1
|
Kodirov SA. Roles of funny HCN. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110205. [PMID: 40233889 DOI: 10.1016/j.cbpc.2025.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 03/27/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
To some extent, the main role of hyperpolarization-activated cyclic nucleotide-gated non-selective cation channels (HCN, Ih, or If), pace-making, is dogmatized as a functional expression of one or another alpha subunit of HCN channels does not make every region of the brain or heart a pacemaker one. Recent research hints at the role of HCN in arrhythmias and seizures that are often caused by voltage-dependent K and Na channels (Kv and Nav) and neurotransmitters, respectively. There are many parallels between the HCN and K channels. Similar to Kv channels, an altered HCN function also leads to long QT interval. Moreover, a mutation in HCN is believed to trigger correlated arrhythmias and, e.g., epilepsy, among many other brain pathologies. Unlike Kv channels, although no dedicated ancillary beta subunit has been discovered for HCN, the Ih properties are also influenced by other elements and factors. A new interaction has been discovered between HCN and the vesicle-associated membrane protein (VAMP). The prevailing interaction occurs via the subtype VAMP-associated protein B (VAPB). However, this interaction is not unique but universal, since there is also a link between Kv2.1 and VAMP2 (vesicular SNARE). The most remarkable similitude is the fact that a selective antagonist of HCN and medication ivabradine prevents the IKr via the cloned human ether-à-go-go-related gene (HERG) channels, also known as KvLQT and Kv11.1 alpha subunit.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia; Institute of Physiology and Pathophysiology, University of Mainz, Germany; University of Texas at Brownsville, Department of Biological Sciences, TX 78520, USA; Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal; Institute of Biophysics, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
2
|
Korzh V. Development of the brain ventricular system from a comparative perspective. Clin Anat 2023; 36:320-334. [PMID: 36529666 DOI: 10.1002/ca.23994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The brain ventricular system (BVS) consists of brain ventricles and channels filled with cerebrospinal fluid (CSF). Disturbance of CSF flow has been linked to scoliosis and neurodegenerative diseases, including hydrocephalus. This could be due to defects of CSF production by the choroid plexus or impaired CSF movement over the ependyma dependent on motile cilia. Most vertebrates have horizontal body posture. They retain additional evolutionary innovations assisting CSF flow, such as the Reissner fiber. The causes of hydrocephalus have been studied using animal models including rodents (mice, rats, hamsters) and zebrafish. However, the horizontal body posture reduces the effect of gravity on CSF flow, which limits the use of mammalian models for scoliosis. In contrast, fish swim against the current and experience a forward-to-backward mechanical force akin to that caused by gravity in humans. This explains the increased popularity of the zebrafish model for studies of scoliosis. "Slit-ventricle" syndrome is another side of the spectrum of BVS anomalies. It develops because of insufficient inflation of the BVS. Recent advances in zebrafish functional genetics have revealed genes that could regulate the development of the BVS and CSF circulation. This review will describe the BVS of zebrafish, a typical teleost, and vertebrates in general, in comparative perspective. It will illustrate the usefulness of the zebrafish model for developmental studies of the choroid plexus (CP), CSF flow and the BVS.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
3
|
Korzh V. Development of brain ventricular system. Cell Mol Life Sci 2018; 75:375-383. [PMID: 28780589 PMCID: PMC5765195 DOI: 10.1007/s00018-017-2605-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/20/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022]
Abstract
