1
|
Srivastav MK, Folco HD, Nathanailidou P, Anil AT, Vijayakumari D, Jain S, Dhakshnamoorthy J, O'Neill M, Andresson T, Wheeler D, Grewal SIS. PhpC NF-Y transcription factor infiltrates heterochromatin to generate cryptic intron-containing transcripts crucial for small RNA production. Nat Commun 2025; 16:268. [PMID: 39747188 PMCID: PMC11696164 DOI: 10.1038/s41467-024-55736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
The assembly of repressive heterochromatin in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA-based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeats are transcribed has been unclear. Using fission yeast, we show that the conserved trimeric transcription factor (TF) PhpCNF-Y complex can infiltrate constitutive heterochromatin via its histone-fold domains to transcribe repeat elements. PhpCNF-Y collaborates with a Zn-finger containing TF to bind repeat promoter regions with CCAAT boxes. Mutating either the TFs or the CCAAT binding site disrupts the transcription of heterochromatic repeats. Although repeat elements are transcribed from both strands, PhpCNF-Y-dependent transcripts originate from only one strand. These TF-driven transcripts contain multiple cryptic introns which are required for the generation of small interfering RNAs (siRNAs) via a mechanism involving the spliceosome and RNAi machinery. Our analyses show that siRNA production by this TF-mediated transcription pathway is critical for heterochromatin nucleation at target repeat loci. This study reveals a mechanism by which heterochromatic repeats are transcribed, initiating their own silencing by triggering a primary cascade that produces siRNAs necessary for heterochromatin nucleation.
Collapse
Affiliation(s)
- Manjit Kumar Srivastav
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patroula Nathanailidou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupa T Anil
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Drisya Vijayakumari
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shweta Jain
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maura O'Neill
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Kobayashi W, Tachibana K. Awakening of the zygotic genome by pioneer transcription factors. Curr Opin Struct Biol 2021; 71:94-100. [PMID: 34256217 DOI: 10.1016/j.sbi.2021.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 10/20/2022]
Abstract
After fertilization, the genome of the totipotent embryo is transcriptionally inactive and then initiates bursts of transcription termed zygotic genome activation (ZGA). Despite the fundamental importance of initiating an embryonic transcription program for the start of life, the essential regulators and molecular mechanisms triggering ZGA in most organisms are poorly understood. One mechanism centers on pioneer factors that function in cellular reprogramming and differentiation. Recent studies revealed that not only a single but multiple pioneer factors bind cooperatively to the genome to open chromatin, resulting in changes in epigenetic modifications and triggering ZGA. Here, we review recent insights into the functions of pioneer factors during ZGA and discuss the potential relevance to three-dimensional chromatin organization during embryonic development.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
3
|
Liu N, Xu S, Yao Q, Zhu Q, Kai Y, Hsu JY, Sakon P, Pinello L, Yuan GC, Bauer DE, Orkin SH. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat Genet 2021; 53:511-520. [PMID: 33649594 PMCID: PMC8038971 DOI: 10.1038/s41588-021-00798-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
BCL11A, the major regulator of fetal hemoglobin (HbF, α2γ2) level, represses γ-globin expression through direct promoter binding in adult erythroid cells in a switch to adult hemoglobin (HbA, α2β2). To uncover how BCL11A initiates repression, we used CRISPR-Cas9, dCas9, dCas9-KRAB and dCas9-VP64 screens to dissect the γ-globin promoters and identified an activator element near the BCL11A-binding site. Using CUT&RUN and base editing, we demonstrate that a proximal CCAAT box is occupied by the activator NF-Y. BCL11A competes with NF-Y binding through steric hindrance to initiate repression. Occupancy of NF-Y is rapidly established following BCL11A depletion, and precedes γ-globin derepression and locus control region (LCR)-globin loop formation. Our findings reveal that the switch from fetal to adult globin gene expression within the >50-kb β-globin gene cluster is initiated by competition between a stage-selective repressor and a ubiquitous activating factor within a remarkably discrete region of the γ-globin promoters.
Collapse
Affiliation(s)
- Nan Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuqian Xu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiuming Yao
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yan Kai
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan Y Hsu
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phraew Sakon
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Genetics and Genomic Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel E Bauer
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
4
|
Abstract
Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
Collapse
|
5
|
Oldfield AJ, Henriques T, Kumar D, Burkholder AB, Cinghu S, Paulet D, Bennett BD, Yang P, Scruggs BS, Lavender CA, Rivals E, Adelman K, Jothi R. NF-Y controls fidelity of transcription initiation at gene promoters through maintenance of the nucleosome-depleted region. Nat Commun 2019; 10:3072. [PMID: 31296853 PMCID: PMC6624317 DOI: 10.1038/s41467-019-10905-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
Faithful transcription initiation is critical for accurate gene expression, yet the mechanisms underlying specific transcription start site (TSS) selection in mammals remain unclear. Here, we show that the histone-fold domain protein NF-Y, a ubiquitously expressed transcription factor, controls the fidelity of transcription initiation at gene promoters in mouse embryonic stem cells. We report that NF-Y maintains the region upstream of TSSs in a nucleosome-depleted state while simultaneously protecting this accessible region against aberrant and/or ectopic transcription initiation. We find that loss of NF-Y binding in mammalian cells disrupts the promoter chromatin landscape, leading to nucleosomal encroachment over the canonical TSS. Importantly, this chromatin rearrangement is accompanied by upstream relocation of the transcription pre-initiation complex and ectopic transcription initiation. Further, this phenomenon generates aberrant extended transcripts that undergo translation, disrupting gene expression profiles. These results suggest NF-Y is a central player in TSS selection in metazoans and highlight the deleterious consequences of inaccurate transcription initiation. The mechanisms underlying specific TSS selection in mammals remain unclear. Here the authors show that the ubiquitously expressed transcription factor NF-Y regulate fidelity of transcription initiation at gene promoters, maintaining the region upstream of TSSs in a nucleosome-depleted state, while protecting this region from ectopic transcription initiation.
