell growth. Subtle changes of proteins involved in the translation process may alter the rate of the protein synthesis and modify the cell fate by shifting the balance from normal status into a tumoral or apoptotic one. The largest eukaryotic initiation factor involved in translation regulation is eIF3. Amongst the 13 factors constituting eIF3, the f subunit finely regulates this balance in a cell-type-specific manner. Loss of this factor causes malignancy in several cells, and atrophy in normal muscle cells. The intracellular interacting partners which influence its physiological significance in both cancer and muscle cells are detailed in this review. By delineating the global interaction network of this factor and by clarifying its intracellular role, it becomes apparent that the f subunit represents a promising candidate molecule to use for biotherapeutic applications.
Collapse
|
7
|
Morris C, Tomimatsu N, Richard DJ, Cluet D, Burma S, Khanna KK, Jalinot P. INT6/EIF3E interacts with ATM and is required for proper execution of the DNA damage response in human cells. Cancer Res 2012; 72:2006-16. [PMID: 22508697 DOI: 10.1158/0008-5472.can-11-2562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Altered expression of the INT6 gene, encoding the e subunit of the translational initiation factor eIF3, occurs in human breast cancers, but how INT6 relates to carcinogenesis remains unestablished. Here, we show that INT6 is involved in the DNA damage response. INT6 was required for cell survival following γ-irradiation and G(2)-M checkpoint control. RNA interference-mediated silencing of INT6 reduced phosphorylation of the checkpoint kinases CHK1 and CHK2 after DNA damage. In addition, INT6 silencing prevented sustained accumulation of ataxia telangiectasia mutated (ATM) at DNA damage sites in cells treated with γ-radiation or the radiomimetic drug neocarzinostatin. Mechanistically, this result could be explained by interaction of INT6 with ATM, which together with INT6 was recruited to the sites of DNA damage. Finally, INT6 silencing also reduced ubiquitylation events that promote retention of repair proteins at DNA lesions. Accordingly, accumulation of the repair factor BRCA1 was defective in the absence of INT6. Our findings reveal unexpected and striking connections of INT6 with ATM and BRCA1 and suggest that the protective action of INT6 in the onset of breast cancers relies on its involvement in the DNA damage response.
Collapse
Affiliation(s)
- Christelle Morris
- Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Gautier VW, Gu L, O'Donoghue N, Pennington S, Sheehy N, Hall WW. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 2009; 6:47. [PMID: 19454010 PMCID: PMC2702331 DOI: 10.1186/1742-4690-6-47] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
Collapse
Affiliation(s)
- Virginie W Gautier
- UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
9
|
Masutani M, Sonenberg N, Yokoyama S, Imataka H. Reconstitution reveals the functional core of mammalian eIF3. EMBO J 2007; 26:3373-83. [PMID: 17581632 PMCID: PMC1933396 DOI: 10.1038/sj.emboj.7601765] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/24/2007] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic translation initiation factor (eIF)3 is the largest eIF ( approximately 650 kDa), consisting of 10-13 different polypeptide subunits in mammalian cells. To understand the role of each subunit, we successfully reconstituted a human eIF3 complex consisting of 11 subunits that promoted the recruitment of the 40S ribosomal subunit to mRNA. Strikingly, the eIF3g and eIF3i subunits, which are evolutionarily conserved between human and the yeast Saccharomyces cerevisiae are dispensable for active mammalian eIF3 complex formation. Extensive deletion analyses suggest that three evolutionarily conserved subunits (eIF3a, eIF3b, and eIF3c) and three non-conserved subunits (eIF3e, eIF3f, and eIF3h) comprise the functional core of mammalian eIF3.
Collapse
Affiliation(s)
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | - Shigeyuki Yokoyama
- RIKEN Genomic Sciences Center, Tsurumi-ku, Yokohama, Japan
- Department of Biophysics and Biochemistry, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Imataka
- RIKEN Genomic Sciences Center, Tsurumi-ku, Yokohama, Japan
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Tel.: +81 45 503 9461; Fax: +81 45 503 9460; E-mail:
| |
Collapse
|
10
|
Morris C, Wittmann J, Jäck HM, Jalinot P. Human INT6/eIF3e is required for nonsense-mediated mRNA decay. EMBO Rep 2007; 8:596-602. [PMID: 17468741 PMCID: PMC2002529 DOI: 10.1038/sj.embor.7400955] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 02/20/2007] [Accepted: 03/01/2007] [Indexed: 11/08/2022] Open
Abstract
The mammalian integration site 6 (INT6) protein has been implicated in breast carcinogenesis and characterized as the eIF3e non-core subunit of the translation initiation factor eIF3, but its role in this complex is not known. Here, we show that INT6 knockdown by RNA interference strongly inhibits nonsense-mediated messenger RNA decay (NMD), which triggers degradation of mRNAs with premature stop codons. In contrast to the eIF3b core subunit, which is required for both NMD and general translation, INT6 is only necessary for the former process. Consistent with such a role, immunoprecipitation experiments showed that INT6 co-purifies with CBP80 and the NMD factor UPF2. In addition, several transcripts known to be upregulated by UPF1 or UPF2 depletion were also found to be sensitive to INT6 suppression. From these observations, we propose that INT6, in association with eIF3, is involved in routing specific mRNAs for degradation.
