1
|
Álvarez de Celis H, Gómez CP, Descoteaux A, Duplay P. Dok proteins are recruited to the phagosome and degraded in a GP63-dependent manner during Leishmania major infection. Microbes Infect 2014; 17:285-94. [PMID: 25554486 DOI: 10.1016/j.micinf.2014.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
Three adaptor molecules of the Dok family, Dok-1, Dok-2 and Dok-3 are expressed in macrophages and are involved in the negative regulation of signaling in response to lipopolysaccharide and various cytokines and growth factors. We investigated the role and the fate of these proteins following infection with Leishmania major promastigotes in macrophages. The protozoan parasite L. major causes cutaneous leishmaniasis and is known for its capacity to alter host-cell signaling and function. Dok-1/Dok-2(-/-) bone marrow-derived macrophages displayed normal uptake of L. major promastigotes. Following Leishmania infection, Dok-1 was barely detectable by confocal microscopy. By contrast, phagocytosis of latex beads or zymosan led to the recruitment of Dok-1 to phagosomes. In the absence of the Leishmania pathogenesis-associated metalloprotease GP63, Dok-1 was also, partially, recruited to phagosomes containing L. major promastigotes. Further biochemical analyses revealed that similar to Dok-1, Dok-2 and Dok-3 were targets of GP63. Moreover, we showed that upon infection with wild-type or Δgp63 L. major promastigotes, production of nitric oxide and tumor necrosis factor by interferon-γ-primed Dok-1/Dok-2(-/-) macrophages was reduced compared to WT macrophages. These results suggest that Dok proteins may be important regulators of macrophage responses to Leishmania infection.
Collapse
Affiliation(s)
- Hector Álvarez de Celis
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Carolina P Gómez
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada
| | - Pascale Duplay
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
2
|
The adaptor protein Crk in immune response. Immunol Cell Biol 2013; 92:80-9. [PMID: 24165979 DOI: 10.1038/icb.2013.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 12/17/2022]
Abstract
The adaptor proteins Crk (CT10 (chicken tumor virus number 10) regulator of kinase), including CrkI, CrkII and Crk-like, are important signal molecules that regulate a variety of cellular processes. Considerable progress has been made in understanding the roles of the Crk family proteins in signal transduction, with a focus on cellular transformation and differentiation. However, since Crk was identified in 1988, very few studies have addressed how Crk regulates the immune response. Recent work demonstrates that Crk proteins function as critical signal molecules in regulating immune cell functions. Emerging data on the roles of Crk in activation and inhibitory immunoreceptor signaling suggest that Crk proteins are potential immunotherapeutic targets in cancer and infectious diseases. The aim of this review is to summarize recent key findings regarding the role of Crk in immune responses mediated by T, B and natural killer (NK) cells. In particular, the roles of Crk in NK cell functions are discussed.
Collapse
|
3
|
Besin G, Yousefi M, Saba I, Klinck R, Pandolfi PP, Duplay P. Dok-1 overexpression promotes development of γδ natural killer T cells. Eur J Immunol 2012; 42:2491-504. [PMID: 22736313 DOI: 10.1002/eji.201242421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/18/2012] [Accepted: 05/24/2012] [Indexed: 11/07/2022]
Abstract
In T cells, two members of the Dok family, Dok-1 and Dok-2, are predominantly expressed. Recent evidence suggests that they play a negative role in T-cell signaling. In order to define whether Dok proteins regulate T-cell development, we have generated transgenic mice overexpressing Dok-1 in thymocytes and peripheral T cells. We show that overexpression of Dok-1 retards the transition from the CD4(-) CD8(-) to CD4(+) CD8(+) stage. Moreover, there is a specific expansion of PLZF-expressing Vγ1.1(+) Vδ6.3(+) T cells. This subset of γδ T cells acquires innate characteristics including rapid IL-4 production following stimulation and requiring SLAM-associated adaptor protein (SAP) for their development. Moreover, Dok-1 overexpression promotes the generation of an innate-like CD8(+) T-cell population that expresses Eomesodermin. Altogether, these findings identify a novel role for Dok-1 in the regulation of thymic differentiation and in particular, in the development of PLZF(+) γδ T cells.