Collapse
Affiliation(s)
- Andrew J Oldfield
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA. .,Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, 34396, France.
| | - Telmo Henriques
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Dhirendra Kumar
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Senthilkumar Cinghu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Damien Paulet
- Department of Computer Science, LIRMM, CNRS et Université de Montpellier, Montpellier, 34095, France.,Institut de Biologie Computationnelle (IBC), Université de Montpellier, Montpellier, 34095, France
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Pengyi Yang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Charles Perkins Centre and School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin S Scruggs
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Eric Rivals
- Department of Computer Science, LIRMM, CNRS et Université de Montpellier, Montpellier, 34095, France.,Institut de Biologie Computationnelle (IBC), Université de Montpellier, Montpellier, 34095, France
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Raja Jothi
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
6
|
Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors. Mol Cell 2014; 55:708-22. [PMID: 25132174 DOI: 10.1016/j.molcel.2014.07.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
Cell type-specific master transcription factors (TFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that the ubiquitous CCAAT-binding NF-Y complex is required for the maintenance of embryonic stem cell (ESC) identity and is an essential component of the core pluripotency network. Genome-wide studies in ESCs and neurons reveal that NF-Y regulates not only genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with master TFs. Mechanistically, NF-Y's distinct DNA-binding mode promotes master/pioneer TF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a conceptually unique function for histone-fold domain (HFD) protein NF-Y in promoting chromatin accessibility and suggest that other HFD proteins with analogous structural and DNA-binding properties may function in similar ways.
Collapse
|
7
|
Dolfini D, Mantovani R. Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y? Cell Death Differ 2013; 20:676-85. [PMID: 23449390 PMCID: PMC3619239 DOI: 10.1038/cdd.2013.13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 01/14/2023] Open
Abstract
The Y box is an important sequence motif found in promoters and enhancers containing a CCAAT box - one of the few elements enriched in promoters of large sets of genes overexpressed in cancer. The search for the transcription factor(s) acting on it led to the biochemical purification of the nuclear factor Y (NF-Y) heterotrimer, and to the cloning - through the screening of expression libraries - of Y box-binding protein 1 (YB-1), an oncogene, overexpressed in aggressive tumors and associated with drug resistance. These two factors have been associated with Y/CCAAT-dependent activation of numerous growth-related genes, notably multidrug resistance protein 1. We review two decades of data indicating that NF-Y ultimately acts on Y/CCAAT in cancer cells, a notion recently confirmed by genome-wide data. Other features of YB-1, such as post-transcriptional control of mRNA biology, render it important in cancer biology.
Collapse
Affiliation(s)
- D Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
8
|
Huber E, Scharf D, Hortschansky P, Groll M, Brakhage A. DNA Minor Groove Sensing and Widening by the CCAAT-Binding Complex. Structure 2012; 20:1757-68. [DOI: 10.1016/j.str.2012.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
|
9
|
Treatment with the PARP-inhibitor PJ34 causes enhanced doxorubicin-mediated cell death in HeLa cells. Anticancer Drugs 2012; 23:627-37. [PMID: 22293659 DOI: 10.1097/cad.0b013e328350900f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adjuvant therapies can incorporate a number of different drugs to minimize the cardiotoxicity of cancer chemotherapy, decrease the development of drug resistance and increase the overall efficacy of the treatment regime. Topoisomerase IIα is a major target of many commonly used anticancer drugs, where cell death is brought about by an accumulation of double-strand DNA breaks. Poly (ADP-ribose) polymerase (PARP)-1 has been extensively studied for its role in the repair of double-strand DNA breaks, but its ability to add highly negative biopolymers (ribosylation) to target proteins provides a vast number of pathways where it can also be important in mediating cell death. In this study, we combine the classical topoisomerase IIα poison doxorubicin with the PARP inhibitor PJ34 to investigate the potentiation of chemotherapeutic efficiency in HeLa cells. We demonstrate that PJ34 treatment has the capacity to increase endogenous topoisomerase IIα protein by about 20%, and by combining doxorubicin treatment with PJ34, we observed a 50% improvement in doxorubicin-mediated cell death in HeLa cells. These results were correlated with the ribosylation of transcription factor specificity factor 1 after doxorubicin treatment, thereby altering its affinity for binding to known regulatory elements within the human topoisomerase IIα promoter. Taken together, these results highlight the synergistic potential of combining PARP inhibitors with classical topoisomerase IIα-targeting drugs.
