1
|
van der Horst SC, Kollenstart L, Batté A, Keizer S, Vreeken K, Pandey P, Chabes A, van Attikum H. Replication-IDentifier links epigenetic and metabolic pathways to the replication stress response. Nat Commun 2025; 16:1416. [PMID: 39915438 PMCID: PMC11802883 DOI: 10.1038/s41467-025-56561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
Perturbation of DNA replication, for instance by hydroxyurea-dependent dNTP exhaustion, often leads to stalling or collapse of replication forks. This triggers a replication stress response that stabilizes these forks, activates cell cycle checkpoints, and induces expression of DNA damage response genes. While several factors are known to act in this response, the full repertoire of proteins involved remains largely elusive. Here, we develop Replication-IDentifier (Repli-ID), which allows for genome-wide identification of regulators of DNA replication in Saccharomyces cerevisiae. During Repli-ID, the replicative polymerase epsilon (Pol ε) is tracked at a barcoded origin of replication by chromatin immunoprecipitation (ChIP) coupled to next-generation sequencing of the barcode in thousands of hydroxyurea-treated yeast mutants. Using this approach, 423 genes that promote Pol ε binding at replication forks were uncovered, including LGE1 and ROX1. Mechanistically, we show that Lge1 affects replication initiation and/or fork stability by promoting Bre1-dependent H2B mono-ubiquitylation. Rox1 affects replication fork progression by regulating S-phase entry and checkpoint activation, hinging on cellular ceramide levels via transcriptional repression of SUR2. Thus, Repli-ID provides a unique resource for the identification and further characterization of factors and pathways involved in the cellular response to DNA replication perturbation.
Collapse
Affiliation(s)
| | - Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
| | - Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Keizer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Praveen Pandey
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Guan Y, He H, Guo Y, Zhang L. Essential roles of Rad6 in conidial property, stress tolerance, and pathogenicity of Beauveria bassiana. Virulence 2024; 15:2362748. [PMID: 38860453 PMCID: PMC11174126 DOI: 10.1080/21505594.2024.2362748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Rad6 functions as a ubiquitin-conjugating protein that regulates cellular processes in many fungal species. However, its role in filamentous entomopathogenic fungi remains poorly understood. This study characterizes Rad6 in Beauveria bassiana, a filamentous fungus widely employed as a critical fungicide globally. The results demonstrate a significant association between Rad6 and conidial properties, heat shock response, and UV-B tolerance. Concurrently, the mutant strain exhibited heightened sensitivity to oxidative stress, cell wall interfering agents, DNA damage stress, and prolonged heat shock. Furthermore, the absence of Rad6 significantly extended the median lethal time (LT50) of Galleria mellonella infected by B. bassiana. This delay could be attributed to reduced Pr1 proteases and extracellular cuticle-degrading enzymes, diminished dimorphic transition rates, and dysregulated antioxidant enzymes. Additionally, the absence of Rad6 had a more pronounced effect on genetic information processing, metabolism, and cellular processes under normal conditions. However, its impact was limited to metabolism in oxidative stress. This study offers a comprehensive understanding of the pivotal roles of Rad6 in conidial and hyphal stress tolerance, environmental adaptation, and the pathogenesis of Beauveria bassiana.
Collapse
Affiliation(s)
- Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Haomin He
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Yuhan Guo
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
4
|
Abrhámová K, Groušlová M, Valentová A, Hao X, Liu B, Převorovský M, Gahura O, Půta F, Sunnerhagen P, Folk P. Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes. RNA Biol 2024; 21:1-17. [PMID: 38711165 PMCID: PMC11085953 DOI: 10.1080/15476286.2024.2348896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/13/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Martina Groušlová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
5
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. Sci Rep 2023; 13:16731. [PMID: 37794081 PMCID: PMC10550974 DOI: 10.1038/s41598-023-43969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo. We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo.