Collapse
Affiliation(s)
- Gilles Besin
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Waterman PM, Marschner S, Brandl E, Cambier JC. The inositol 5-phosphatase SHIP-1 and adaptors Dok-1 and 2 play central roles in CD4-mediated inhibitory signaling. Immunol Lett 2012; 143:122-30. [PMID: 22370159 DOI: 10.1016/j.imlet.2012.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 11/26/2022]
Abstract
CD4 functions to enhance the sensitivity of T cells to antigenic peptide/MHC class II. However, if aggregated in isolation, e.g. in the absence of T cell receptor (TCR), CD4 can transduce yet undefined signals that lead to T cell unresponsiveness to antigen and apoptosis. In Human Immunodeficiency Virus-1 (HIV-1) disease, CD4(+) T cell loss can result from gp120-induced CD4 signaling in uninfected cells. We show here that CD4 aggregation leads to Lck-dependent phosphorylation of the RasGAP adaptors Downstream of kinase-1/2 (Dok-1/2) and the inositol 5-phosphatase-1 (SHIP-1) and association of the two molecules. Studies using SHIP-1 shRNA, knockout mice and decoy inhibitors further indicate that CD4-mediated inhibition of TCR-mediated T cell activation is SHIP-1 and Dok-1/2 dependent, and involves SHIP-1 hydrolysis of Phosphatidylinositol 3,4,5-trisphosophate (PI(3,4,5)P3) needed for TCR signaling. Our studies provide evidence for a novel mechanism by which ill-timed CD4-mediated signals activated by ligands such as HIV-1 gp120 lead to disarmament of the immune system.
Collapse
Affiliation(s)
- Paul M Waterman
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO 80206, United States
| | | | | | | |
Collapse
|
5
|
Mashima R, Hishida Y, Tezuka T, Yamanashi Y. The roles of Dok family adapters in immunoreceptor signaling. Immunol Rev 2010; 232:273-85. [PMID: 19909370 DOI: 10.1111/j.1600-065x.2009.00844.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian Dok protein family has seven members (Dok-1-Dok-7). The Dok proteins share structural similarities characterized by the NH2-terminal pleckstrin homology and phosphotyrosine-binding domains followed by SH2 target motifs in the COOH-terminal moiety, indicating an adapter function. Indeed, Dok-1 was originally identified as a 62 kDa protein that binds with p120 rasGAP, a potent inhibitor of Ras, upon tyrosine phosphorylation by a variety of protein tyrosine kinases. Among the Dok family, only Dok-1, Dok-2, and Dok-3 are preferentially expressed in hematopoietic/immune cells. Dok-1 and its closest relative Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. By contrast, Dok-3 does not bind with p120 rasGAP. However, accumulating evidence has demonstrated that Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, where the interaction of Dok-3 with SHIP-1 and Grb2 appears to be important. Here, we review the physiological roles and underlying mechanisms of Dok family proteins.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
6
|
Isakov N. A new twist to adaptor proteins contributes to regulation of lymphocyte cell signaling. Trends Immunol 2008; 29:388-96. [PMID: 18599349 DOI: 10.1016/j.it.2008.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/10/2008] [Accepted: 04/23/2008] [Indexed: 01/23/2023]
Abstract
Cell growth and differentiation are highly controlled processes mediated by effector molecules, which are regulated by posttranslational chemical modifications. Adaptor molecules are critical players in these mechanisms because of their ability to simultaneously interact with multiple effector molecules and orchestrate the assembly of signaling complexes downstream of activated surface receptors. One family of adaptor molecules includes the CrkII/CrkL proteins that are also involved in the regulation of lymphocyte function. Although Crk proteins are amenable to regulation by protein tyrosine kinases, recent data suggest that peptidyl-prolyl cis-trans isomerases (PPIases) can alter their conformation and hence their ability to associate with binding partners. This emerging new function of PPIases is the subject of the current review.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
7
|
Abstract
The type I Fc epsilon receptor (Fc epsilon RI) is one of the better understood members of its class and is central to the immunological activation of mast cells and basophils, the key players in immunoglobulin E (IgE)-dependent immediate hypersensitivity. This review provides background information on several distinct regulatory mechanisms controlling this receptor's stimulus-response coupling network. First, we review the current understanding of this network's operation, and then we focus on the inhibitory regulatory mechanisms. In particular, we discuss the different known cytosolic molecules (e.g. kinases, phosphatases, and adapters) as well as cell membrane proteins involved in negatively regulating the Fc epsilon RI-induced secretory responses. Knowledge of this field is developing at a fast rate, as new proteins endowed with regulatory functions are still being discovered. Our understanding of the complex networks by which these proteins exert regulation is limited. Although the scope of this review does not include addressing several important biochemical and biophysical aspects of the regulatory mechanisms, it does provide general insights into a central field in immunology.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