Collapse
|
10
|
Cha-Molstad H, Xu G, Chen J, Jing G, Young ME, Chatham JC, Shalev A. Calcium channel blockers act through nuclear factor Y to control transcription of key cardiac genes. Mol Pharmacol 2012; 82:541-9. [PMID: 22734068 PMCID: PMC3422702 DOI: 10.1124/mol.112.078253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022] Open
Abstract
First-generation calcium channel blockers such as verapamil are a widely used class of antihypertensive drugs that block L-type calcium channels. We recently discovered that they also reduce cardiac expression of proapoptotic thioredoxin-interacting protein (TXNIP), suggesting that they may have unappreciated transcriptional effects. By use of TXNIP promoter deletion and mutation studies, we found that a CCAAT element was mediating verapamil-induced transcriptional repression and identified nuclear factor Y (NFY) to be the responsible transcription factor as assessed by overexpression/knockdown and luciferase and chromatin immunoprecipitation assays in cardiomyocytes and in vivo in diabetic mice receiving oral verapamil. We further discovered that increased NFY-DNA binding was associated with histone H4 deacetylation and transcriptional repression and mediated by inhibition of calcineurin signaling. It is noteworthy that the transcriptional control conferred by this newly identified verapamil-calcineurin-NFY signaling cascade was not limited to TXNIP, suggesting that it may modulate the expression of other NFY targets. Thus, verapamil induces a calcineurin-NFY signaling pathway that controls cardiac gene transcription and apoptosis and thereby may affect cardiac biology in previously unrecognized ways.
Collapse
Affiliation(s)
- Hyunjoo Cha-Molstad
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
The NF-Y/p53 liaison: well beyond repression. Biochim Biophys Acta Rev Cancer 2011; 1825:131-9. [PMID: 22138487 DOI: 10.1016/j.bbcan.2011.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/09/2011] [Accepted: 11/12/2011] [Indexed: 12/15/2022]
Abstract
NF-Y is a sequence-specific transcription factor - TF - targeting the common CCAAT promoter element. p53 is a master TF controlling the response to stress signals endangering genome integrity, often mutated in human cancers. The NF-Y/p53 - and p63, p73 - interaction results in transcriptional repression of a subset of genes within the vast NF-Y regulome under DNA-damage conditions. Recent data shows that NF-Y is also involved in pro-apoptotic activities, either directly, by mediating p53 transcriptional activation, or indirectly, by being targeted by a non coding RNA, PANDA. The picture is subverted in cells carrying Gain-of-function mutant p53, through interactions with TopBP1, a protein also involved in DNA repair and replication. In summary, the connection between p53 and NF-Y is crucial in determining cell survival or death.
Collapse
|
12
|
Coustry F, Oh CD, Hattori T, Maity SN, de Crombrugghe B, Yasuda H. The dimerization domain of SOX9 is required for transcription activation of a chondrocyte-specific chromatin DNA template. Nucleic Acids Res 2010; 38:6018-28. [PMID: 20484372 PMCID: PMC2952863 DOI: 10.1093/nar/gkq417] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in SOX9, a gene essential for chondrocyte differentiation cause the human disease campomelic dysplasia (CD). To understand how SOX9 activates transcription, we characterized the DNA binding and cell-free transcription ability of wild-type SOX9 and a dimerization domain SOX9 mutant. Whereas formation of monomeric mutant SOX9-DNA complex increased linearly with increasing SOX9 concentrations, formation of a wild-type SOX9-DNA dimeric complex increased more slowly suggesting a more sigmoidal-type progression. Stability of SOX9-DNA complexes, however, was unaffected by the dimerization mutation. Both wild-type and mutant SOX9 activated transcription of a naked Col2a1 DNA template. However, after nucleosomal assembly, only wild-type and not the mutant was able to remodel chromatin and activate transcription of this template. Using a cell line, in which the Col2a1 vector was stably integrated, no differences were seen in the interactions of wild-type and mutant SOX9 with the chromatin of the Col2a1 vector using ChIP. However, the mutant was unable to activate transcription in agreement with in vitro results. We hypothesize that the SOX9 dimerization domain is necessary to remodel the Col2a1 chromatin in order to allow transcription to take place. These results further clarify the mechanism that accounts for CD in patients harboring SOX9 dimerization domain mutations.