Collapse
Affiliation(s)
- Kaitlin S Radmall
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Prakash K Shukla
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Andrew M Leng
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
- Huntsman Cancer Institute, University of Utah School of Medicine, 2000, Circle of Hope, Room 3715, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
6
|
Radmall KS, Shukla PK, Leng AM, Chandrasekharan MB. Structure-function analysis of histone H2B and PCNA ubiquitination dynamics using deubiquitinase-deficient strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.18.545485. [PMID: 37873190 PMCID: PMC10592830 DOI: 10.1101/2023.06.18.545485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Post-translational covalent conjugation of ubiquitin onto proteins or ubiquitination is important in nearly all cellular processes. Steady-state ubiquitination of individual proteins in vivo is maintained by two countering enzymatic activities: conjugation of ubiquitin by E1, E2 and E3 enzymes and removal by deubiquitinases. Here, we deleted one or more genes encoding deubiquitinases in yeast and evaluated the requirements for ubiquitin conjugation onto a target protein. Our proof-of-principle studies demonstrate that absence of relevant deubiquitinase(s) provides a facile and versatile method that can be used to study the nuances of ubiquitin conjugation and deubiquitination of target proteins in vivo . We verified our method using mutants lacking the deubiquitinases Ubp8 and/or Ubp10 that remove ubiquitin from histone H2B or PCNA. Our studies reveal that the C-terminal coiled-domain of the adapter protein Lge1 and the C-terminal acidic tail of Rad6 E2 contribute to monoubiquitination of histone H2BK123, whereas the distal acidic residues of helix-4 of Rad6, but not the acidic tail, is required for monoubiquitination of PCNA. Further, charged substitution at alanine-120 in the H2B C-terminal helix adversely affected histone H2BK123 monoubiquitination by inhibiting Rad6-Bre1-mediated ubiquitin conjugation and by promoting Ubp8/Ubp10-mediated deubiquitination. In summary, absence of yeast deubiquitinases UBP8 and/or UBP10 allows uncovering the regulation of and requirements for ubiquitin addition and removal from their physiological substrates such as histone H2B or PCNA in vivo .
Collapse
|
7
|
Korenfeld HT, Avram-Shperling A, Zukerman Y, Iluz A, Boocholez H, Ben-Shimon L, Ben-Aroya S. Reversal of histone H2B mono-ubiquitination is required for replication stress recovery. DNA Repair (Amst) 2022; 119:103387. [DOI: 10.1016/j.dnarep.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
|
8
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
9
|
Deng ZH, Ai HS, Lu CP, Li JB. The Bre1/Rad6 machinery: writing the central histone ubiquitin mark on H2B and beyond. Chromosome Res 2020; 28:247-258. [PMID: 32895784 DOI: 10.1007/s10577-020-09640-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
Mono-ubiquitination on H2B (H2Bub1) is an evolutionarily conserved histone post-translational modification implicated in various important physiological processes including DNA replication, transcription activation, and DNA damage repair. The Bre1/Rad6 ubiquitination machinery is currently considered to be the sole writer of H2Bub1, but the mechanistic basis by which it operates is unclear. Recently, the RING-type E3 ligase Bre1 was proposed to associate with the E2 enzyme Rad6 through a novel interaction between Bre1 RBD (Rad6 binding domain) and Rad6; and the RING domain of Bre1 that is responsible for the nucleosomal acidic patch binding also interacts with Rad6 to stimulate its catalytic activity. Recent discoveries have yielded evidence for the phenomenon of liquid-liquid phase separation in the context of H2Bub1, and its regulation by other histone post-translational modifications. This review summarizes current knowledge about Bre1/Rad6-mediated H2B ubiquitination, including the physiological functions and the molecular basis for writing and regulation of this central histone ubiquitin mark. Possible models for the Bre1/Rad6 machinery bound to nucleosomes bearing different modifications in the writing step are also disclosed.