Collapse
Affiliation(s)
- Christelle Morris
- LBMC, UMR5239 CNRS-ENS de Lyon, IFR 128 Biosciences Lyon Gerland, 46 Allée d'Italie, 69364 Lyon cedex 07, France
| | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Gluckstrasse 6, D-91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Gluckstrasse 6, D-91054 Erlangen, Germany
| | - Pierre Jalinot
- LBMC, UMR5239 CNRS-ENS de Lyon, IFR 128 Biosciences Lyon Gerland, 46 Allée d'Italie, 69364 Lyon cedex 07, France
- Tel: +33 4 7272 8563; Fax: +33 4 7272 8080; E-mail:
| |
Collapse
|
11
|
Abstract
Many protein-protein interactions are mediated by small modular domains, which recognize short peptide motifs in their partner proteins. However, for the great majority of these domains, the identity of their partner proteins remains unknown. In this work, a chemical/bioinformatics approach has been developed to identify phosphotyrosyl (pY) proteins that bind to tensin, a protein involved in the formation of actin cytoskeleton and signal transduction. A pY peptide library was chemically synthesized and screened against the Src homology 2 (SH2) domain of tensin to identify the peptide motifs that bind to the SH2 domain. Next, protein databases were searched for proteins containing the SH2 domain-binding peptide motifs. Finally, the potential tensin-binding proteins were confirmed (or disproved) by in vitro pull-down and coimmunoprecipitation assays. This procedure identified phosphoinositide-dependent kinase-1 and downstream of tyrosine kinase 2 as novel tensin-binding proteins. In addition, a cell-permeable pY peptide was designed as tensin SH2 domain inhibitor, which caused the disruption of actin filaments in NIH 3T3 cells. This method should be generally applicable to other modular domains that recognize small peptide motifs.
Collapse
Affiliation(s)
- Anne-Sophie Wavreille
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
12
|
Zhang L, Pan X, Hershey JWB. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J Biol Chem 2006; 282:5790-800. [PMID: 17170115 DOI: 10.1074/jbc.m606284200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transcriptional and post-transcriptional regulatory mechanisms are commonly accepted paradigms of tumorigenesis. The view is emerging that deregulation of translation contributes importantly to cancer development, a role not generally appreciated before. Eukaryotic initiation factor eIF3 contains at least thirteen non-identical subunits, named from eIF3a to eIF3m, and plays an essential role in the rate-limiting initiation phase of translation. Increased mRNA and protein levels of the eIF3a, -3b, -3c, -3h, and -3i subunits have been detected in a wide variety of human tumors and are frequently identified as prognostic biomarkers for poor clinical outcome. However, it remains to be established whether up-regulation of eIF3 subunits is a consequence or a cause of the malignant phenotypes. Here we report that ectopic expression of eIF3a, -3b, -3c, -3h, or -3i in stably transfected NIH3T3 cells leads to a number of oncogenic properties: decreased doubling times, increased clonogenicity and viability, facilitated S-phase entry, attenuation of apoptosis, formation of transformed foci, and anchorage-independent growth. Only overexpression of the transforming subunits results in a stimulation of initiation and global protein synthesis rates and enhanced translation of poorly translated mRNAs that encode growth-regulating proteins, including cyclinD1, c-Myc, fibroblast growth factor-2, and ornithine decarboxylase, which may be responsible for oncogenic malignancy in the transformed cell lines. Based on these results, we hypothesize that eIF3 contributes to hyperactivation of the translation initiation machinery and thereby may play an important role in neoplasia. Cancer cells appear to require an aberrantly activated translational state to survive, suggesting that the initiation factors may be promising therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
13
|
Hinnebusch AG. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci 2006; 31:553-62. [PMID: 16920360 DOI: 10.1016/j.tibs.2006.08.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/17/2006] [Accepted: 08/03/2006] [Indexed: 12/26/2022]
Abstract