Collapse
Affiliation(s)
- Françoise Coustry
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
13
|
Siefers N, Dang KK, Kumimoto RW, Bynum WE, Tayrose G, Holt BF. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. PLANT PHYSIOLOGY 2009; 149:625-41. [PMID: 19019982 PMCID: PMC2633833 DOI: 10.1104/pp.108.130591] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/12/2008] [Indexed: 05/18/2023]
Abstract
All aspects of plant and animal development are controlled by complex networks of transcription factors. Transcription factors are essential for converting signaling inputs, such as changes in daylength, into complex gene regulatory outputs. While some transcription factors control gene expression by binding to cis-regulatory elements as individual subunits, others function in a combinatorial fashion. How individual subunits of combinatorial transcription factors are spatially and temporally deployed (e.g. expression-level, posttranslational modifications and subcellular localization) has profound effects on their control of gene expression. In the model plant Arabidopsis (Arabidopsis thaliana), we have identified 36 Nuclear Factor Y (NF-Y) transcription factor subunits (10 NF-YA, 13 NF-YB, and 13 NF-YC subunits) that can theoretically combine to form 1,690 unique complexes. Individual plant subunits have functions in flowering time, embryo maturation, and meristem development, but how they combine to control these processes is unknown. To assist in the process of defining unique NF-Y complexes, we have created promoter:beta-glucuronidase fusion lines for all 36 Arabidopsis genes. Here, we show NF-Y expression patterns inferred from these promoter:beta-glucuronidase lines for roots, light- versus dark-grown seedlings, rosettes, and flowers. Additionally, we review the phylogenetic relationships and examine protein alignments for each NF-Y subunit family. The results are discussed with a special emphasis on potential roles for NF-Y subunits in photoperiod-controlled flowering time.
Collapse
Affiliation(s)
- Nicholas Siefers
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
14
|
Xu Y, Farmer SR, Smith BD. Peroxisome proliferator-activated receptor gamma interacts with CIITA x RFX5 complex to repress type I collagen gene expression. J Biol Chem 2007; 282:26046-56. [PMID: 17611194 DOI: 10.1074/jbc.m703652200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent reports demonstrate that peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear receptor superfamily, acts as a repressor of type I collagen synthesis. Our data demonstrate that exogenously expressed PPARgamma down-regulates collagen expression in a dose-responsive manner in human lung fibroblast cells. Silencing PPARgamma using lentiviruses expressing short hairpin RNAs partially reverses interferon-gamma (IFN-gamma)-induced repression and activates collagen mRNA levels. Previous studies indicate that IFN-gamma represses collagen gene expression and induces major histocompatibility complex II (MHC II) expression by activating the formation of a regulatory factor for X-box 5 (RFX5) complex with class II transactivator (CIITA). This report demonstrates that PPARgamma is within the RFX5.CIITA complex as judged by co-immunoprecipitation and DNA affinity precipitation studies. Most importantly, occupancy of PPARgamma on the collagen transcription start site and MHC II promoter increases with IFN-gamma treatment. The PPARgamma agonist, troglitazone, sensitizes the cells to IFN-gamma treatment by increasing recruitment of PPARgamma to collagen gene while repressing collagen expression, and these effects are blocked by the PPARgamma antagonist T0070907. PPARgamma may mediate IFN-gamma-stimulated collagen transcription down-regulation and MHC II up-regulation by interacting with CIITA as well as regulating CIITA expression. Therefore, PPARgamma is a critical target for investigations into therapeutics of diseases involving extracellular matrix remodeling and the immune response.
Collapse
Affiliation(s)
- Yong Xu
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
15
|
Abstract
The nuclear factor-Y (NF-Y), a trimeric, CCAAT-binding transcriptional activator with histone-like subunits, was until recently considered a prototypical promoter transcription factor. However, recent in vivo chromatin immunoprecipitation assays associated with microarray methodologies (chromatin immunoprecipitation on chip experiments) have indicated that a large portion of target sites (40%-50%) are located outside of core promoters. We applied the tethered particle motion technique to the major histocompatibility complex class II enhancer-promoter region to characterize i), the progressive compaction of DNA due to increasing concentrations of NF-Y, ii), the role of specific subunits and domains of NF-Y in the process, and iii), the interplay between NF-Y and the regulatory factor-X, which cooperatively binds to the X-box adjacent to the CCAAT box. Our study shows that NF-Y has histone-like activity, since it binds DNA nonspecifically with high affinity to compact it. This activity, which depends on the presence of all trimer subunits and of their glutamine-rich domains, seems to be attenuated by the transcriptional cofactor regulatory factor-X. Most importantly NF-Y-induced DNA compaction may facilitate promoter-enhancer interactions, which are known to be critical for expression regulation.