Collapse
Affiliation(s)
- Zhi-Heng Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua-Song Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Cheng-Piao Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Oyama M, Tamaki H, Yamaguchi Y, Ogita A, Tanaka T, Fujita KI. Deletion of the Golgi Ca2+-ATPase PMR1 gene potentiates antifungal effects of dodecanol that depend on intracellular Ca2+ accumulation in budding yeast. FEMS Yeast Res 2020; 20:5706841. [PMID: 31942998 DOI: 10.1093/femsyr/foaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
One strategy for overcoming infectious diseases caused by drug-resistant fungi involves combining drugs rendered inactive by resistance with agents targeting the drug resistance mechanism. The antifungal activity of n-dodecanol disappears as incubation time passes. In Saccharomyces cerevisiae, anethole, a principal component of anise oil, prolongs the transient antifungal effect of dodecanol by downregulating genes of multidrug efflux pumps, mainly PDR5. However, the detailed mechanisms of dodecanol's antifungal action and the anethole-induced prolonged antifungal action of dodecanol are unknown. Screening of S. cerevisiae strains lacking genes related to Ca2+ homeostasis and signaling identified a pmr1Δ strain lacking Golgi Ca2+-ATPase as more sensitive to dodecanol than the parental strain. Dodecanol and the dodecanol + anethole combination significantly increased intracellular Ca2+ levels in both strains, but the mutant failed to clear intracellular Ca2+ accumulation. Further, dodecanol and the drug combination reduced PMR1 expression and did not lead to specific localization of Pmr1p in the parental strain after 4-h treatment. By contrast with the parental strain, dodecanol did not stimulate PDR5 expression in pmr1Δ. Based on these observations, we propose that the antifungal activity of dodecanol is related to intracellular Ca2+ accumulation, possibly dependent on PMR1 function, with anethole enabling Ca2+ accumulation by restricting dodecanol efflux.
Collapse
Affiliation(s)
- Masahiro Oyama
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Hiroyuki Tamaki
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Akira Ogita
- Graduate School of Science, Osaka City University, Osaka, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - Toshio Tanaka
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Ken-Ichi Fujita
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
11
|
Meriesh HA, Lerner AM, Chandrasekharan MB, Strahl BD. The histone H4 basic patch regulates SAGA-mediated H2B deubiquitination and histone acetylation. J Biol Chem 2020; 295:6561-6569. [PMID: 32245891 DOI: 10.1074/jbc.ra120.013196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Histone H2B monoubiquitylation (H2Bub1) has central functions in multiple DNA-templated processes, including gene transcription, DNA repair, and replication. H2Bub1 also is required for the trans-histone regulation of H3K4 and H3K79 methylation. Although previous studies have elucidated the basic mechanisms that establish and remove H2Bub1, we have only an incomplete understanding of how H2Bub1 is regulated. We report here that the histone H4 basic patch regulates H2Bub1. Yeast cells with arginine-to-alanine mutations in the H4 basic patch (H42RA) exhibited a significant loss of global H2Bub1. H42RA mutant yeast strains also displayed chemotoxin sensitivities similar to, but less severe than, strains containing a complete loss of H2Bub1. We found that the H4 basic patch regulates H2Bub1 levels independently of interactions with chromatin remodelers and separately from its regulation of H3K79 methylation. To measure H2B ubiquitylation and deubiquitination kinetics in vivo, we used a rapid and reversible optogenetic tool, the light-inducible nuclear exporter, to control the subcellular location of the H2Bub1 E3 ligase, Bre1. The ability of Bre1 to ubiquitylate H2B was unaffected in the H42RA mutant. In contrast, H2Bub1 deubiquitination by SAGA-associated Ubp8, but not by Ubp10, increased in the H42RA mutant. Consistent with a function for the H4 basic patch in regulating SAGA deubiquitinase activity, we also detected increased SAGA-mediated histone acetylation in H4 basic patch mutants. Our findings uncover that the H4 basic patch has a regulatory function in SAGA-mediated histone modifications.
