1
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
2
|
Kobori S, Nomura Y, Yokobayashi Y. Self-powered RNA nanomachine driven by metastable structure. Nucleic Acids Res 2019; 47:6007-6014. [PMID: 31076769 PMCID: PMC6582335 DOI: 10.1093/nar/gkz364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 11/14/2022] Open
Abstract
Many non-coding and regulatory RNA elements have evolved to exploit transient or metastable structures that emerge during transcription to control complex folding pathways or to encode dynamic functions. However, efforts to engineer synthetic RNA devices have mostly focused on the thermodynamically stable structures. Consequently, significant challenges and opportunities exist in engineering functional RNAs that explicitly take advantage of cotranscriptionally generated transient or metastable structures. In this work, we designed a short RNA sequence that adopts a robust metastable structure when transcribed by an RNA polymerase. Although the metastable structure persists for hours at low temperature, it refolds almost completely into the thermodynamically stable structure upon heat denaturation followed by cooling. The synthetic RNA was also equipped with the Broccoli aptamer so that it can bind its ligand and become fluorescent only in the thermodynamically stable structure. We further demonstrated that the relaxation to the thermodynamically stable and fluorescent structure can be catalyzed by a short trigger RNA in a sequence-specific manner. Finally, the RNA architecture was redesigned to sense and respond to microRNA sequences. In summary, we designed RNA nanomachines that can detect an RNA sequence, amplify signal and produce an optical output, all encoded in a single RNA transcript, self-powered by a metastable structure.
Collapse
Affiliation(s)
- Shungo Kobori
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yoko Nomura
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
- To whom correspondence should be addressed. Tel: +81 989 823 396; Fax: +81 989 823 421;
| |
Collapse
|
3
|
Masachis S, Tourasse NJ, Lays C, Faucher M, Chabas S, Iost I, Darfeuille F. A genetic selection reveals functional metastable structures embedded in a toxin-encoding mRNA. eLife 2019; 8:47549. [PMID: 31411564 PMCID: PMC6733600 DOI: 10.7554/elife.47549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional regulation plays important roles to fine-tune gene expression in bacteria. In particular, regulation of type I toxin-antitoxin (TA) systems is achieved through sophisticated mechanisms involving toxin mRNA folding. Here, we set up a genetic approach to decipher the molecular underpinnings behind the regulation of a type I TA in Helicobacter pylori. We used the lethality induced by chromosomal inactivation of the antitoxin to select mutations that suppress toxicity. We found that single point mutations are sufficient to allow cell survival. Mutations located either in the 5’ untranslated region or within the open reading frame of the toxin hamper its translation by stabilizing stem-loop structures that sequester the Shine-Dalgarno sequence. We propose that these short hairpins correspond to metastable structures that are transiently formed during transcription to avoid premature toxin expression. This work uncovers the co-transcriptional inhibition of translation as an additional layer of TA regulation in bacteria.
Collapse
Affiliation(s)
- Sara Masachis
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Nicolas J Tourasse
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Claire Lays
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Marion Faucher
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Sandrine Chabas
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Isabelle Iost
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| | - Fabien Darfeuille
- University of Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, Bordeaux, France
| |
Collapse
|
4
|
Masachis S, Darfeuille F. Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0030-2018. [PMID: 30051800 PMCID: PMC11633621 DOI: 10.1128/microbiolspec.rwr-0030-2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic loci composed of two adjacent genes: a toxin and an antitoxin that prevents toxin action. Despite their wide distribution in bacterial genomes, the reasons for TA systems being on chromosomes remain enigmatic. In this review, we focus on type I TA systems, composed of a small antisense RNA that plays the role of an antitoxin to control the expression of its toxin counterpart. It does so by direct base-pairing to the toxin-encoding mRNA, thereby inhibiting its translation and/or promoting its degradation. However, in many cases, antitoxin binding is not sufficient to avoid toxicity. Several cis-encoded mRNA elements are also required for repression, acting to uncouple transcription and translation via the sequestration of the ribosome binding site. Therefore, both antisense RNA binding and compact mRNA folding are necessary to tightly control toxin synthesis and allow the presence of these toxin-encoding systems on bacterial chromosomes.