Collapse
|
16
|
Hu Q, Lu JF, Luo R, Sen S, Maity SN. Inhibition of CBF/NF-Y mediated transcription activation arrests cells at G2/M phase and suppresses expression of genes activated at G2/M phase of the cell cycle. Nucleic Acids Res 2006; 34:6272-85. [PMID: 17098936 PMCID: PMC1693888 DOI: 10.1093/nar/gkl801] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies showed that binding of the CBF/NF-Y (CBF) transcription factor to cellular promoters is essential for cell proliferation. This observation prompted us to investigate the function of CBF in relation to cell cycle progression and in cell-cycle-regulated transcription. In this study, we used a tetracycline-inducible adenoviral vector to express a truncated CBF-B subunit, Bdbd, lacking a transcription activation domain in various mammalian cell lines. The Bdbd polypeptide interacts with cellular CBF-A/CBF-C and binds to promoters containing CBF-binding sites. Interestingly, expression of Bdbd in various mammalian cells resulted in the inhibition of cell proliferation and specific cell cycle arrest at G2/M phase. Gene expression analysis demonstrated that the expression of Bdbd strongly suppressed cell cycle-dependent transcription activation of Cyclin B1, Aurora A and CDK1 genes, key regulators for cell cycle progression at G2/M phase. Chromatin immunoprecipitation analysis showed that Bdbd significantly inhibited binding of TATA-binding protein, TBP to both Cyclin B1 and Aurora A promoters, but did not inhibit binding of E2F3 activator to Cyclin B1 promoter. This study suggested that the activation domain of CBF-B plays an essential role in the transcription activation of Cyclin B1 and Aurora A genes at G2/M phase, thus regulating cell cycle progression at G2/M phase.
Collapse
Affiliation(s)
- Qianghua Hu
- Department of Molecular GeneticsHouston, TX 77030, USA
| | - Jing-Fang Lu
- Department of Molecular GeneticsHouston, TX 77030, USA
| | - Rong Luo
- Department of Molecular GeneticsHouston, TX 77030, USA
| | - Subrata Sen
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer centerHouston, TX 77030, USA
| | - Sankar N. Maity
- Department of Molecular GeneticsHouston, TX 77030, USA
- Genes and Development program, The University of Texas, Graduate School of Biomedical SciencesHouston, TX 77030, USA
- To whom correspondence should be addressed. Tel: +1 713 834 6369; Fax: +1 713 834 6318;
| |
Collapse
|
17
|
Gorshkova EV, Kaledin VI, Kobzev VF, Merkulova TI. Codon 12 region of mouse K-ras gene is the site for in vitro binding of transcription factors GATA-6 and NF-Y. BIOCHEMISTRY (MOSCOW) 2006; 70:1180-4. [PMID: 16271038 DOI: 10.1007/s10541-005-0244-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Codon 12 of the K-ras gene is a generally recognized example of a mutational hot spot. By the approach of gel retardation and specific antibodies, a double-stranded oligonucleotide corresponding to the codon 12 region of the mouse K-ras gene (from 20 to 50 bp with respect to the exon 1 start) was found to be a site for cooperative binding of the transcription factors GATA-6 and NF-Y. GATA-6 and NF-Y were selectively activated with lung carcinogens 3-methylcholanthrene and nitrosoethylurea in mice of strains susceptible to lung tumorigenesis but not in animals of resistant strains. The interaction of GATA-6 and NF-Y with the codon 12 region of the K-ras gene is suggested to be involved in the mechanism of lung carcinogenesis.
Collapse
Affiliation(s)
- E V Gorshkova
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
18
|
Testa A, Donati G, Yan P, Romani F, Huang THM, Viganò MA, Mantovani R. Chromatin immunoprecipitation (ChIP) on chip experiments uncover a widespread distribution of NF-Y binding CCAAT sites outside of core promoters. J Biol Chem 2005; 280:13606-15. [PMID: 15647281 DOI: 10.1074/jbc.m414039200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT box is a prototypical promoter element, almost invariably found between -60 and -100 upstream of the major transcription start site. It is bound and activated by the histone fold trimer NF-Y. We performed chromatin immunoprecipitation (ChIP) on chip experiments on two different CpG islands arrays using chromatin from hepatic HepG2 and pre-B cell leukemia NALM-6 cell lines, with different protocols of probe preparation and labeling. We analyzed and classified 239 known or predicted targets; we validated several by conventional ChIPs with anti-YB and anti-YC antibodies, in vitro EMSAs, and ChIP scanning. The importance of NF-Y binding for gene expression was verified by the use of a dominant negative NF-YA mutant. All but four genes are new NF-Y targets, falling into different functional categories. This analysis reinforces the notion that NF-Y is an important regulator of cell growth, and novel unexpected findings emerged from this unbiased approach. (i) A remarkable proportion of NF-Y targets, 40%, are complex transcriptional units composed of divergent, convergent, and tandem promoters. (ii) 40-50% of NF-Y sites are not in core promoters but are in introns or at distant 3' or 5' locations. The abundance of "unorthodox" CCAAT positions highlights an unexpected complexity of the NF-Y-mediated transcriptional network.