Translation initiation in eukaryotes depends on many eukaryotic initiation factors (eIFs) that stimulate both recruitment of the initiator tRNA, Met-tRNA(i)(Met), and mRNA to the 40S ribosomal subunit and subsequent scanning of the mRNA for the AUG start codon. The largest of these initiation factors, the eIF3 complex, organizes a web of interactions among several eIFs that assemble on the 40S subunit and participate in the different reactions involved in translation. Structural analysis suggests that eIF3 performs this scaffolding function by binding to the 40S subunit on its solvent-exposed surface rather than on its interface with the 60S subunit, where the decoding sites exist. This location of eIF3 seems ideally suited for its other proposed regulatory functions, including reinitiating translation on polycistronic mRNAs and acting as a receptor for protein kinases that control protein synthesis.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Kransdorf EP, Wang SZ, Zhu SZ, Langston TB, Rupon JW, Ginder GD. MBD2 is a critical component of a methyl cytosine-binding protein complex isolated from primary erythroid cells. Blood 2006; 108:2836-45. [PMID: 16778143 PMCID: PMC1895583 DOI: 10.1182/blood-2006-04-016394] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The chicken embryonic beta-type globin gene, rho, is a member of a small group of vertebrate genes whose developmentally regulated expression is mediated by DNA methylation. Previously, we have shown that a methyl cytosine-binding complex binds to the methylated rho-globin gene in vitro. We have now chromatographically purified and characterized this complex from adult chicken primary erythroid cells. Four components of the MeCP1 transcriptional repression complex were identified: MBD2, RBAP48, HDAC2, and MTA1. These 4 proteins, as well as the zinc-finger protein p66 and the chromatin remodeling factor Mi2, were found to coelute by gel-filtration analysis and pull-down assays. We conclude that these 6 proteins are components of the MeCPC. In adult erythrocytes, significant enrichment for MBD2 is seen at the inactive rho-globin gene by chromatin immunoprecipitation assay, whereas no enrichment is observed at the active beta(A)-globin gene, demonstrating MBD2 binds to the methylated and transcriptionally silent rho-globin gene in vivo. Knock-down of MBD2 resulted in up-regulation of a methylated rho-gene construct in mouse erythroleukemic (MEL)-rho cells. These results represent the first purification of a MeCP1-like complex from a primary cell source and provide support for a role for MBD2 in developmental gene regulation.
Collapse
Affiliation(s)
- Evan P Kransdorf
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, PO Box 980037, Richmond, VA 23298-0037, USA
| | | | | | | | | | | |
Collapse
|
15
|
LeFebvre AK, Korneeva NL, Trutschl M, Cvek U, Duzan RD, Bradley CA, Hershey JWB, Rhoads RE. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3e subunit. J Biol Chem 2006; 281:22917-32. [PMID: 16766523 PMCID: PMC1880881 DOI: 10.1074/jbc.m605418200] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
eIF3 in mammals is the largest translation initiation factor ( approximately 800 kDa) and is composed of 13 nonidentical subunits designated eIF3a-m. The role of mammalian eIF3 in assembly of the 48 S complex occurs through high affinity binding to eIF4G. Interactions of eIF4G with eIF4E, eIF4A, eIF3, poly(A)-binding protein, and Mnk1/2 have been mapped to discrete domains on eIF4G, and conversely, the eIF4G-binding sites on all but one of these ligands have been determined. The only eIF4G ligand for which this has not been determined is eIF3. In this study, we have sought to identify the mammalian eIF3 subunit(s) that directly interact(s) with eIF4G. Established procedures for detecting protein-protein interactions gave ambiguous results. However, binding of partially proteolyzed HeLa eIF3 to the eIF3-binding domain of human eIF4G-1, followed by high throughput analysis of mass spectrometric data with a novel peptide matching algorithm, identified a single subunit, eIF3e (p48/Int-6). In addition, recombinant FLAG-eIF3e specifically competed with HeLa eIF3 for binding to eIF4G in vitro. Adding FLAG-eIF3e to a cell-free translation system (i) inhibited protein synthesis, (ii) caused a shift of mRNA from heavy to light polysomes, (iii) inhibited cap-dependent translation more severely than translation dependent on the HCV or CSFV internal ribosome entry sites, which do not require eIF4G, and (iv) caused a dramatic loss of eIF4G and eIF2alpha from complexes sedimenting at approximately 40 S. These data suggest a specific, direct, and functional interaction of eIF3e with eIF4G during the process of cap-dependent translation initiation, although they do not rule out participation of other eIF3 subunits.