Collapse
Affiliation(s)
- Sara Masachis
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33000 Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, INSERM U1212, CNRS UMR 5320, University of Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
5
|
Gerdes K. Hypothesis: type I toxin-antitoxin genes enter the persistence field-a feedback mechanism explaining membrane homoeostasis. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0189. [PMID: 27672159 DOI: 10.1098/rstb.2016.0189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 11/12/2022] Open
Abstract
Bacteria form persisters, cells that are tolerant to multiple antibiotics and other types of environmental stress. Persister formation can be induced either stochastically in single cells of a growing bacterial ensemble, or by environmental stresses, such as nutrient starvation, in a subpopulation of cells. In many cases, the molecular mechanisms underlying persistence are still unknown. However, there is growing evidence that, in enterobacteria, both stochastically and environmentally induced persistence are controlled by the second messenger (p)ppGpp. For example, the 'alarmone' (p)ppGpp activates Lon, which, in turn, activates type II toxin-antitoxin (TA) modules to thereby induce persistence. Recently, it has been shown that a type I TA module, hokB/sokB, also can induce persistence. In this case, the underlying mechanism depends on the universally conserved GTPase Obg and, surprisingly, also (p)ppGpp. In the presence of (p)ppGpp, Obg stimulates hokB transcription and induces persistence. HokB toxin expression is under both negative and positive control: SokB antisense RNA inhibits hokB mRNA translation, while (p)ppGpp and Obg together stimulate hokB transcription. HokB is a small toxic membrane protein that, when produced in modest amounts, leads to membrane depolarization, cell stasis and persistence. By contrast, overexpression of HokB disrupts the membrane potential and kills the cell. These observations raise the question of how expression of HokB is regulated. Here, I propose a homoeostatic control mechanism that couples HokB expression to the membrane-bound RNase E that degrades and inactivates SokB antisense RNA.This article is part of the themed issue 'The new bacteriology'.
Collapse
Affiliation(s)
- Kenn Gerdes
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
6
|
Gilmore JL, Yoshida A, Hejna JA, Takeyasu K. Visualization of conformational variability in the domains of long single-stranded RNA molecules. Nucleic Acids Res 2017; 45:8493-8507. [PMID: 28591846 PMCID: PMC5737216 DOI: 10.1093/nar/gkx502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 06/04/2017] [Indexed: 01/05/2023] Open
Abstract
We demonstrate an application of atomic force microscopy (AFM) for the structural analysis of long single-stranded RNA (>1 kb), focusing on 28S ribosomal RNA (rRNA). Generally, optimization of the conditions required to obtain three-dimensional (3D) structures of long RNA molecules is a challenging or nearly impossible process. In this study, we overcome these limitations by developing a method using AFM imaging combined with automated, MATLAB-based image analysis algorithms for extracting information about the domain organization of single RNA molecules. We examined the 5 kb human 28S rRNA since it is the largest RNA molecule for which a 3D structure is available. As a proof of concept, we determined a domain structure that is in accordance with previously described secondary structural models. Importantly, we identified four additional small (200–300 nt), previously unreported domains present in these molecules. Moreover, the single-molecule nature of our method enabled us to report on the relative conformational variability of each domain structure identified, and inter-domain associations within subsets of molecules leading to molecular compaction, which may shed light on the process of how these molecules fold into the final tertiary structure.