Collapse
Affiliation(s)
- Hashem A Meriesh
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Andrew M Lerner
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
12
|
Duan R, Ryu HY, Ahn SH. Symmetric dimethylation on histone H4R3 associates with histone deacetylation to maintain properly polarized cell growth. Res Microbiol 2019; 171:91-98. [PMID: 31574302 DOI: 10.1016/j.resmic.2019.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
Abstract
Yeast Hsl7 is recognized as a homolog of human arginine methyltransferase 5 (PRMT5) and shows type II PRMT activity by forming symmetric dimethylarginine residues on histones. Previously, we reported that Hsl7 is responsible for in vivo symmetric dimethylation on histone H4 arginine 3 (H4R3me2s) in a transcriptionally repressed state, possibly in association with histone deacetylation by Rpd3. Here, we investigated the function of Hsl7 during cell cycle progression. We found that the accumulation of Hsl7-mediated H4R3me2s is maintained by the histone deacetylase Rpd3 during transcriptional repression and that the low level of H4R3me2s is required for proper asymmetric cell growth during cell division. Our results suggest that the hypoacetylated state of histones is connected to the function of Hsl7 in regulating properly polarized cell growth during cell division and provide new insight into the epigenetic modifications that are important for cell cycle morphogenesis checkpoint control based on the repressive histone crosstalk between symmetric arginine methylation of H4 and histone deacetylation.
Collapse
Affiliation(s)
- Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Hong-Yeoul Ryu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
13
|
Bilokapic S, Halic M. Nucleosome and ubiquitin position Set2 to methylate H3K36. Nat Commun 2019; 10:3795. [PMID: 31439846 PMCID: PMC6706414 DOI: 10.1038/s41467-019-11726-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Histone H3 lysine 36 methylation (H3K36me) is a conserved histone modification deposited by the Set2 methyltransferases. Recent findings show that over-expression or mutation of Set2 enzymes promotes cancer progression, however, mechanisms of H3K36me are poorly understood. Set2 enzymes show spurious activity on histones and histone tails, and it is unknown how they obtain specificity to methylate H3K36 on the nucleosome. In this study, we present 3.8 Å cryo-EM structure of Set2 bound to the mimic of H2B ubiquitinated nucleosome. Our structure shows that Set2 makes extensive interactions with the H3 αN, the H3 tail, the H2A C-terminal tail and stabilizes DNA in the unwrapped conformation, which positions Set2 to specifically methylate H3K36. Moreover, we show that ubiquitin contributes to Set2 positioning on the nucleosome and stimulates the methyltransferase activity. Notably, our structure uncovers interfaces that can be targeted by small molecules for development of future cancer therapies.
Collapse
Affiliation(s)
- Silvija Bilokapic
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, 263 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
14
|
Ryu HY, Duan R, Ahn SH. Yeast symmetric arginine methyltransferase Hsl7 has a repressive role in transcription. Res Microbiol 2019; 170:222-229. [PMID: 30660775 DOI: 10.1016/j.resmic.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Protein arginine methylation, an evolutionarily conserved post-translational modification, serves critical cellular functions by transferring a methyl group to a variety of substrates, including histones and some transcription factors. In budding yeast, Hsl7 (histone synthetic lethal 7) displays type II PRMT (protein arginine methyltransferase) activity by generating symmetric dimethylarginine residues on histone H2A in vitro. However, identification of the in vivo substrate of Hsl7 and how it contributes to important cellular processes remain largely unexplored. In the present study, we show that Hsl7 has a repressive role in transcription. We found that Hsl7 is responsible for in vivo symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) in a transcriptionally repressed state. Tandem affinity purification further demonstrated that Hsl7 physically interacts with histone deacetylase Rpd3, and both similarly repress transcription. Our results suggest that H4R3me2s generation by the type II PRMT Hsl7 is required for transcriptional repression, possibly in cooperation with histone deacetylation by Rpd3.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
15
|
Oliete-Calvo P, Serrano-Quílez J, Nuño-Cabanes C, Pérez-Martínez ME, Soares LM, Dichtl B, Buratowski S, Pérez-Ortín JE, Rodríguez-Navarro S. A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 2018; 19:embr.201845992. [PMID: 30249596 DOI: 10.15252/embr.201845992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.