Collapse
Affiliation(s)
- Aaron K. LeFebvre
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Nadejda L. Korneeva
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Marjan Trutschl
- Department of Computer Science, Louisiana State University, Shreveport, Louisiana 71115
| | - Urska Cvek
- Department of Computer Science, Louisiana State University, Shreveport, Louisiana 71115
| | - Roy D. Duzan
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
| | - Christopher A. Bradley
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616
| | - John W. B. Hershey
- Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616
| | - Robert E. Rhoads
- Department of Biochemistry and Molecular Biology and Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Hwy., Shreveport, LA 71130-3932. Tel.: 318-675-5161; Fax: 318-675-5180; E-mail:
| |
Collapse
|
16
|
Yu Y, Ji H, Doudna JA, Leary JA. Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCV IRES-bound complexes. Protein Sci 2005; 14:1438-46. [PMID: 15883184 PMCID: PMC2253395 DOI: 10.1110/ps.041293005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus uses an internal ribosome entry site (IRES) in the viral RNA to directly recruit human 40S ribosome subunits during cap-independent translation initiation. Although IRES-mediated translation initiation is not subject to many of the regulatory mechanisms that control cap-dependent translation initiation, it is unknown whether other noncanonical protein factors are involved in this process. Thus, a global protein composition analysis of native and IRES-bound 40S ribosomal complexes has been conducted to facilitate an understanding of the IRES ribosome recruitment mechanism. A combined top-down and bottom-up mass spectrometry approach was used to identify both the proteins and their posttranslational modifications (PTMs) in the native 40S subunit and the IRES recruited translation initiation complex. Thirty-one out of a possible 32 ribosomal proteins were identified by combining top-down and bottom-up mass spectrometry techniques. Proteins were found to contain PTMs, including loss of methionine, acetylation, methylation, and disulfide bond formation. In addition to the 40S ribosomal proteins, RACK1 was consistently identified in the 40S fraction, indicating that this protein is associated with the 40S subunit. Similar methodology was then applied to the hepatitis C virus IRES-bound 40S complex. Two 40S ribosomal proteins, RS25 and RS29, were found to contain different PTMs than those in the native 40S subunit. In addition, RACK1, eukaryotic initiation factor 3 proteins and nucleolin were identified in the IRES-mediated translation initiation complex.
Collapse
Affiliation(s)
- Yonghao Yu
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
17
|
Chang EC, Schwechheimer C. ZOMES III: the interface between signalling and proteolysis. Meeting on The COP9 Signalosome, Proteasome and eIF3. EMBO Rep 2005; 5:1041-5. [PMID: 15514681 PMCID: PMC1299170 DOI: 10.1038/sj.embor.7400275] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 09/14/2004] [Indexed: 11/10/2022] Open
Affiliation(s)
- Eric C. Chang
- Department of Molecular and Cell Biology and the Breast Centre, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
- Tel: +1 713 798 3519; Fax: +1 713 798 1642;
| | - Claus Schwechheimer
- Department of Developmental Genetics, Centre for Plant Molecular Biology, Auf der Morgenstelle 5, 72076 Tübingen, Germany
- Tel: +49 7071 297 6669; Fax: +49 7071 295 135;
| |
Collapse
|
18
|
Scheel H, Hofmann K. Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes. BMC Bioinformatics 2005; 6:71. [PMID: 15790418 PMCID: PMC1274264 DOI: 10.1186/1471-2105-6-71] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 03/24/2005] [Indexed: 11/13/2022] Open
Abstract
Background The 'lid' subcomplex of the 26S proteasome and the COP9 signalosome (CSN complex) share a common architecture consisting of six subunits harbouring a so-called PCI domain (proteasome, CSN, eIF3) at their C-terminus, plus two subunits containing MPN domains (Mpr1/Pad1 N-terminal). The translation initiation complex eIF3 also contains PCI- and MPN-domain proteins, but seems to deviate from the 6+2 stoichiometry. Initially, the PCI domain was defined as the region of detectable sequence similarity between the components mentioned above. Results During an exhaustive bioinformatical analysis of proteasome components, we detected multiple instances of tetratrico-peptide repeats (TPR) in the N-terminal region of most PCI proteins, suggesting that their homology is not restricted to the PCI domain. We also detected a previously unrecognized PCI domain in the eIF3 component eIF3k, a protein whose 3D-structure has been determined recently. By using profile-guided alignment techniques, we show that the structural elements found in eIF3k are most likely conserved in all PCI proteins, resulting in a structural model for the canonical PCI domain. Conclusion Our model predicts that the homology domain PCI is not a true domain in the structural sense but rather consists of two subdomains: a C-terminal 'winged helix' domain with a key role in PCI:PCI interaction, preceded by a helical repeat region. The TPR-like repeats detected in the N-terminal region of PCI proteins most likely form an uninterrupted extension of the repeats found within the PCI domain boundaries. This model allows an interpretation of several puzzling experimental results.