Collapse
Affiliation(s)
- Jamie L Gilmore
- Laboratory of Plasma Membrane and Nuclear Signaling, Kyoto University Graduate School of Biostudies, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Aiko Yoshida
- Laboratory of Plasma Membrane and Nuclear Signaling, Kyoto University Graduate School of Biostudies, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - James A Hejna
- Laboratory of Science Communication, Kyoto University Graduate School of Biostudies, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kunio Takeyasu
- Laboratory of Plasma Membrane and Nuclear Signaling, Kyoto University Graduate School of Biostudies, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan.,Institute of Biotechnology, National Taiwan University, 4F, No. 81, Chang-Xing St, Taipei 106, Taiwan
| |
Collapse
|
7
|
Arnion H, Korkut DN, Masachis Gelo S, Chabas S, Reignier J, Iost I, Darfeuille F. Mechanistic insights into type I toxin antitoxin systems in Helicobacter pylori: the importance of mRNA folding in controlling toxin expression. Nucleic Acids Res 2017; 45:4782-4795. [PMID: 28077560 PMCID: PMC5416894 DOI: 10.1093/nar/gkw1343] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022] Open
Abstract
Type I toxin-antitoxin (TA) systems have been identified in a wide range of bacterial genomes. Here, we report the characterization of a new type I TA system present on the chromosome of the major human gastric pathogen, Helicobacter pylori. We show that the aapA1 gene encodes a 30 amino acid peptide whose artificial expression in H. pylori induces cell death. The synthesis of this toxin is prevented by the transcription of an antitoxin RNA, named IsoA1, expressed on the opposite strand of the toxin gene. We further reveal additional layers of post-transcriptional regulation that control toxin expression: (i) transcription of the aapA1 gene generates a full-length transcript whose folding impedes translation (ii) a 3΄ end processing of this message generates a shorter transcript that, after a structural rearrangement, becomes translatable (iii) but this rearrangement also leads to the formation of two stem-loop structures allowing formation of an extended duplex with IsoA1 via kissing-loop interactions. This interaction ensures both the translation inhibition of the AapA1 active message and its rapid degradation by RNase III, thus preventing toxin synthesis under normal growth conditions. Finally, a search for homologous mRNA structures identifies similar TA systems in a large number of Helicobacter and Campylobacter genomes.
Collapse
Affiliation(s)
- Hélène Arnion
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Dursun Nizam Korkut
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Sara Masachis Gelo
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Sandrine Chabas
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Jérémy Reignier
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Isabelle Iost
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Fabien Darfeuille
- INSERM U1212, CNRS UMR5320, Univ. Bordeaux, ARNA Laboratory, 146 rue Léo Saignat, F-33076 Bordeaux, France
| |
Collapse
|
8
|
Abstract
Toxin-antitoxin (TA) systems are small genetic modules formed by a stable toxin and an unstable antitoxin that are widely present in plasmids and in chromosomes of Bacteria and Archaea. Toxins can interfere with cell growth or viability, targeting a variety of key processes. Antitoxin inhibits expression of the toxin, interacts with it, and neutralizes its effect. In a plasmid context, toxins are kept silent by the continuous synthesis of the unstable antitoxins; in plasmid-free cells (segregants), toxins can be activated owing to the faster decay of the antitoxin, and this results in the elimination of these cells from the population (postsegregational killing [PSK]) and in an increase of plasmid-containing cells in a growing culture. Chromosomal TA systems can also be activated in particular circumstances, and the interference with cell growth and viability that ensues contributes in different ways to the physiology of the cell. In this article, we review the conditional activation of TAs in selected plasmidic and chromosomal TA pairs and the implications of this activation. On the whole, the analysis underscores TA interactions involved in PSK and points to the effective contribution of TA systems to the physiology of the cell.
Collapse
|
9
|
Wen J, Fozo EM. sRNA antitoxins: more than one way to repress a toxin. Toxins (Basel) 2014; 6:2310-35. [PMID: 25093388 PMCID: PMC4147584 DOI: 10.3390/toxins6082310] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/16/2022] Open
Abstract
Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.
Collapse
Affiliation(s)
- Jia Wen
- Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, TN 37996, USA.
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, TN 37996, USA.
| |
Collapse
|
10
|
Ruiz de los Mozos I, Vergara-Irigaray M, Segura V, Villanueva M, Bitarte N, Saramago M, Domingues S, Arraiano CM, Fechter P, Romby P, Valle J, Solano C, Lasa I, Toledo-Arana A. Base pairing interaction between 5'- and 3'-UTRs controls icaR mRNA translation in Staphylococcus aureus. PLoS Genet 2013; 9:e1004001. [PMID: 24367275 PMCID: PMC3868564 DOI: 10.1371/journal.pgen.1004001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022] Open
Abstract
The presence of regulatory sequences in the 3′ untranslated region (3′-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 3′-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 3′-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 3′-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 3′-UTRs may play in controlling mRNA expression. We showed that base pairing between the 3′-UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 3′-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 3′-UTR with the 5′-UTR of the same mRNA. At both sides of the protein-coding region, the mRNA molecule contains sequences that are not translated to protein. In eukaryotes, the untranslated 3′ region (3′-UTR), which comprises from the last codon used in translation to the 3′ end of the mRNA, controls mRNA stability, location and translation efficiency. In contrast, knowledge about the functions of 3′-UTRs in bacterial physiology is scarce. Here, we demonstrate that bacterial 3′-UTRs might play regulatory functions that might resemble those already described in eukaryotes. Transcriptome analysis of the human pathogen Staphylococcus aureus revealed that at least 30% of mRNAs contain long 3′-UTRs. Using the 3′-UTR of the mRNA encoding the main biofilm repressor IcaR as a model, we show that the 3′-UTR interferes with the translation initiation complex and promotes mRNA decay through base pairing with the ribosome binding site. This event contributes to adjusting IcaR level and modulating exopolysaccharide production and biofilm development in S. aureus. Our data illustrate that bacterial 3′-UTRs can provide strategies for fine-tuning control of gene expression.