The brain ventricular system (BVS) consists of brain ventricles and channels connecting ventricles filled with cerebrospinal fluid (CSF). The disturbance of CSF flow has been linked to neurodegenerative disease including hydrocephalus, which manifests itself as an abnormal expansion of BVS. This relatively common developmental disorder has been observed in human and domesticated animals and linked to functional deficiency of various cells lineages facing BVS, including the choroid plexus or ependymal cells that generate CSF or the ciliated cells that cilia beating generates CSF flow. To understand the underlying causes of hydrocephalus, several animal models were developed, including rodents (mice, rat, and hamster) and zebrafish. At another side of a spectrum of BVS anomalies there is the "slit-ventricle" syndrome, which develops due to insufficient inflation of BVS. Recent advances in functional genetics of zebrafish brought to light novel genetic elements involved in development of BVS and circulation of CSF. This review aims to reveal common elements of morphologically different BVS of zebrafish as a typical representative of teleosts and other vertebrates and illustrate useful features of the zebrafish model for studies of BVS. Along this line, recent analyses of the two novel zebrafish mutants affecting different subunits of the potassium voltage-gated channels allowed to emphasize an important functional convergence of the evolutionarily conserved elements of protein transport essential for BVS development, which were revealed by the zebrafish and mouse studies.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
4
|
Siloni S, Singer-Lahat D, Esa M, Tsemakhovich V, Chikvashvili D, Lotan I. Regulation of the neuronal KCNQ2 channel by Src--a dual rearrangement of the cytosolic termini underlies bidirectional regulation of gating. J Cell Sci 2015; 128:3489-501. [PMID: 26275828 DOI: 10.1242/jcs.173922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/26/2015] [Indexed: 12/11/2022] Open
Abstract
Neuronal M-type K(+) channels are heteromers of KCNQ2 and KCNQ3 subunits, and are found in cell bodies, dendrites and the axon initial segment, regulating the firing properties of neurons. By contrast, presynaptic KCNQ2 homomeric channels directly regulate neurotransmitter release. Previously, we have described a mechanism for gating downregulation of KCNQ2 homomeric channels by calmodulin and syntaxin1A. Here, we describe a new mechanism for regulation of KCNQ2 channel gating that is modulated by Src, a non-receptor tyrosine kinase. In this mechanism, two concurrent distinct structural rearrangements of the cytosolic termini induce two opposing effects: upregulation of the single-channel open probability, mediated by an N-terminal tyrosine, and reduction in functional channels, mediated by a C-terminal tyrosine. In contrast, Src-mediated regulation of KCNQ3 homomeric channels, shown previously to be achieved through the corresponding tyrosine residues, involves the N-terminal-tyrosine-mediated downregulation of the open probability, rather than an upregulation. We argue that the dual bidirectional regulation of KCNQ2 functionality by Src, mediated through two separate sites, means that KCNQ2 can be modified by cellular factors that might specifically interact with either one of the sites, with potential significance in the fine-tuning of neurotransmitters release at nerve terminals.
Collapse
Affiliation(s)
- Sivan Siloni
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Moad Esa
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Vlad Tsemakhovich
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
5
|
Gu Y, Barry J, Gu C. Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites. J Physiol 2013; 591:2491-507. [PMID: 23420657 DOI: 10.1113/jphysiol.2013.251983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Zinc, a divalent heavy metal ion and an essential mineral for life, regulates synaptic transmission and neuronal excitability via ion channels. However, its binding sites and regulatory mechanisms are poorly understood. Here, we report that Kv3 channel assembly, localization and activity are regulated by zinc through different binding sites. Local perfusion of zinc reversibly reduced spiking frequency of cultured neurons most likely by suppressing Kv3 channels. Indeed, zinc inhibited Kv3.1 channel activity and slowed activation kinetics, independent of its site in the N-terminal T1 domain. Biochemical assays surprisingly identified a novel zinc-binding site in the Kv3.1 C-terminus, critical for channel activity and axonal targeting, but not for the zinc inhibition. Finally, mutagenesis revealed an important role of the junction between the first transmembrane (TM) segment and the first extracellular loop in sensing zinc. Its mutant enabled fast spiking with relative resistance to the zinc inhibition. Therefore, our studies provide novel mechanistic insights into the multifaceted regulation of Kv3 channel activity and localization by divalent heavy metal ions.