Collapse
Affiliation(s)
- Paula Oliete-Calvo
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joan Serrano-Quílez
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carme Nuño-Cabanes
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María E Pérez-Martínez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Centre for Cellular and Molecular Biology, Deakin University, Geelong, Vic., Australia
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain .,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
16
|
Kim J, An YK, Park S, Lee JS. Bre1 mediates the ubiquitination of histone H2B by regulating Lge1 stability. FEBS Lett 2018; 592:1565-1574. [PMID: 29637554 DOI: 10.1002/1873-3468.13049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023]
Abstract
Histone H2B ubiquitination mediated by the Rad6/Bre1 complex is crucial for regulating the stability and reassembly of the nucleosome. To understand the regulatory mechanisms of H2B ubiquitination, we explored proteins related to the Rad6/Bre1 complex. Interestingly, we observed that the stability of Lge1, reported to be a cofactor of Bre1, is greatly reduced in the absence of Bre1. The stability of Lge1 did require the middle fragment of Bre1 containing a coiled-coil structure, but not its E3 ligase activity. Additionally, we found that Lge1 is involved in the 'writing' step of H2B ubiquitination. Our data suggest that Bre1 mediates H2B ubiquitination more precisely by maintaining the stability of Lge1 as well as through its role as a known E3 ligase.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea.,Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Yu-Kyoung An
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea.,Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Critical Zone Frontier Research Laboratory, Kangwon National University, Chuncheon, Korea.,Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
17
|
Wang L, Cao C, Wang F, Zhao J, Li W. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis. Nucleus 2017. [PMID: 28628358 DOI: 10.1080/19491034.2017.1330237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.
Collapse
Affiliation(s)
- Liying Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , P.R. China.,b University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Chunwei Cao
- a State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , P.R. China.,b University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Fang Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , P.R. China.,b University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Jianguo Zhao
- a State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , P.R. China
| | - Wei Li
- a State Key Laboratory of Stem Cell and Reproductive Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing , P.R. China
| |
Collapse
|
18
|
Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication. Proc Natl Acad Sci U S A 2017; 114:E2205-E2214. [PMID: 28246327 PMCID: PMC5358361 DOI: 10.1073/pnas.1612633114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA lesion bypass is mediated by DNA damage tolerance (DDT) pathways and homologous recombination (HR). The DDT pathways, which involve translesion synthesis and template switching (TS), are activated by the ubiquitylation (ub) of PCNA through components of the RAD6-RAD18 pathway, whereas the HR pathway is independent of RAD18 However, it is unclear how these processes are coordinated within the context of chromatin. Here we show that Bre1, an ubiquitin ligase specific for histone H2B, is recruited to chromatin in a manner coupled to replication of damaged DNA. In the absence of Bre1 or H2Bub, cells exhibit accumulation of unrepaired DNA lesions. Consequently, the damaged forks become unstable and resistant to repair. We provide physical, genetic, and cytological evidence that H2Bub contributes toward both Rad18-dependent TS and replication fork repair by HR. Using an inducible system of DNA damage bypass, we further show that H2Bub is required for the regulation of DDT after genome duplication. We propose that Bre1-H2Bub facilitates fork recovery and gap-filling repair by controlling chromatin dynamics in response to replicative DNA damage.
Collapse
|
19
|
Fujita KI, Ishikura T, Jono Y, Yamaguchi Y, Ogita A, Kubo I, Tanaka T. Anethole potentiates dodecanol's fungicidal activity by reducing PDR5 expression in budding yeast. Biochim Biophys Acta Gen Subj 2016; 1861:477-484. [PMID: 27632201 DOI: 10.1016/j.bbagen.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum and a weaker antimicrobial potency than other available antibiotics. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to exhibit synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the mechanism underlying this synergistic effect of anethole has not been characterized. METHODS We studied this mechanism using dodecanol-treated S. cerevisiae cells and focusing on genes related to multidrug efflux. RESULTS Although dodecanol transiently reduced the number of colony forming units, this recovered to levels similar to those of untreated cells with continued incubation beyond 24h. Reverse transcription polymerase chain reaction analysis revealed overexpression of an ATP-binding cassette (ABC) transporter gene, PDR5, in addition to a slight increase in PDR11, PDR12, and PDR15 transcriptions in dodecanol-treated cells. In the presence of anethole, these effects were attenuated and the fungicidal activity of dodecanol was extended. Dodecanol showed longer lasting fungicidal activity against a Δpdr5. In addition, Δpdr3 and Δlge1, lack transcription factors of PDR5 and PDR3, were partly and completely susceptible to dodecanol, respectively. Furthermore, combination of anethole with fluconazole was also found to exhibit synergy on C. albicans. CONCLUSIONS These results indicated that although anethole reduced the transcription of several transporters, PDR5 expression was particularly relevant to dodecanol efflux. GENERAL SIGNIFICANCE Anethole is expected to be a promising candidate drug for the inhibition of efflux by reducing the transcription of several ABC transporters.