Collapse
Affiliation(s)
- Igor Ruiz de los Mozos
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Marta Vergara-Irigaray
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Victor Segura
- Genomics, Proteomics and Bioinformatics Unit. Center for Applied Medical Research. University of Navarra. Pamplona, Spain
| | - Maite Villanueva
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Nerea Bitarte
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Susana Domingues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Cecilia M. Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. Oeiras, Portugal
| | - Pierre Fechter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC. Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC. Strasbourg, France
| | - Jaione Valle
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Cristina Solano
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
| | - Iñigo Lasa
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
- * E-mail: (IL); (ATA)
| | - Alejandro Toledo-Arana
- Laboratory of Microbial Biofilms. Instituto de Agrobiotecnología (IDAB). Universidad Pública de Navarra-CSIC-Gobierno de Navarra. Campus de Arrosadía. Pamplona, Spain
- * E-mail: (IL); (ATA)
| |
Collapse
|
11
|
Abstract
The hok/sok toxin-antitoxin system of Escherichia coli plasmid R1 increases plasmid maintenance by killing plasmid-free daughter cells. The hok/sok locus specifies two RNAs: hok mRNA, which encodes a toxic transmembrane protein, and sok antisense RNA, which binds a complementary region in the hok mRNA and induces transcript degradation. During cell growth, the cis-encoded sok RNA inhibits expression of the Hok toxin. In plasmid-free segregants, the rapid decay of sok RNA relative to hok mRNA permits Hok translation, leading to cell death. This post-segregational killing mechanism relies upon the ability of the hok mRNA to adopt alternative structural configurations, which affect ease of translation and the susceptibility of the molecule to degradation. The full-length hok transcript is stable, highly structured and immune to ribosome and antisense RNA binding. Gradual 3' end processing produces dramatic structural rearrangements in the mRNA, which render the molecule translationally active and expose the sok RNA binding site. During transcription, premature ribosome and sok binding are prevented through the formation of transient metastable hairpins in the 5' end of the nascent transcript. Several hok mRNA paralogs have been identified in the genome of E. coli, and Hok protein orthologs found in the genomes of Enterobacteria. Using a combination of automated search and extensive manual editing, we compiled a multiple sequence alignment for the hok mRNA. All three experimentally validated hok mRNA structures are mapped onto this alignment, which has been submitted to the Rfam database for RNA families.
Collapse
Affiliation(s)
- Adi Steif
- Centre for High-Throughput Biology and Department of Computer Science, University of British Columbia, Vancouver, BC Canada
| | | |
Collapse
|
12
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
13
|
Design of interacting multi-stable nucleic acids for molecular information processing. Biosystems 2011; 105:14-24. [PMID: 21396427 DOI: 10.1016/j.biosystems.2011.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/28/2011] [Accepted: 02/28/2011] [Indexed: 11/23/2022]
|
14
|
Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 2009; 72:579-89, Table of Contents. [PMID: 19052321 DOI: 10.1128/mmbr.00025-08] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has been a great expansion in the number of small regulatory RNAs identified in bacteria. Some of these small RNAs repress the synthesis of potentially toxic proteins. Generally the toxin proteins are hydrophobic and less than 60 amino acids in length, and the corresponding antitoxin small RNA genes are antisense to the toxin genes or share long stretches of complementarity with the target mRNAs. Given their short length, only a limited number of these type I toxin-antitoxin loci have been identified, but it is predicted that many remain to be found. Already their characterization has given insights into regulation by small RNAs, has suggested functions for the small toxic proteins at the cell membrane, and has led to practical applications for some of the type I toxin-antitoxin loci.