Collapse
Affiliation(s)
- Hartmut Scheel
- Bioinformatics Group, Memorec Biotec GmbH, Stöckheimer Weg 1, D-50829 Köln, Germany
| | - Kay Hofmann
- Bioinformatics Group, Memorec Biotec GmbH, Stöckheimer Weg 1, D-50829 Köln, Germany
| |
Collapse
|
19
|
Shen X, Yang Y, Liu W, Sun M, Jiang J, Zong H, Gu J. Identification of the p28 subunit of eukaryotic initiation factor 3(eIF3k) as a new interaction partner of cyclin D3. FEBS Lett 2004; 573:139-46. [PMID: 15327989 DOI: 10.1016/j.febslet.2004.07.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2004] [Accepted: 07/08/2004] [Indexed: 11/27/2022]
Abstract
Cyclin D3 is found to play a crucial role not only in progression through the G1 phase as a regulatory subunit of cyclin-dependent kinase 4 (CDK 4) and CDK 6, but also in many other aspects such as cell cycle, cell differentiation, transcriptional regulation and apoptosis. In this work, we screened a human fetal liver cDNA library using human cyclin D3 as bait and identified human eukaryotic initiation factor 3 p28 protein (eIF3k) as a partner of cyclin D3. The association of cyclin D3 with eIF3k was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscopic analysis. We found that cyclin D3 specifically interacted with eIF3k through its C-terminal domain. Immunofluorescence experiments showed that eIF3k distributed both in nucleus and cytoplasm and colocalized with cyclin D3. In addition, the cellular translation activity in HeLa cells was upregulated by cyclin D3 overexpression and the mRNA levels are constant. These data provide a new clue to our understanding of the cellular function of cyclin D3.
Collapse
Affiliation(s)
- Xiaoyun Shen
- State key laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Fraser CS, Lee JY, Mayeur GL, Bushell M, Doudna JA, Hershey JWB. The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal subunits in vitro. J Biol Chem 2003; 279:8946-56. [PMID: 14688252 DOI: 10.1074/jbc.m312745200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have expressed and purified individual human eIF3 subunits or complexes of eIF3 subunits using baculovirus-infected Sf9 cells. The results indicate that the subunits of human eIF3 that have homologs in Saccharomyces cerevisiae form subcomplexes that reflect the subunit interactions seen in the yeast eIF3 core complex. In addition, we have used an in vitro 40 S ribosomal subunit binding assay to investigate subunit requirements for efficient association of the eIF3 subcomplexes to the 40 S ribosomal subunit. eIF3j alone binds to the 40 S ribosomal subunit, and its presence is required for stable 40 S binding of an eIF3bgi subcomplex. Furthermore, purified eIF3 lacking eIF3j binds 40 S ribosomal subunits weakly, but binds tightly when eIF3j is added. Cleavage of a 16-residue C-terminal peptide from eIF3j by caspase-3 significantly reduces the affinity of eIF3j for the 40 S ribosomal subunit, and the cleaved form provides substantially less stabilization of purified eIF3-40S complexes. These results indicate that eIF3j, and especially its C terminus, play an important role in the recruitment of eIF3 to the 40 S ribosomal subunit.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Biological Chemistry, School of Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mammalian translation initiation factor 3 (eIF3) is a multisubunit complex containing at least 12 subunits with an apparent aggregate mass of approximately 700 kDa. eIF3 binds to the 40S ribosomal subunit, promotes the binding of methionyl-tRNAi and mRNA, and interacts with several other initiation factors to form the 40S initiation complex. Human cDNAs encoding 11 of the 12 subunits have been isolated previously; here we report the cloning and characterization of a twelfth subunit, a 28-kDa protein named eIF3k. Evidence that eIF3k is present in the eIF3 complex was obtained. A monoclonal anti-eIF3a (p170) Ig coimmunoprecipitates eIF3k with the eIF3 complex. Affinity purification of histidine-tagged eIF3k from transiently transfected COS cells copurifies other eIF3 subunits. eIF3k colocalizes with eIF3 on 40S ribosomal subunits. eIF3k coexpressed with five other 'core' eIF3 subunits in baculovirus-infected insect cells, forms a stable, immunoprecipitatable, complex with the 'core'. eIF3k interacts directly with eIF3c, eIF3g and eIF3j by glutathione S-transferase pull-down assays. Sequences homologous with eIF3k are found in the genomes of Caenorhabitis elegans, Arabidopsis thaliana and Drosophila melanogaster, and a homologous protein has been reported to be present in wheat eIF3. Its ubiquitous expression in human tissues, yet its apparent absence in Saccharomyces cerevisiae and Schizosaccharomyces pombe, suggest a unique regulatory role for eIF3k in higher organisms. The studies of eIF3k complete the characterization of mammalian eIF3 subunits.