8
|
Dong S, Corre B, Foulon E, Dufour E, Veillette A, Acuto O, Michel F. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. ACTA ACUST UNITED AC 2006; 203:2509-18. [PMID: 17043143 PMCID: PMC2118126 DOI: 10.1084/jem.20060650] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adaptor proteins positively or negatively regulate the T cell receptor for antigen (TCR) signaling cascade. We report that after TCR stimulation, the inhibitory adaptor downstream of kinase (Dok)-2 and its homologue Dok-1 are involved in a multimolecular complex including the lipid phosphatase Src homology 2 domain–containing inositol polyphosphate 5′-phosphatase (SHIP)-1 and Grb-2 which interacts with the membrane signaling scaffold linker for activation of T cells (LAT). Knockdown of LAT and SHIP-1 expression indicated that SHIP-1 favored recruitment of Dok-2 to LAT. Knockdown of Dok-2 and Dok-1 revealed their negative control on Akt and, unexpectedly, on Zap-70 activation. Our findings support the view that Dok-1 and -2 are critical elements of a LAT-dependent negative feedback loop that attenuates early TCR signal. Dok-1 and -2 may therefore exert a critical role in shaping the immune response and as gatekeepers for T cell tolerance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Cell Line, Tumor
- DNA-Binding Proteins/physiology
- Down-Regulation/immunology
- Feedback, Physiological/immunology
- GRB2 Adaptor Protein/physiology
- Humans
- Inositol Polyphosphate 5-Phosphatases
- Jurkat Cells
- Ligands
- Lymphocyte Activation
- Membrane Proteins/biosynthesis
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoproteins/physiology
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation
- RNA-Binding Proteins/physiology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Signal Transduction/immunology
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Shen Dong
- Molecular Immunology Unit, Department of Immunology, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Lamkin TJ, Chin V, Yen A. All-trans retinoic acid induces p62DOK1 and p56DOK2 expression which enhances induced differentiation and G0 arrest of HL-60 leukemia cells. Am J Hematol 2006; 81:603-15. [PMID: 16823827 DOI: 10.1002/ajh.20667] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
p62(DOK1) (DOK1) and p56(DOK2) (DOK2) are sequence homologs that act as docking proteins downstream of receptor or nonreceptor tyrosine kinases. Originally identified in chronic myelogenous leukemia cells as a highly phosphorylated substrate for the chimeric p210(bcr-abl) protein, DOK1 was suspected to play a role in leukemogenesis. However, p62(DOK1-/-) fibroblast knockout cells were found to have enhanced MAPK signaling and proliferation due to growth factors, suggesting negative regulatory capabilities for DOK1. The role of DOK1 and DOK2 in leukemogeneis thus is enigmatic. The data in this report show that both the DOK1 and the DOK2 adaptor proteins are constitutively expressed in the myelomonoblastic leukemia cell line, HL-60, and that expression of both proteins is induced by the chemotherapeutic differentiation causing agents, all-trans retinoic acid (atRA) and 1,25-dihydroxyvitamin D3 (VD3). Ectopic expression of either protein enhances atRA- or VD3-induced growth arrest, differentiation, and G(0)/G(1) cell cycle arrest and results in increased ERK1/2 phosphorylation. DOK1 and DOK2 are similarly effective in these capabilities. The data provide evidence that DOK1 and DOK2 proteins have a similar role in regulating cell proliferation and differentiation and are positive regulators of the MAPK signaling pathway in this context.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/drug effects
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Calcitriol/pharmacology
- Cell Cycle/drug effects
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Screening Assays, Antitumor
- Flow Cytometry/methods
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- HL-60 Cells
- Humans
- Leukemia, Myelomonocytic, Acute/drug therapy
- Leukemia, Myelomonocytic, Acute/metabolism
- MAP Kinase Signaling System/drug effects
- Mitogen-Activated Protein Kinase Kinases/drug effects
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Molecular Sequence Data
- Phenotype
- Phosphoproteins/drug effects
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA-Binding Proteins/drug effects
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Resting Phase, Cell Cycle/drug effects
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Time Factors
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Thomas J Lamkin
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
10
|
Niu Y, Roy F, Saltel F, Andrieu-Soler C, Dong W, Chantegrel AL, Accardi R, Thépot A, Foiselle N, Tommasino M, Jurdic P, Sylla BS. A nuclear export signal and phosphorylation regulate Dok1 subcellular localization and functions. Mol Cell Biol 2006; 26:4288-301. [PMID: 16705178 PMCID: PMC1489083 DOI: 10.1128/mcb.01817-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.