Collapse
|
15
|
Abstract
Recent genomic analyses revealed a surprisingly large number of toxin-antitoxin loci in free-living prokaryotes. The antitoxins are proteins or antisense RNAs that counteract the toxins. Two antisense RNA-regulated toxin-antitoxin gene families, hok/sok and ldr, are unrelated sequence-wise but have strikingly similar properties at the level of gene and RNA organization. Recently, two SOS-induced toxins were found to be regulated by RNA antitoxins. One such toxin, SymE, exhibits similarity with MazE antitoxin and, surprisingly, inhibits translation. Thus, it is possible that an ancestral antitoxin gene evolved into the present toxin gene (symE) whose translation is repressed by an RNA antitoxin (SymR).
Collapse
Affiliation(s)
- Kenn Gerdes
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle NE2 4HH, UK.
| | | |
Collapse
|
16
|
Abstract
RNA co-transcriptional folding has long been suspected to play an active role in helping proper native folding of ribozymes and structured regulatory motifs in mRNA untranslated regions (UTRs). Yet, the underlying mechanisms and coding requirements for efficient co-transcriptional folding remain unclear. Traditional approaches have intrinsic limitations to dissect RNA folding paths, as they rely on sequence mutations or circular permutations that typically perturb both RNA folding paths and equilibrium structures. Here, we show that exploiting sequence symmetries instead of mutations can circumvent this problem by essentially decoupling folding paths from equilibrium structures of designed RNA sequences. Using bistable RNA switches with symmetrical helices conserved under sequence reversal, we demonstrate experimentally that native and transiently formed helices can guide efficient co-transcriptional folding into either long-lived structure of these RNA switches. Their folding path is controlled by the order of helix nucleations and subsequent exchanges during transcription, and may also be redirected by transient antisense interactions. Hence, transient intra- and inter-molecular base pair interactions can effectively regulate the folding of nascent RNA molecules into different native structures, provided limited coding requirements, as discussed from an information theory perspective. This constitutive coupling between RNA synthesis and RNA folding regulation may have enabled the early emergence of autonomous RNA-based regulation networks.
Collapse
Affiliation(s)
- A. Xayaphoummine
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
| | - V. Viasnoff
- RNA Dynamics and Biomolecular Systems, Physico-chimie CurieCNRS UMR168, Institut Curie, Section de Recherche, 11 rue P. & M. Curie, 75005 Paris, France
| | - S. Harlepp
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
| | - H. Isambert
- Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP, Institut de Physique3 rue de l'Université, 67000 Strasbourg, France
- RNA Dynamics and Biomolecular Systems, Physico-chimie CurieCNRS UMR168, Institut Curie, Section de Recherche, 11 rue P. & M. Curie, 75005 Paris, France
- To whom correspondence should be addressed. Tel: +33 1 42 34 64 74;
| |
Collapse
|
17
|
Nagel JHA, Flamm C, Hofacker IL, Franke K, de Smit MH, Schuster P, Pleij CWA. Structural parameters affecting the kinetics of RNA hairpin formation. Nucleic Acids Res 2006; 34:3568-76. [PMID: 16855293 PMCID: PMC1524914 DOI: 10.1093/nar/gkl445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from a purine- to a pyrimidine-rich loop did increase its folding rate, which corresponds well with similar observations in DNA hairpins. However, neither changing one of the loops from a regular non-GNRA tetra-loop into a stable GNRA tetra-loop, nor increasing the loop size from 4 to 6 nt did affect the folding rate. The folding kinetics of these RNAs have also been simulated with the program ‘Kinfold’. These simulations were in agreement with the experimental results if the additional stabilization energies for stable tetra-loops were not taken into account. Despite the high stability of the stable tetra-loops, they apparently do not affect folding kinetics of these RNA hairpins. These results show that it is possible to experimentally determine relative folding rates of hairpins and to use these data to improve the computer-assisted simulation of the folding kinetics of stem–loop structures.