Collapse
Affiliation(s)
- Greg L Mayeur
- Department of Biological Chemistry, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
22
|
Hoareau Alves K, Bochard V, Réty S, Jalinot P. Association of the mammalian proto-oncoprotein Int-6 with the three protein complexes eIF3, COP9 signalosome and 26S proteasome. FEBS Lett 2002; 527:15-21. [PMID: 12220626 DOI: 10.1016/s0014-5793(02)03147-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mammalian Int-6 protein has been characterized as a subunit of the eIF3 translation initiation factor and also as a transforming protein when its C-terminal part is deleted. It includes a protein domain, which also exists in various subunits of eIF3, of the 26S proteasome and of the COP9 signalosome (CSN). By performing a two-hybrid screen with Int-6 as bait, we have isolated subunits belonging to all three complexes, namely eIF3-p110, Rpt4, CSN3 and CSN6. The results of transient expression experiments in COS7 cells confirmed the interaction of Int-6 with Rpt4, CSN3 and CSN6, but also showed that Int-6 is able to bind another subunit of the CSN: CSN7a. Immunoprecipitation experiments performed with the endogenous proteins showed that Int-6 binds the entire CSN, but in low amount, and also that Int-6 is associated with the 26S proteasome. Taken together these results show that the Int-6 protein can bind the three complexes with various efficiencies, possibly exerting a regulatory activity in both protein translation and degradation.
Collapse
Affiliation(s)
- Karine Hoareau Alves
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5665-Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46, Allée d'Italie, 69364 Cedex 07, Lyon, France
| | | | | | | |
Collapse
|
23
|
Dunand-Sauthier I, Walker C, Wilkinson C, Gordon C, Crane R, Norbury C, Humphrey T. Sum1, a component of the fission yeast eIF3 translation initiation complex, is rapidly relocalized during environmental stress and interacts with components of the 26S proteasome. Mol Biol Cell 2002; 13:1626-40. [PMID: 12006658 PMCID: PMC111132 DOI: 10.1091/mbc.01-06-0301] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic translation initiation factor 3 (eIF3) is a multisubunit complex that plays a central role in translation initiation. We show that fission yeast Sum1, which is structurally related to known eIF3 subunits in other species, is essential for translation initiation, whereas its overexpression results in reduced global translation. Sum1 is associated with the 40S ribosome and interacts stably with Int6, an eIF3 component, in vivo, suggesting that Sum1 is a component of the eIF3 complex. Sum1 is cytoplasmic under normal growth conditions. Surprisingly, Sum1 is rapidly relocalized to cytoplasmic foci after osmotic and thermal stress. Int6 and p116, another putative eIF3 subunit, behave similarly, suggesting that eIF3 is a dynamic complex. These cytoplasmic foci, which additionally comprise eIF4E and RNA components, may function as translation centers during environmental stress. After heat shock, Sum1 additionally colocalizes stably with the 26S proteasome at the nuclear periphery. The relationship between Sum1 and the 26S proteasome was further investigated, and we find cytoplasmic Sum1 localization to be dependent on the 26S proteasome. Furthermore, Sum1 interacts with the Mts2 and Mts4 components of the 26S proteasome. These data indicate a functional link between components of the structurally related eIF3 translation initiation and 26S proteasome complexes.
Collapse
Affiliation(s)
- Isabelle Dunand-Sauthier
- Cell Cycle Laboratory, Medical Research Council, Radiation and Genome Stability Unit, Harwell, Didcot, OX11 0RD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|