Collapse
Affiliation(s)
- Yamei Niu
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Boulay I, Némorin JG, Duplay P. Phosphotyrosine Binding-Mediated Oligomerization of Downstream of Tyrosine Kinase (Dok)-1 and Dok-2 Is Involved in CD2-Induced Dok Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2005; 175:4483-9. [PMID: 16177091 DOI: 10.4049/jimmunol.175.7.4483] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To date, five members of the downstream of tyrosine kinase (Dok) family have been characterized. In T cells, two members, Dok-1 and Dok-2, are expressed. CD2 or CD28 stimulation, but not CD3/TCR stimulation, induces Dok phosphorylation. Recent evidence suggests that they act as negative regulators of the CD2 and CD28 signaling pathways. To identify the molecular mechanisms involved in Dok-mediated inhibition, we have identified proteins that bind to the phosphotyrosine-binding (PTB) domain of Dok-1 and Dok-2. We showed that the Dok PTB domain mediates phosphotyrosine-dependent homotypic and heterotypic interactions of Dok-1 and Dok-2. Moreover, in CD2-stimulated Jurkat cells, Dok-1 coimmunoprecipitates with tyrosine-phosphorylated Dok-2. To study the involvement of PTB-mediated oligomerization in Dok function, we have generated Jurkat clones overexpressing Dok-1 or Dok-2 with a mutation that prevents oligomerization (in either the PTB domain or Tyr146 of Dok-1 and Tyr139 of Dok-2). These mutations abrogate CD2-induced phosphorylation and the ability of Dok-1 or Dok-2 to inhibit CD2-induced ERK1/2 and NFAT activation. Moreover, overexpression of Dok-1Y146F or Dok-2Y139F interferes with CD2-induced phosphorylation of endogenous Dok, whereas overexpression of PTB mutant or wild-type Dok does not. Taken together, these data indicate that PTB-mediated oligomerization of Dok-1 and Dok-2 represents an essential step for Dok phosphorylation and function.
Collapse
Affiliation(s)
- Iohann Boulay
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
12
|
Lee S, Andrieu C, Saltel F, Destaing O, Auclair J, Pouchkine V, Michelon J, Salaun B, Kobayashi R, Jurdic P, Kieff ED, Sylla BS. IkappaB kinase beta phosphorylates Dok1 serines in response to TNF, IL-1, or gamma radiation. Proc Natl Acad Sci U S A 2004; 101:17416-21. [PMID: 15574499 PMCID: PMC536032 DOI: 10.1073/pnas.0408061101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dok1 is an abundant Ras-GTPase-activating protein-associated tyrosine kinase substrate that negatively regulates cell growth and promotes migration. We now find that IkappaB kinase beta (IKKbeta) associated with and phosphorylated Dok1 in human epithelial cells and B lymphocytes. IKKbeta phosphorylation of Dok1 depended on Dok1 S(439), S(443), S(446), and S(450). Recombinant IKKbeta also phosphorylated Dok1 or Dok1 amino acids 430-481 in vitro. TNF-alpha, IL-1, gamma radiation, or IKKbeta overexpression phosphorylated Dok1 S(443), S(446), and S(450) in vivo, as detected with Dok1 phospho-S site-specific antisera. Moreover, Dok1 with S(439), S(443), S(446), and S(450) mutated to A was not phosphorylated by IKKbeta in vivo. Surprisingly, mutant Dok1 A(439), A(443), A(446), and A(450) differed from wild-type Dok1 in not inhibiting platelet-derived growth factor-induced extracellular signal-regulated kinase 1/2 phosphorylation or cell growth. Mutant Dok1 A(439), A(443), A(446), and A(450) also did not promote cell motility, whereas wild-type Dok1 promoted cell motility, and Dok1 E(439), E(443), E(446), and E(450) further enhanced cell motility. These data indicate that IKKbeta phosphorylates Dok1 S(439)S(443) and S(446)S(450) after TNF-alpha, IL-1, or gamma-radiation and implicate the critical Dok1 serines in Dok1 effects after tyrosine kinase activation.