Collapse
Affiliation(s)
- Yuanzheng Gu
- 182 Rightmire Hall, 1060 Carmack Road, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
6
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
7
|
Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A. J Neurosci 2011; 31:14158-71. [PMID: 21976501 DOI: 10.1523/jneurosci.2666-11.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whereas neuronal M-type K(+) channels composed of KCNQ2 and KCNQ3 subunits regulate firing properties of neurons, presynaptic KCNQ2 subunits were demonstrated to regulate neurotransmitter release by directly influencing presynaptic function. Two interaction partners of M-channels, syntaxin 1A and calmodulin, are known to act presynaptically, syntaxin serving as a major protein component of the membrane fusion machinery and calmodulin serving as regulator of several processes related to neurotransmitter release. Notably, both partners specifically modulate KCNQ2 but not KCNQ3 subunits, suggesting selective presynaptic targeting to directly regulate exocytosis without interference in neuronal firing properties. Here, having first demonstrated in Xenopus oocytes, using analysis of single-channel biophysics, that both modulators downregulate the open probability of KCNQ2 but not KCNQ3 homomers, we sought to resolve the channel structural determinants that confer the isoform-specific gating downregulation and to get insights into the molecular events underlying this mechanism. We show, using optical, biochemical, electrophysiological, and molecular biology analyses, the existence of constitutive interactions between the N and C termini in homomeric KCNQ2 and KCNQ3 channels in living cells. Furthermore, rearrangement in the relative orientation of the KCNQ2 termini that accompanies reduction in single-channel open probability is induced by both regulators, strongly suggesting that closer N-C termini proximity underlies gating downregulation. Different structural determinants, identified at the N and C termini of KCNQ3, prevent the effects by syntaxin 1A and calmodulin, respectively. Moreover, we show that the syntaxin 1A and calmodulin effects can be additive or blocked at different concentration ranges of calmodulin, bearing physiological significance with regard to presynaptic exocytosis.
Collapse
|
8
|
Schwetz TA, Norring SA, Ednie AR, Bennett ES. Sialic acids attached to O-glycans modulate voltage-gated potassium channel gating. J Biol Chem 2010; 286:4123-32. [PMID: 21115483 DOI: 10.1074/jbc.m110.171322] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal, cardiac, and skeletal muscle action potentials are produced and conducted through the highly regulated activity of several types of voltage-gated ion channels. Voltage-gated potassium (K(v)) channels are responsible for action potential repolarization. Glycans can be attached to glycoproteins through N- and O-linkages. Previous reports described the impact of N-glycans on voltage-gated ion channel function. Here, we show that sialic acids attached through O-linkages modulate gating of K(v)2.1, K(v)4.2, and K(v)4.3. The conductance-voltage (G-V) relationships for each isoform were shifted uniquely by a depolarizing 8-16 mV under conditions of reduced sialylation. The data indicate that sialic acids modulate K(v) channel activation through apparent electrostatic mechanisms that promote channel activity. Voltage-dependent steady-state inactivation was unaffected by changes in sialylation. N-Linked sialic acids cannot be responsible for the G-V shifts because K(v)4.2 and K(v)4.3 cannot be N-glycosylated, and immunoblot analysis confirmed K(v)2.1 is not N-glycosylated. Glycosidase gel shift analysis suggested that K(v)2.1, K(v)4.2, and K(v)4.3 were O-glycosylated and sialylated. To confirm this, azide-modified sugar residues involved specifically in O-glycan and sialic acid biosynthesis were shown to incorporate into all three K(v) channel isoforms using Cu(I)-catalyzed cycloaddition chemistry. Together, the data indicate that sialic acids attached to O-glycans uniquely modulate gating of three K(v) channel isoforms that are not N-glycosylated. These data provide the first evidence that external O-glycans, with core structures distinct from N-glycans in type and number of sugar residues, can modulate K(v) channel function and thereby contribute to changes in electrical signaling that result from regulated ion channel expression and/or O-glycosylation.
Collapse
Affiliation(s)
- Tara A Schwetz
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
9
|
Abstract
The Voltage-gated K+Channel DataBase (VKCDB) (http://vkcdb.biology.ualberta.ca) makes a comprehensive set of sequence data readily available for phylogenetic and comparative analysis. The current update contains 2063 entries for full-length or nearly full-length unique channel sequences from Bacteria (477), Archaea (18) and Eukaryotes (1568), an increase from 346 solely eukaryotic entries in the original release. In addition to protein sequences for channels, corresponding nucleotide sequences of the open reading frames corresponding to the amino acid sequences are now available and can be extracted in parallel with sets of protein sequences. Channels are categorized into subfamilies by phylogenetic analysis and by using hidden Markov model analyses. Although the raw database contains a number of fragmentary, duplicated, obsolete and non-channel sequences that were collected in early steps of data collection, the web interface will only return entries that have been validated as likely K+ channels. The retrieval function of the web interface allows retrieval of entries that contain a substantial fraction of the core structural elements of VKCs, fragmentary entries, or both. The full database can be downloaded as either a MySQL dump or as an XML dump from the web site. We have now implemented automated updates at quarterly intervals.
Collapse
Affiliation(s)
- Warren J Gallin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|