Collapse
Affiliation(s)
- Anna Testa
- Dipartimento di Biologia Animale, Università di Modena e Reggio, Via Campi 213/d, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Tanaka S, Antoniv TT, Liu K, Wang L, Wells DJ, Ramirez F, Bou-Gharios G. Cooperativity between far upstream enhancer and proximal promoter elements of the human {alpha}2(I) collagen (COL1A2) gene instructs tissue specificity in transgenic mice. J Biol Chem 2004; 279:56024-31. [PMID: 15516691 DOI: 10.1074/jbc.m411406200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Interaction between the proximal (-378) promoter and the far upstream (-20 kb) enhancer is essential for tissue-specific expression of the human alpha2(I) collagen gene (COL1A2) in transgenic mice. Previous in vitro studies have shown that three Sp1 binding sites (around -300) are part of a cytokine-responsive element and that two TC-rich boxes (around -160 and -125) and a CBF/NFY consensus sequence (around -80) confer optimal promoter activity by interacting among themselves and with the upstream Sp1 sites. Here we report that mutations of the Sp1 binding sites, TC-rich boxes or CBF/NFY consensus sequence lead to reduced transgene activity, thus underscoring the functional interdependence of the proximal promoter elements. Loss of the Sp1 binding sites was associated with loss of transgene expression in osteoblasts, whereas elimination of the CBF/NFY binding site (alone or in combination with the TC-rich boxes) was correlated with a lack of activity in the ventral fascia and head dermis and musculature. Additionally, transgene expression in skin fascia fibroblasts depended on the integrity of the Sp1 binding sites and TC-rich boxes, and on their physical configuration. Evidence is also presented suggesting cooperativity between cis-acting elements of the far upstream enhancer and proximal promoter in assembling tissue-specific protein complexes. This study thus reiterates the complex and highly combinatorial nature of the regulatory network governing COL1A2 transcription in vivo.
Collapse
Affiliation(s)
- Shizuko Tanaka
- Laboratory of Genetics and Organogenesis, Research Division of the Hospital for Special Surgery, Weill Medical College of Cornell University, 535 East 70th Street, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Steidl S, Tüncher A, Goda H, Guder C, Papadopoulou N, Kobayashi T, Tsukagoshi N, Kato M, Brakhage AA. A Single Subunit of a Heterotrimeric CCAAT-binding Complex Carries a Nuclear Localization Signal: Piggy Back Transport of the Pre-assembled Complex to the Nucleus. J Mol Biol 2004; 342:515-24. [PMID: 15327951 DOI: 10.1016/j.jmb.2004.07.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/07/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
An unresolved question concerns the nuclear localization of the heterotrimeric CCAAT-binding complex, which is evolutionarily conserved in eukaryotic organisms including fungi, plants and mammals. All three subunits are necessary for DNA binding. In the filamentous fungus Aspergillus nidulans the corresponding complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF consists of the HapB, HapC and HapE subunits. Here, by using various green fluorescent protein constructs, a nuclear localization signal sequence (NLS) of the HapB protein was identified, outside of the evolutionarily conserved domain. HapB-EGFP was transported into the nucleus in both DeltahapC and DeltahapE strains, indicating that its NLS interacts with the import machinery independently of the other Hap subunits. In contrast, HapC-EGFP did not enter the nucleus in the absence of HapE or HapB. A similar finding was made for HapE-EGFP, which did not localize to the nucleus in the absence of HapC or HapB. Addition of the HapB-NLS to either HapC or HapE led to nuclear localization of the respective protein fusions, indicating that both HapC and HapE lack a functional NLS. Furthermore, these data strongly suggest that HapC and HapE have first to form a heterodimer and can be transported only as a heterodimer via the HapB protein into the nucleus. Therefore, the HapB subunit is the primary cargo for the import machinery, while HapC and HapE are transported to the nucleus only as a heterodimer and in complex with HapB via a piggy back mechanism. This enables the cell to provide equimolar concentrations of all subunits to the nucleus.
Collapse
Affiliation(s)
- Stefan Steidl
- Institut für Mikrobiologie, Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chattopadhyay C, Hawke D, Kobayashi R, Maity SN. Human p32, interacts with B subunit of the CCAAT-binding factor, CBF/NF-Y, and inhibits CBF-mediated transcription activation in vitro. Nucleic Acids Res 2004; 32:3632-41. [PMID: 15243141 PMCID: PMC484179 DOI: 10.1093/nar/gkh692] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To understand the role of the CCAAT-binding factor, CBF, in transcription, we developed a strategy to purify the heterotrimeric CBF complex from HeLa cell extracts using two successive immunoaffinity chromatography steps. Here we show that the p32 protein, previously identified as the ASF/SF2 splicing factor-associated protein, copurified with the CBF complex. Studies of protein-protein interaction demonstrated that p32 interacts specifically with CBF-B subunit and also associates with CBF-DNA complex. Cellular localization by immunofluorescence staining revealed that p32 is present in the cell throughout the cytosol and nucleus, whereas CBF is present primarily in the nucleus. A portion of the p32 colocalizes with CBF-B in the nucleus. Interestingly, reconstitution of p32 in an in vitro transcription reaction demonstrated that p32 specifically inhibits CBF-mediated transcription activation. Altogether, our study identified p32 as a novel and specific corepressor of CBF-mediated transcription activation in vitro.
