1
|
Pokhrel S, Heo G, Mathews I, Yokoi S, Matsui T, Mitsutake A, Wakatsuki S, Mochly-Rosen D. A hidden cysteine in Fis1 targeted to prevent excessive mitochondrial fission and dysfunction under oxidative stress. Nat Commun 2025; 16:4187. [PMID: 40328741 PMCID: PMC12056058 DOI: 10.1038/s41467-025-59434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Fis1-mediated mitochondrial localization of Drp1 and excessive mitochondrial fission occur in human pathologies associated with oxidative stress. However, it is not known how Fis1 detects oxidative stress and what structural changes in Fis1 enable mitochondrial recruitment of Drp1. We find that conformational change involving α1 helix in Fis1 exposes its only cysteine, Cys41. In the presence of oxidative stress, the exposed Cys41 in activated Fis1 forms a disulfide bridge and the Fis1 covalent homodimers cause increased mitochondrial fission through increased Drp1 recruitment to mitochondria. Our discovery of a small molecule, SP11, that binds only to activated Fis1 by engaging Cys41, and data from genetically engineered cell lines lacking Cys41 strongly suggest a role of Fis1 homodimerization in Drp1 recruitment to mitochondria and excessive mitochondrial fission. The structure of activated Fis1-SP11 complex further confirms these insights related to Cys41 being the sensor for oxidative stress. Importantly, SP11 preserves mitochondrial integrity and function in cells during oxidative stress and thus may serve as a candidate molecule for the development of treatment for diseases with underlying Fis1-mediated mitochondrial fragmentation and dysfunction.
Collapse
Affiliation(s)
- Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Gwangbeom Heo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Irimpan Mathews
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Shun Yokoi
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Egner JM, Nolden KA, Harwig MC, Bonate RP, De Anda J, Tessmer MH, Noey EL, Ihenacho UK, Liu Z, Peterson FC, Wong GCL, Widlansky ME, Hill RB. Structural studies of human fission protein FIS1 reveal a dynamic region important for GTPase DRP1 recruitment and mitochondrial fission. J Biol Chem 2022; 298:102620. [PMID: 36272645 PMCID: PMC9747602 DOI: 10.1016/j.jbc.2022.102620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Fission protein 1 (FIS1) and dynamin-related protein 1 (DRP1) were initially described as being evolutionarily conserved for mitochondrial fission, yet in humans the role of FIS1 in this process is unclear and disputed by many. In budding yeast where Fis1p helps to recruit the DRP1 ortholog from the cytoplasm to mitochondria for fission, an N-terminal "arm" of Fis1p is required for function. The yeast Fis1p arm interacts intramolecularly with a conserved tetratricopeptide repeat core and governs in vitro interactions with yeast DRP1. In human FIS1, NMR and X-ray structures show different arm conformations, but its importance for human DRP1 recruitment is unknown. Here, we use molecular dynamics simulations and comparisons to experimental NMR chemical shifts to show the human FIS1 arm can adopt an intramolecular conformation akin to that observed with yeast Fis1p. This finding is further supported through intrinsic tryptophan fluorescence and NMR experiments on human FIS1 with and without the arm. Using NMR, we observed the human FIS1 arm is also sensitive to environmental changes. We reveal the importance of these findings in cellular studies where removal of the FIS1 arm reduces DRP1 recruitment and mitochondrial fission similar to the yeast system. Moreover, we determined that expression of mitophagy adapter TBC1D15 can partially rescue arm-less FIS1 in a manner reminiscent of expression of the adapter Mdv1p in yeast. These findings point to conserved features of FIS1 important for its activity in mitochondrial morphology. More generally, other tetratricopeptide repeat-containing proteins are flanked by disordered arms/tails, suggesting possible common regulatory mechanisms.
Collapse
Affiliation(s)
- John M Egner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kelsey A Nolden
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan Cleland Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ryan P Bonate
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jaime De Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Maxx H Tessmer
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elizabeth L Noey
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ugochukwu K Ihenacho
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ziwen Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael E Widlansky
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
3
|
Wu Y, Lan H, Zhang D, Hu Z, Zhang J, Li Z, Xia P, Tang X, Cai X, Yu P. Research progress on ncRNAs regulation of mitochondrial dynamics in diabetes. J Cell Physiol 2022; 237:4112-4131. [PMID: 36125936 DOI: 10.1002/jcp.30878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Diabetes mellitus and its complications are major health concerns worldwide that should be routinely monitored for evaluating disease progression. And there is currently much evidence to suggest a critical role for mitochondria in the common pathogenesis of diabetes and its complications. Mitochondrial dynamics are involved in the development of diabetes through mediating insulin signaling and insulin resistance, and in the development of diabetes and its complications through mediating endothelial impairment and other closely related pathophysiological mechanisms of diabetic cardiomyopathy (DCM). noncoding RNAs (ncRNAs) are closely linked to mitochondrial dynamics by regulating the expression of mitochondrial dynamic-associated proteins, or by regulating key proteins in related signaling pathways. Therefore, this review summarizes the research progress on the regulation of Mitochondrial Dynamics by ncRNAs in diabetes and its complications, which is a promising area for future antibodies or targeted drug development.