Collapse
Affiliation(s)
- Ken-Ichi Fujita
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan.
| | - Takayuki Ishikura
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Yui Jono
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Yoshihiro Yamaguchi
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan; Advanced Research Institute for Natural Science and Technology, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Akira Ogita
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan; Research Center for Urban Health and Sports, Osaka City University, Sumiyoshi-ku,Osaka, Japan
| | - Isao Kubo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Toshio Tanaka
- Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| |
Collapse
|
20
|
Abstract
Heterochromatin is the transcriptionally repressed portion of eukaryotic chromatin that maintains a condensed appearance throughout the cell cycle. At sites of ribosomal DNA (rDNA) heterochromatin, epigenetic states contribute to gene silencing and genome stability, which are required for proper chromosome segregation and a normal life span. Here, we focus on recent advances in the epigenetic regulation of rDNA silencing in Saccharomyces cerevisiae and in mammals, including regulation by several histone modifications and several protein components associated with the inner nuclear membrane within the nucleolus. Finally, we discuss the perturbations of rDNA epigenetic pathways in regulating cellular aging and in causing various types of diseases.
Collapse
|
21
|
García-Rodríguez N, Wong RP, Ulrich HD. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress. Front Genet 2016; 7:87. [PMID: 27242895 PMCID: PMC4865505 DOI: 10.3389/fgene.2016.00087] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse.
Collapse
|
22
|
Böhm S, Szakal B, Herken BW, Sullivan MR, Mihalevic MJ, Kabbinavar FF, Branzei D, Clark NL, Bernstein KA. The Budding Yeast Ubiquitin Protease Ubp7 Is a Novel Component Involved in S Phase Progression. J Biol Chem 2016; 291:4442-52. [PMID: 26740628 DOI: 10.1074/jbc.m115.671057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
DNA damage must be repaired in an accurate and timely fashion to preserve genome stability. Cellular mechanisms preventing genome instability are crucial to human health because genome instability is considered a hallmark of cancer. Collectively referred to as the DNA damage response, conserved pathways ensure proper DNA damage recognition and repair. The function of numerous DNA damage response components is fine-tuned by posttranslational modifications, including ubiquitination. This not only involves the enzyme cascade responsible for conjugating ubiquitin to substrates but also requires enzymes that mediate directed removal of ubiquitin. Deubiquitinases remove ubiquitin from substrates to prevent degradation or to mediate signaling functions. The Saccharomyces cerevisiae deubiquitinase Ubp7 has been characterized previously as an endocytic factor. However, here we identify Ubp7 as a novel factor affecting S phase progression after hydroxyurea treatment and demonstrate an evolutionary and genetic interaction of Ubp7 with DNA damage repair pathways of homologous recombination and nucleotide excision repair. We find that deletion of UBP7 sensitizes cells to hydroxyurea and cisplatin and demonstrate that factors that stabilize replication forks are critical under these conditions. Furthermore, ubp7Δ cells exhibit an S phase progression defect upon checkpoint activation by hydroxyurea treatment. ubp7Δ mutants are epistatic to factors involved in histone maintenance and modification, and we find that a subset of Ubp7 is chromatin-associated. In summary, our results suggest that Ubp7 contributes to S phase progression by affecting the chromatin state at replication forks, and we propose histone H2B ubiquitination as a potential substrate of Ubp7.