Collapse
Affiliation(s)
| | - C. Flamm
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität WienA-1090 Vienna, Austria
| | - I. L. Hofacker
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität WienA-1090 Vienna, Austria
| | - K. Franke
- IBA NAPS GmbH Rudolf-Wissell-Strasse 28 D-37079 GöttingenGermany
| | | | - P. Schuster
- Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität WienA-1090 Vienna, Austria
| | - C. W. A. Pleij
- To whom correspondence should be addressed. Tel: +31-71-5274769; Fax: +31-71-5274340;
| |
Collapse
|
18
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Hackermüller J, Meisner NC, Auer M, Jaritz M, Stadler PF. The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model. Gene 2005; 345:3-12. [PMID: 15716109 DOI: 10.1016/j.gene.2004.11.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 10/13/2004] [Accepted: 11/09/2004] [Indexed: 12/17/2022]
Abstract
RNA-ligand binding often depends crucially on the local RNA secondary structure at the binding site. We develop here a model that quantitatively predicts the effect of RNA secondary structure on effective RNA-ligand binding activities based on equilibrium thermodynamics and the explicit computations of partition functions for the RNA structures. A statistical test for the impact of a particular structural feature on the binding affinities follows directly from this approach. The formalism is extended to describing the effects of hybridizing small "modifier RNAs" to a target RNA molecule outside its ligand binding site. We illustrate the applicability of our approach by quantitatively describing the interaction of the mRNA stabilizing protein HuR with AU-rich elements. We discuss our model and recent experimental findings demonstrating the effectivity of modifier RNAs in vitro in the context of the current research activities in the field of non-coding RNAs. We speculate that modifier RNAs might also exist in nature; if so, they present an additional regulatory layer for fine-tuning gene expression that could evolve rapidly, leaving no obvious traces in the genomic DNA sequences.
Collapse
Affiliation(s)
- Jörg Hackermüller
- Novartis Institutes for Biomedical Research Vienna, Informatics and Knowledge Management at NIBR, Insilico Sciences, Brunnerstrasse 59, A-1235 Vienna, Austria
| | | | | | | | | |
Collapse
|
20
|
Abstract
When bacteria such as Staphylococcus aureus and Streptococcus pneumoniae are exposed to lytic antibiotics such as penicillin and vancomycin, a self-induced killing process is initiated in the organism. This killing occurs via both non-lytic and lytic processes. Recent data suggest that the non-lytic killing system, which might affect the cytoplasmic membrane, secondarily activates murein hydrolases that eventually lyse the cell. Disturbances in this suicide pathway can lead to antibiotic tolerance, a process whereby the antibiotic still exerts its bacteriostatic effects but the self-induced killing system is impaired. In mutants obtained in vitro, signaling pathways have been affected that show either increased or decreased antibiotic-induced killing. Among clinical isolates of S. pneumoniae that are tolerant to penicillin and/or vancomycin, we do not yet know whether these signaling pathways are affected. We could, however, demonstrate that the activity of murein hydrolases is negatively controlled by the production of capsular polysaccharides in one vancomycin-tolerant isolate. Hence, type and level of capsular expression might constitute one factor that determines the degree of lysis, once the killing signal has been elicited by the antibiotic.
Collapse
Affiliation(s)
- Benriques Henriques Normark
- Swedish Institute for Infectious Disease Control and Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm Sweden.
| | | |
Collapse
|
21
|
Abstract
Many biologically active RNAs show a switch in their secondary structure, which is accompanied by changes in their function. Such changes in secondary structure often require trans-acting factors, e.g. RNA chaperones. However, several biologically active RNAs do not require trans-acting factors for this structural switch, which is therefore indicated here as a "self-induced switch". These self-induced structural switches have several characteristics in common. They all start from a metastable structure, which is maintained for some time allowing or blocking a particular function of the RNA. Hereafter, a structural element becomes available, e.g. during transcription, triggering a rapid transition into a stable conformation, which again is accompanied by either a gain or loss of function. A further common element of this type of switches is the involvement of a branch migration or strand displacement reaction, which lowers the energy barrier of the reaction sufficiently to allow rapid refolding. Here, we review a number of these self-induced switches in RNA secondary structure as proposed for several systems. A general model for this type of switches is presented, showing its importance in the biology of functionally active RNAs.