Collapse
Affiliation(s)
- Yifan Wu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Huixin Lan
- Huankui College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ziyan Hu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Yin CF, Chang YW, Huang HC, Juan HF. Targeting protein interaction networks in mitochondrial dynamics for cancer therapy. Drug Discov Today 2021; 27:1077-1087. [PMID: 34774766 DOI: 10.1016/j.drudis.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Mitochondria are crucial organelles that provide energy via oxidative phosphorylation in eukaryotic cells and also have critical roles in growth, division, and the cell cycle, as well as the rapid adaptation required to meet the metabolic needs of the cell. Mitochondrial processes are highly dynamic; fusion and fission can vary with cell type, cellular context, and stress levels. Accumulating evidence demonstrates that an imbalance in mitochondrial dynamics leads to death in numerous types of human cancer cells. Therefore, modulating mitochondrial dynamics could be a therapeutic target. In this review, we provide an overview of the protein interaction networks involved in mitochondrial dynamics as effective and feasible drug targets and discuss the related potential therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Chieh-Fan Yin
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Wen Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan; Taiwan AI Labs, Taipei 103, Taiwan.
| |
Collapse
|
5
|
Bai H, Liu S, Shi S, Lu W, Yang Y, Zhu Y, Zhang Z, Guo H, Li X. Identification of the epitope in human poliovirus type 1 Sabin strain recognized by the monoclonal antibody 1G10 using mimotope strategy. J Virol Methods 2019; 276:113791. [PMID: 31778678 DOI: 10.1016/j.jviromet.2019.113791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/31/2019] [Accepted: 11/23/2019] [Indexed: 01/17/2023]
Abstract
Following the recommended use of the inactivated poliovirus vaccine from Sabin strains (sIPV) by the WHO, a D antigen-specific neutralizing monoclonal antibody (mAb) 1G10 that recognized the human poliovirus type 1 Sabin strain (PV-I Sabin) was produced for D-antigen potency evaluation on sIPV. Study of the mAb 1G10 showed that it recognized a discontinuous conformational epitope of PV-I Sabin antigen. To identify this epitope quickly, easily and cost-effectively, clues to the epitope's identity were first obtained by employing a novel mimotope strategy based on a phage display library and "in silico" prediction. Then, the conformation of the epitope region, including the amino acid sequence, neutralizing sites, and location of this epitope, was identified using several classic epitope-mapping methods such as synthesized peptides analysis, neutralization assay and site-directed mutagenesis. The mimotope strategy may offer some guidance for achieving epitope identification in a more feasible and effective way. This mAb could be used in an in-house or national and international standard IPV D-antigen potency ELISA kit in the future.
Collapse
Affiliation(s)
- Han Bai
- National Vaccine & Serum Institute, Beijing, China
| | - Shaohua Liu
- National Vaccine & Serum Institute, Beijing, China
| | - Shenghe Shi
- Department of Laboratory Medicine, Beijing Capital International Airport Hospital, China
| | - Weiwei Lu
- National Vaccine & Serum Institute, Beijing, China
| | | | - Yunkai Zhu
- National Vaccine & Serum Institute, Beijing, China
| | | | - Huijie Guo
- National Vaccine & Serum Institute, Beijing, China
| | - Xiuling Li
- National Vaccine & Serum Institute, Beijing, China.
| |
Collapse
|
6
|
A Novel Atypical PKC-Iota Inhibitor, Echinochrome A, Enhances Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. Mar Drugs 2018; 16:md16060192. [PMID: 29865255 PMCID: PMC6025622 DOI: 10.3390/md16060192] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Echinochrome A (EchA) is a marine bioproduct extracted from sea urchins having antioxidant, antimicrobial, anti-inflammatory, and chelating effects, and is the active component of the clinical drug histochrome. We investigated the potential use of Ech A for inducing cardiomyocyte differentiation from mouse embryonic stem cells (mESCs). We also assessed the effects of Ech A on mitochondrial mass, inner membrane potential (Δψm), reactive oxygen species generation, and levels of Ca2+. To identify the direct target of Ech A, we performed in vitro kinase activity and surface plasmon resonance binding assays. Ech A dose-dependently enhanced cardiomyocyte differentiation with higher beating rates. Ech A (50 μM) increased the mitochondrial mass and membrane potential but did not alter the mitochondrial superoxide and Ca2+ levels. The in vitro kinase activity of the atypical protein kinase C-iota (PKCι) was significantly decreased by 50 μM of Ech A with an IC50 for PKCι activity of 107 μM. Computational protein-ligand docking simulation results suggested the direct binding of Ech A to PKCι, and surface plasmon resonance confirmed the direct binding with a low KD of 6.3 nM. Therefore, Ech A is a potential drug for enhancing cardiomyocyte differentiation from mESCs through direct binding to PKCι and inhibition of its activity.