Collapse
Affiliation(s)
- Chandrani Chattopadhyay
- Department of Molecular Genetics, M.D. Anderson Cancer Center and Genes, Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
22
|
Salsi V, Caretti G, Wasner M, Reinhard W, Haugwitz U, Engeland K, Mantovani R. Interactions between p300 and multiple NF-Y trimers govern cyclin B2 promoter function. J Biol Chem 2003; 278:6642-50. [PMID: 12482752 DOI: 10.1074/jbc.m210065200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT box is one of the most common elements in eukaryotic promoters and is activated by NF-Y, a conserved trimeric transcription factor with histone-like subunits. Usually one CCAAT element is present in promoters at positions between -60 and -100, but an emerging class of promoters harbor multiple NF-Y sites. In the triple CCAAT-containing cyclin B2 cell-cycle promoter, all CCAAT boxes, independently from their NF-Y affinities, are important for function. We investigated the relationships between NF-Y and p300. Chromatin immunoprecipitation analysis found that NF-Y and p300 are bound to the cyclin B2 promoter in vivo and that their binding is regulated during the cell cycle, positively correlating with promoter function. Cotransfection experiments determined that the coactivator acts on all CCAAT boxes and requires a precise spacing between the three elements. We established the order of in vitro binding of the three NF-Y complexes and find decreasing affinities from the most distal Y1 to the proximal Y3 site. Binding of two or three NF-Y trimers with or without p300 is not cooperative, but association with the Y1 and Y2 sites is extremely stable. p300 favors the binding of NF-Y to the weak Y3 proximal site, provided that a correct distance between the three CCAAT is respected. Our data indicate that the precise spacing of multiple CCAAT boxes is crucial for coactivator function. Transient association to a weak site might be a point of regulation during the cell cycle and a general theme of multiple CCAAT box promoters.
Collapse
Affiliation(s)
- Valentina Salsi
- Dipartimento di Biologia Animale, Università di Modena e Reggio, Via Campi 213/d, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Lok CN, Lang AJ, Mirski SEL, Cole SPC. Characterization of the human topoisomerase IIbeta (TOP2B) promoter activity: essential roles of the nuclear factor-Y (NF-Y)- and specificity protein-1 (Sp1)-binding sites. Biochem J 2002; 368:741-51. [PMID: 12197834 PMCID: PMC1223026 DOI: 10.1042/bj20020791] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 08/01/2002] [Accepted: 08/28/2002] [Indexed: 12/31/2022]
Abstract
Eukaryotic topoisomerase II (topo II) catalyses topological genomic changes essential for chromosome segregation, chromatin reorganization, DNA replication and transcription. Mammalian topo II exists as two isoforms, designated alpha and beta. Human topo IIalpha is an important cancer drug target, and an established determinant of drug sensitivity and resistance. Human topo IIbeta is also the target of anticancer drugs but its role in drug resistance is less clear. The two human topo II proteins are encoded by the TOP2A and TOP2B genes, respectively, which despite their highly conserved structural organization, are subject to distinctly different modes of regulation. In the present study, we have cloned and characterized the human TOP2B promoter containing a 1.3 kb fragment of the 5'-flanking and untranslated region (-1067 to +193). We found that the promoter activity of this TOP2B fragment was constant throughout the cell cycle, in contrast to the activity of the proximal promoter of TOP2A which was low in resting cells and enhanced during proliferation. Analyses of 5'-serially and internally deleted luciferase reporter constructs revealed that 80% of the TOP2B promoter activity could be attributed to the region between -533 and -481. Mutational analyses of putative regulatory elements indicated that two inverted CCAAT boxes (ICBs) within this region were essential for TOP2B promoter activity and gel mobility-shift assays indicated these sites bound the transcription factor nuclear factor-Y (NF-Y). Co-transfection experiments using a dominant-negative form of subunit A of NF-Y suggested that TOP2B promoter activity required direct interaction of NF-Y with the ICBs. In addition, a specificity protein-1 (Sp1)-binding GC box located just upstream of the ICBs was shown to contribute to TOP2B promoter activity in a synergistic manner with the ICBs. Our results suggest that the binding sites for NF-Y and Sp1 are critical for TOP2B transcription.