Collapse
Affiliation(s)
- Jord H A Nagel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
22
|
Huthoff H, Berkhout B. Multiple secondary structure rearrangements during HIV-1 RNA dimerization. Biochemistry 2002; 41:10439-45. [PMID: 12173930 DOI: 10.1021/bi025993n] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 RNA dimerization is a complex process that involves a series of RNA refolding events. The monomeric RNA can adopt two alternative conformations that largely determine the efficiency of dimerization. The dimeric RNA also exists in two different conformations, an initial kissing-loop complex and a stable dimer with extended intermolecular base pairing. We describe an ordered RNA folding pathway that incorporates this multitude of HIV-1 RNA conformers. Analysis of mutant transcripts designed to block distinct steps of the refolding cascade supports this model. The folding properties of the wild-type RNA and the defects caused by the mutations can be fully understood in terms of the free energy changes associated with secondary structure rearrangements.
Collapse
Affiliation(s)
- Hendrik Huthoff
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
23
|
Nagel JHA, Gultyaev AP, Oistämö KJ, Gerdes K, Pleij CWA. A pH-jump approach for investigating secondary structure refolding kinetics in RNA. Nucleic Acids Res 2002; 30:e63. [PMID: 12087188 PMCID: PMC117070 DOI: 10.1093/nar/gnf057] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been shown that premature translation of the plasmid-mediated toxin in hok/sok of plasmid R1 and pnd/pndB of plasmid R483 is prevented during transcription of the hok and pnd mRNAs by the formation of metastable hairpins at the 5'-end of the mRNA. Here, an experimental approach is presented, which allows the accurate measurement of the refolding kinetics of the 5'-end RNA fragments in vitro without chemically modifying the RNA. The method is based on acid denaturation followed by a pH-jump to neutral pH as a novel way to trap kinetically favoured RNA secondary structures, allowing the measurement of a wide range of biologically relevant refolding rates, with or without the use of standard stopped-flow equipment. The refolding rates from the metastable to the stable conformation in both the hok74 and pnd58 5'-end RNA fragments were determined by using UV absorbance changes corresponding to the structural rearrangements. The measured energy barriers showed that the refolding path does not need complete unfolding of the metastable structures before the formation of the final structures. Two alternative models of such a pathway are discussed.
Collapse
Affiliation(s)
- J H A Nagel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Campbell FE, Cassano AG, Anderson VE, Harris ME. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. J Mol Biol 2002; 317:21-40. [PMID: 11916377 DOI: 10.1006/jmbi.2002.5413] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand substrate recognition and catalysis by RNase III, we examined steady-state and pre-steady-state reaction kinetics, and changes in intrinsic enzyme fluorescence. The multiple turnover cleavage of a model RNA substrate shows a pre-steady-state burst of product formation followed by a slower phase, indicating that the steady-state reaction rate is not limited by substrate cleavage. RNase III catalyzed hydrolysis is slower at low pH, permitting the use of pre-steady-state kinetics to measure the dissociation constant for formation of the enzyme-substrate complex (K(d)=5.4(+/-0.6) nM), and the rate constant for phosphodiester bond cleavage (k(c)=1.160(+/-0.001) min(-1), pH 5.4). Isotope incorporation analysis shows that a single solvent oxygen atom is incorporated into the 5' phosphate of the RNA product, which demonstrates that the cleavage step is irreversible. Analysis of the pH dependence of the single turnover rate constant, k(c), fits best to a model for two or more titratable groups with pK(a) of ca 5.6, suggesting a role for conserved acidic residues in catalysis. Additionally, we find that k(c) is dependent on the pK(a) value of the hydrated divalent metal ion included in the reaction, providing evidence for participation of a metal ion hydroxide in catalysis, potentially in developing the nucleophile for the hydrolysis reaction. In order to assess whether conformational changes also contribute to the enzyme mechanism, we monitored intrinsic tryptophan fluorescence. During a single round of binding and cleavage by the enzyme we detect a biphasic change in fluorescence. The rate of the initial increase in fluorescence was dependent on substrate concentration yielding a second-order rate constant of 1.0(+/-0.1)x10(8) M(-1) s(-1), while the rate constant of the second phase was concentration independent (6.4(+/-0.8) s(-1); pH 7.3). These data, together with the unique dependence of each phase on divalent metal ion identity and pH, support the hypothesis that the two fluorescence transitions, which we attribute to conformational changes, correlate with substrate binding and catalysis.
Collapse
Affiliation(s)
- Frank E Campbell
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|