Collapse
|
7
|
Abstract
Mitochondria are an essential component of multicellular life - from primitive organisms, to highly complex entities like mammals. The importance of mitochondria is underlined by their plethora of well-characterized essential functions such as energy production through oxidative phosphorylation (OX-PHOS), calcium and reactive oxygen species (ROS) signaling, and regulation of apoptosis. In addition, novel roles and attributes of mitochondria are coming into focus through the recent years of mitochondrial research. In particular, over the past decade the study of mitochondrial shape and dynamics has achieved special significance, as they are found to impact mitochondrial function. Recent advances indicate that mitochondrial function and dynamics are inter-connected, and maintain the balance between health and disease at a cellular and an organismal level. For example, excessive mitochondrial division (fission) is associated with functional defects, and is implicated in multiple human diseases from neurodegenerative diseases to cancer. In this chapter we examine the recent literature on the mitochondrial dynamics-function relationship, and explore how it impacts on the development and progression of human diseases. We will also highlight the implications of therapeutic manipulation of mitochondrial dynamics in treating various human pathologies.
Collapse
|
8
|
Almeida LO, Goto RN, Neto MPC, Sousa LO, Curti C, Leopoldino AM. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario. Biochem Biophys Res Commun 2015; 458:300-6. [PMID: 25656576 DOI: 10.1016/j.bbrc.2015.01.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 12/15/2022]
Abstract
We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- Luciana O Almeida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata N Goto
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marinaldo P C Neto
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas O Sousa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Curti
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréia M Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Beach A, Richard VR, Leonov A, Burstein MT, Bourque SD, Koupaki O, Juneau M, Feldman R, Iouk T, Titorenko VI. Mitochondrial membrane lipidome defines yeast longevity. Aging (Albany NY) 2013; 5:551-74. [PMID: 23924582 PMCID: PMC3765583 DOI: 10.18632/aging.100578] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/16/2013] [Indexed: 12/22/2022]
Abstract
Our studies revealed that lithocholic acid (LCA), a bile acid, is a potent anti-aging natural compound that in yeast cultured under longevity-extending caloric restriction (CR) conditions acts in synergy with CR to enable a significant further increase in chronological lifespan. Here, we investigate a mechanism underlying this robust longevity-extending effect of LCA under CR. We found that exogenously added LCA enters yeast cells, is sorted to mitochondria, resides mainly in the inner mitochondrial membrane, and also associates with the outer mitochondrial membrane. LCA elicits an age-related remodeling of glycerophospholipid synthesis and movement within both mitochondrial membranes, thereby causing substantial changes in mitochondrial membrane lipidome and triggering major changes in mitochondrial size, number and morphology. In synergy, these changes in the membrane lipidome and morphology of mitochondria alter the age-related chronology of mitochondrial respiration, membrane potential, ATP synthesis and reactive oxygen species homeostasis. The LCA-driven alterations in the age-related dynamics of these vital mitochondrial processes extend yeast longevity. In sum, our findings suggest a mechanism underlying the ability of LCA to delay chronological aging in yeast by accumulating in both mitochondrial membranes and altering their glycerophospholipid compositions. We concluded that mitochondrial membrane lipidome plays an essential role in defining yeast longevity.
Collapse
Affiliation(s)
- Adam Beach
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Differential regulation of chemotaxis: Role of Gβγ in chemokine receptor-induced cell migration. Cell Signal 2013; 25:729-35. [DOI: 10.1016/j.cellsig.2012.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 01/17/2023]
|
11
|
Koch J, Brocard C. PEX11 proteins attract Mff and hFis1 to coordinate peroxisomal fission. J Cell Sci 2012; 125:3813-26. [DOI: 10.1242/jcs.102178] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fission of membrane-bound organelles requires membrane remodeling processes to enable and facilitate the assembly of the scission machinery. Proteins of the PEX11 family were shown to act as membrane elongation factors during peroxisome proliferation. Furthermore, through interaction with fission factors these proteins coordinate progression of membrane scission. Using a biochemical approach, we determined the membrane topology of PEX11γ, one of the three human PEX11 proteins. Analysis of mutated PEX11γ versions, which localize to peroxisomes revealed essential domains for membrane elongation including an amphipathic region and regulatory sequences thereof. Through pegylation assays and in vivo studies, we establish that the PEX11γ sequence encloses two membrane anchored domains, which dock an amphipathic region onto the peroxisomal membrane thereby regulating its elongation. The interaction profile of PEX11γ and mutated versions reveals a rearrangement between homo- and heterodimerization and association with fission factors. We also demonstrate the presence of the mitochondrial fission factor Mff on peroxisomes and its interaction with PEX11 proteins. Our data allow for assumptions on a molecular mechanism for the process of peroxisome proliferation in mammalian cells, that i) PEX11γ is required and acts in coordination with at least one of the other PEX11 proteins to protrude the peroxisomal membrane, ii) PEX11 proteins attract both Mff and hFis1 to their site of action and, iii) the concerted interaction of PEX11 proteins provides spatiotemporal control for growth and division of peroxisomes.