Collapse
Affiliation(s)
- Chun-Nam Lok
- Cancer Research Laboratories and Department of Pharmacology & Toxicology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
24
|
Hu Q, Bhattacharya C, Maity SN. CCAAT binding factor (CBF) binding mediates cell cycle activation of topoisomerase IIalpha. Conventional CBF activation domains are not required. J Biol Chem 2002; 277:37191-200. [PMID: 12149265 DOI: 10.1074/jbc.m205985200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the role of the CCAAT binding factor (CBF) in transcription during the cell cycle, we studied the mouse topoisomerase II alpha (topo II alpha) promoter, which is activated during the late S and G(2)/M phases of the cell cycle and contains multiple CBF binding sites. Mutational analysis of the promoter shows that CBF binding to an inverted orientation of the CCAAT motif in the topo II alpha promoter, but not to a direct orientation, is required for transcription activation during the cell cycle. In contrast, analysis of the promoter in an in vitro reconstituted transcription system shows that CBF activates transcription of the topo II alpha promoter irrespective of the orientation of the CBF binding sites. This analysis demonstrates that only one of the three transcription start sites of the topo II alpha promoter is stimulated by CBF, indicating that transcription activation by CBF is dependent on basal promoter structure. Interestingly, mutations of the start site that abolish CBF-dependent transcription activation in vitro do not inhibit activation of the promoter during the cell cycle. Consistent with this observation, expression of a truncated CBF-B subunit lacking a transcription activation domain, which inhibits activity of a collagen promoter, does not affect activity of the topo II alpha promoter in fibroblast cells. In contrast, expression of an allele-specific CBF-B mutant that binds high affinity to a mutant CBF binding site containing a CCAAC motif revives transcription activation of an inactive mutant topo II alpha promoter containing CCAAC during the cell cycle. Altogether, this study indicates that CBF binding, but not conventional CBF activation domains, are required for activation of the topo II alpha promoter during the cell cycle. Considering these results together with results of another recent study, we hypothesize that binding of CBF that disrupts the nucleosomal structure in the topo II alpha promoter is a major function of CBF by which it regulates the cell cycle-dependent transcription of the topo II alpha promoter and possibly many other cell cycle-regulated promoters containing CBF binding sites.
Collapse
Affiliation(s)
- Qianghua Hu
- Department of Molecular Genetics, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
25
|
Li X, Bhattacharya C, Dayal S, Maity S, Klein WH. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor. Differentiation 2002; 70:109-19. [PMID: 12076338 DOI: 10.1046/j.1432-0436.2002.700206.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional enhancers are short stretches of DNA that function to achieve highly specific patterns of gene expression. To identify the mechanisms by which enhancers achieve their specificity, we made use of an enhancer from the aboral ectoderm-specific spec2a gene of the sea urchin Strongylocentrotus purpuratus. The spec2a enhancer contains five cis-regulatory elements within 78 base pairs that interact with five distinct DNA-binding proteins to confer aboral ectoderm expression. Here, we present an analysis of the sea urchin CCAAT binding factor (CBF), which binds to a CCAAT motif within the spec2a enhancer. S. purpuratus CBF and SpOtx, a ubiquitously expressed factor, act together at closely placed cis-regulatory elements to mediate spec2a transcription in the ectoderm. SpCBF was the sole factor that bound to the spec2a CCAAT element, and two of the three subunits that make up the CBF holoprotein were cloned and shown to have high sequence conservation with their vertebrate orthologs. Based on its involvement in the regulation of several other sea urchin genes, SpCBF appears to be a major transcription factor in the sea urchin embryo for positive regulation of ectoderm gene expression. In addition to its role in vertebrate cell growth and proliferation, our results indicate that CBF also functions at the early stages of germ layer formation, namely ectoderm differentiation.
Collapse
Affiliation(s)
- Xiaotao Li
- Department of Biochemistry and Molecular Biology, Box 117, The University of Texas M. D. Anderson Cancer Center,1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Lindahl GE, Chambers RC, Papakrivopoulou J, Dawson SJ, Jacobsen MC, Bishop JE, Laurent GJ. Activation of fibroblast procollagen alpha 1(I) transcription by mechanical strain is transforming growth factor-beta-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J Biol Chem 2002; 277:6153-61. [PMID: 11748224 DOI: 10.1074/jbc.m108966200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During normal developmental tissue growth and in a number of diseases of the cardiopulmonary system, adventitial and interstitial fibroblasts are subjected to increased mechanical strain. This leads to fibroblast activation and enhanced collagen synthesis, but the underlying mechanisms involved remain poorly understood. In this study, we have begun to identify and characterize mechanical strain-responsive elements in the rat procollagen alpha 1(I) (COL1A1) gene and show that the activity of COL1A1 promoter constructs, transiently transfected into cardiac fibroblasts, was increased between 2- and 4-fold by continuous cyclic mechanical strain. This was accompanied by an approximately 3-fold increase in the levels of total active transforming growth factor-beta (TGF-beta) released into the medium. Inclusion of a pan-specific TGF-beta neutralizing antibody inhibited strain-induced COL1A1 promoter activation. Deletion analysis revealed the presence of two potential strain response regions within the proximal promoter, one of which contains an inverted CCAAT-box overlapping a GC-rich element. Both mechanical strain and exogenously added TGF-beta1 enhanced the binding activity of CCAAT-binding factor, CBF/NF-Y, at this site. Moreover, this element was sufficient to confer strain-responsiveness to an otherwise unresponsive SV40 promoter. In summary, this study demonstrates that strain-induced COL1A1 promoter activation in cardiac fibroblasts is TGF-beta-dependent and involves increased binding of CCAAT-binding factor at the proximal promoter. Furthermore, these findings suggest a novel and potentially important TGF-beta response element in the rat COL1A1 gene.
Collapse
Affiliation(s)
- Gisela E Lindahl
- Centre for Cardiopulmonary Biochemistry and Respiratory Medicine, Department of Medicine, Royal Free and University College Medical School, The Rayne Institute, 5 University Street, London WC1E 6JJ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|