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sitko JC, Guevara CI, Cacalano NA. Tyrosine-phosphorylated SOCS3 Interacts with the Nck and Crk-L Adapter Proteins and Regulates Nck Activation. J Biol Chem 2004; 279:37662-9. [PMID: 15173187 DOI: 10.1074/jbc.m404007200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine and growth factor signal transduction. Although the affect of SOCS proteins on the Jak-STAT pathway has been well characterized, their role in the regulation of other signaling modules is not well understood. In the present study, we demonstrate that SOCS3 physically interacts with the SH2/SH3-containing adapter proteins Nck and Crk-L, which are known to couple activated receptors to multiple downstream signaling pathways and the actin cytoskeleton. Our data show that the SOCS3/Nck and SOCS3/Crk-L interactions depend on tyrosine phosphorylation of SOCS3 Tyr(221) within the conserved SOCS box motif and intact SH2 domains of Nck and Crk-L. Furthermore, SOCS3 Tyr(221) forms a YXXP motif, which is a consensus binding site for the Nck and Crk-L SH2 domains. Expression of SOCS3 in NIH3T3 cells induces constitutive recruitment of a Nck-GFP fusion protein to the plasma membrane and constitutive tyrosine phosphorylation of endogenous Nck. Our findings suggest that SOCS3 regulates multiple cytokine and growth factor-activated signaling pathways by acting as a recruitment factor for adapter proteins.
Collapse
Affiliation(s)
- John C Sitko
- Department of Radiation Oncology, University of California Los Angeles, School of Medicine, Center for Health Sciences, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
14
|
Lee S, Roy F, Galmarini CM, Accardi R, Michelon J, Viller A, Cros E, Dumontet C, Sylla BS. Frameshift mutation in the Dok1 gene in chronic lymphocytic leukemia. Oncogene 2004; 23:2287-97. [PMID: 14730347 DOI: 10.1038/sj.onc.1207385] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a malignant disease characterized by an accumulation of monoclonal CD5+ mature B cells, with a high percentage of cells arrested in the G0/G1 phase of the cell cycle, and a particular resistance toward apoptosis-inducing agents. Dok1 (downstream of tyrosine kinases) is an abundant Ras-GTPase-activating protein (Ras-GAP)-associated tyrosine kinase substrate, which negatively regulates cell proliferation, downregulates MAP kinase activation and promotes cell migration. The gene encoding Dok1 maps to human chromosome 2p13, a region previously found to be rearranged in B-CLL. We have screened the Dok1 gene for mutations from 46 individuals with B-CLL using heteroduplex analysis. A four-nucleotide GGCC deletion in the coding region was found in the leukemia cells from one patient. This mutation causes a frameshift leading to protein truncation at the carboxyl-terminus, with the acquisition of a novel amino-acid sequence. In contrast to the wild-type Dok1 protein, which has cytoplasmic/membrane localization, the mutant Dok1 is a nuclear protein containing a functional bipartite nuclear localization signal. Whereas overexpression of wild-type Dok1 inhibited PDGF-induced MAP kinase activation, this inhibition was not observed with the mutant Dok1. Furthermore the mutant Dok1 forms heterodimers with Dok1 wild type and the association can be enhanced by Lck-mediated tyrosine-phosphorylation. This is the first example of a Dok1 mutation in B-CLL and the data suggest that Dok1 might play a role in leukemogenesis.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert-Thomas, Lyon 69008, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S, Flanegan J, Heilman S, Garrett L, Dutra A, Anderson S, Pihan GA, Wolff L, Liu PP. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci U S A 2004; 101:4924-9. [PMID: 15044690 PMCID: PMC387350 DOI: 10.1073/pnas.0400930101] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia subtype M4 with eosinophilia is associated with a chromosome 16 inversion that creates a fusion gene CBFB-MYH11. We have previously shown that CBFB-MYH11 is necessary but not sufficient for leukemogenesis. Here, we report the identification of genes that specifically cooperate with CBFB-MYH11 in leukemogenesis. Neonatal injection of Cbfb-MYH11 knock-in chimeric mice with retrovirus 4070A led to the development of acute myeloid leukemia in 2-5 months. Each leukemia sample contained one or a few viral insertions, suggesting that alteration of one gene could be sufficient to synergize with Cbfb-MYH11. The chromosomal position of 67 independent retroviral insertion sites (RISs) was determined, and 90% of the RISs mapped within 10 kb of a flanking gene. In total, 54 candidate genes were identified; six of them were common insertion sites (CISs). CIS genes included members of a zinc finger transcription factors family, Plag1 and Plagl2, with eight and two independent insertions, respectively. CIS genes also included Runx2, Myb, H2T24, and D6Mm5e. Comparison of the remaining 48 genes with single insertion sites with known leukemia-associated RISs indicated that 18 coincide with known RISs. To our knowledge, this retroviral genetic screen is the first to identify genes that cooperate with a fusion gene important for human myeloid leukemia.
Collapse
Affiliation(s)
- L H Castilla
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ito T, Okazawa H, Maruyama K, Tomizawa K, Motegi SI, Ohnishi H, Kuwano H, Kosugi A, Matozaki T. Interaction of SAP-1, a transmembrane-type protein-tyrosine phosphatase, with the tyrosine kinase Lck. Roles in regulation of T cell function. J Biol Chem 2003; 278:34854-63. [PMID: 12837766 DOI: 10.1074/jbc.m300648200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SAP-1 is a transmembrane-type protein-tyrosine phosphatase that is expressed in most tissues but whose physiological functions remain unknown. The cytoplasmic region of SAP-1 has now been shown to bind directly the tyrosine kinase Lck. Overexpression of wild-type SAP-1, but not that of a catalytically inactive mutant of SAP-1, inhibited both the basal and the T cell antigen receptor (TCR)-stimulated activity of Lck in human Jurkat T cell lines. Lck served as a direct substrate for dephosphorylation by SAP-1 in vitro. Overexpression of wild-type SAP-1 in Jurkat cells also: (i) inhibited both the activation of mitogen-activated protein kinase and the increase in cell surface expression of CD69 induced by TCR stimulation; (ii) reduced the extent of the TCR-induced increase in the tyrosine phosphorylation of ZAP-70 or that of LAT; (iii) reduced both the basal level of tyrosine phosphorylation of p62dok, as well as the increase in the phosphorylation of this protein induced by CD2 stimulation; and (iv) inhibited cell migration. These results thus suggest that the direct interaction of SAP-1 with Lck results in inhibition of the kinase activity of the latter and a consequent negative regulation of T cell function.
Collapse
Affiliation(s)
- Tomokazu Ito
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shah K, Shokat KM. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. CHEMISTRY & BIOLOGY 2002; 9:35-47. [PMID: 11841937 DOI: 10.1016/s1074-5521(02)00086-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using an ATP analog that is a specific substrate for an analog-specific allele of v-Src, we identified several novel cytoskeletal substrates that control actin assembly processes. A screen for less abundant v-Src substrates revealed the scaffolding protein Dok-1 as a direct substrate of v-Src. Further studies suggest that v-Src phosphorylation sites on Dok-1 are critical for its binding to RasGAP and Csk, negative regulators of Src signaling. This results in the downregulation of growth-promoting signals of the Src family kinases and the Ras pathway. Identification of the direct substrates of v-Src leads to a model for the precise order of assembly of a retrograde signaling pathway in v-Src-transformed cells and has provided new insight into the balance between those signals that promote cell transformation mediated by v-Src catalyzed tyrosine phosphorylation and those that inhibit it.
Collapse
Affiliation(s)
- Kavita Shah
- Genomics Institute of the Novartis Research Foundation, 3115 Merryfield Row, San Diego, CA 92121, USA
| | | |
Collapse
|