Collapse
|
12
|
Palacios-Rodríguez Y, García-Laínez G, Sancho M, Gortat A, Orzáez M, Pérez-Payá E. Polypeptide modulators of caspase recruitment domain (CARD)-CARD-mediated protein-protein interactions. J Biol Chem 2011; 286:44457-66. [PMID: 22065589 DOI: 10.1074/jbc.m111.255364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The caspase recruitment domain (CARD) is present in a large number of proteins. Initially, the CARD was recognized as part of the caspase activation machinery. CARD-CARD interactions play a role in apoptosis and are responsible for the Apaf-1-mediated activation of procaspase-9 in the apoptosome. CARD-containing proteins mediate the inflammasome-dependent activation of proinflammatory caspase-1. More recently, new roles for CARD-containing proteins have been reported in signaling pathways associated with immune responses. The functional role of CARD-containing proteins and CARDs in coordinating apoptosis and inflammatory and immune responses is not completely understood. We have explored the putative cross-talk between apoptosis and inflammation by analyzing the modulatory activity on both the Apaf-1/procaspase-9 interaction and the inflammasome-mediated procaspase-1 activation of CARD-derived polypeptides. To this end, we analyzed the activity of individual recombinant CARDs, rationally designed CARD-derived peptides, and peptides derived from phage display.
Collapse
Affiliation(s)
- Yadira Palacios-Rodríguez
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Tooley JE, Khangulov V, Lees JPB, Schlessman JL, Bewley MC, Heroux A, Bosch J, Hill RB. The 1.75 Å resolution structure of fission protein Fis1 from Saccharomyces cerevisiae reveals elusive interactions of the autoinhibitory domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1310-5. [PMID: 22102223 DOI: 10.1107/s1744309111029368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/20/2011] [Indexed: 11/10/2022]
Abstract
Fis1 mediates mitochondrial and peroxisomal fission. It is tail-anchored to these organelles by a transmembrane domain, exposing a soluble cytoplasmic domain. Previous studies suggested that Fis1 is autoinhibited by its N-terminal region. Here, a 1.75 Å resolution crystal structure of the Fis1 cytoplasmic domain from Saccharomyces cerevisiae is reported which adopts a tetratricopeptide-repeat fold. It is observed that this fold creates a concave surface important for fission, but is sterically occluded by its N-terminal region. Thus, this structure provides a physical basis for autoinhibition and allows a detailed examination of the interactions that stabilize the inhibited state of this molecule.
Collapse
Affiliation(s)
- James E Tooley
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Koch J, Brocard C. Membrane elongation factors in organelle maintenance: the case of peroxisome proliferation. Biomol Concepts 2011; 2:353-364. [PMID: 21984887 DOI: 10.1515/bmc.2011.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Separation of metabolic pathways in organelles is critical for eukaryotic life. Accordingly, the number, morphology and function of organelles have to be maintained through processes linked with membrane remodeling events. Despite their acknowledged significance and intense study many questions remain about the molecular mechanisms by which organellar membranes proliferate. Here, using the example of peroxisome proliferation, we give an overview of how proteins elongate membranes. Subsequent membrane fission is achieved by dynamin-related proteins shared with mitochondria. We discuss basic criteria that membranes have to fulfill for these fission factors to complete the scission. Because peroxisome elongation is always associated with unequal distribution of matrix and membrane proteins, we propose peroxisomal division to be non-stochastic and asymmetric. We further show that these organelles need not be functional to carry on membrane elongation and present the most recent findings concerning members of the Pex11 protein family as membrane elongation factors. These factors, beside known proteins such as BAR-domain proteins, represent another family of proteins containing an amphipathic α-helix with membrane bending activity.
Collapse
Affiliation(s)
- Johannes Koch
- Department of Biochemistry and Cell Biology, University of Vienna, Max F. Perutz Laboratories, Center of Molecular Biology, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
15
|
Dai Z, Cui G, Zhou SF, Zhang X, Huang L. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:148-57. [PMID: 0 DOI: 10.1016/j.jplph.2010.06.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/19/2010] [Accepted: 06/19/2010] [Indexed: 05/03/2023]
|