Collapse
Affiliation(s)
- Stefanie Böhm
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Barnabas Szakal
- the Department of Molecular Oncology, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan 20139, Italy
| | - Benjamin W Herken
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Meghan R Sullivan
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Michael J Mihalevic
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Faiz F Kabbinavar
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Dana Branzei
- the Department of Molecular Oncology, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan 20139, Italy
| | - Nathan L Clark
- the Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, and
| | - Kara A Bernstein
- From the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
23
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
24
|
Sen R, Bhaumik SR. Transcriptional stimulatory and repressive functions of histone H2B ubiquitin ligase. Transcription 2015; 4:221-6. [PMID: 24135701 DOI: 10.4161/trns.26623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Silva GM, Finley D, Vogel C. K63 polyubiquitination is a new modulator of the oxidative stress response. Nat Struct Mol Biol 2015; 22:116-23. [PMID: 25622294 PMCID: PMC4318705 DOI: 10.1038/nsmb.2955] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022]
Abstract
Ubiquitination is a post-translational modification that signals multiple processes, including protein degradation, trafficking and DNA repair. Polyubiquitin accumulates globally during the oxidative stress response, and this has been mainly attributed to increased ubiquitin conjugation and perturbations in protein degradation. Here we show that the unconventional Lys63 (K63)-linked polyubiquitin accumulates in the yeast Saccharomyces cerevisiae in a highly sensitive and regulated manner as a result of exposure to peroxides. We demonstrate that hydrogen peroxide inhibits the deubiquitinating enzyme Ubp2, leading to accumulation of K63 conjugates assembled by the Rad6 ubiquitin conjugase and the Bre1 ubiquitin ligase. Using linkage-specific isolation methods and stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we identified >100 new K63-polyubiquitinated targets, which were substantially enriched in ribosomal proteins. Finally, we demonstrate that impairment of K63 ubiquitination during oxidative stress affects polysome stability and protein expression, rendering cells more sensitive to stress, and thereby reveal a new redox-regulatory role for this modification.
Collapse
Affiliation(s)
- Gustavo M. Silva
- Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine Vogel
- Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
26
|
Lin CY, Wu MY, Gay S, Marjavaara L, Lai MS, Hsiao WC, Hung SH, Tseng HY, Wright DE, Wang CY, Hsu GSW, Devys D, Chabes A, Kao CF. H2B mono-ubiquitylation facilitates fork stalling and recovery during replication stress by coordinating Rad53 activation and chromatin assembly. PLoS Genet 2014; 10:e1004667. [PMID: 25275495 PMCID: PMC4183429 DOI: 10.1371/journal.pgen.1004667] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/14/2014] [Indexed: 01/11/2023] Open
Abstract
The influence of mono-ubiquitylation of histone H2B (H2Bub) on transcription via nucleosome reassembly has been widely documented. Recently, it has also been shown that H2Bub promotes recovery from replication stress; however, the underling molecular mechanism remains unclear. Here, we show that H2B ubiquitylation coordinates activation of the intra-S replication checkpoint and chromatin re-assembly, in order to limit fork progression and DNA damage in the presence of replication stress. In particular, we show that the absence of H2Bub affects replication dynamics (enhanced fork progression and reduced origin firing), leading to γH2A accumulation and increased hydroxyurea sensitivity. Further genetic analysis indicates a role for H2Bub in transducing Rad53 phosphorylation. Concomitantly, we found that a change in replication dynamics is not due to a change in dNTP level, but is mediated by reduced Rad53 activation and destabilization of the RecQ helicase Sgs1 at the fork. Furthermore, we demonstrate that H2Bub facilitates the dissociation of the histone chaperone Asf1 from Rad53, and nucleosome reassembly behind the fork is compromised in cells lacking H2Bub. Taken together, these results indicate that the regulation of H2B ubiquitylation is a key event in the maintenance of genome stability, through coordination of intra-S checkpoint activation, chromatin assembly and replication fork progression. Eukaryotic DNA is organized into nucleosomes, which are the fundamental repeating units of chromatin. Coordination of chromatin structure is required for efficient and accurate DNA replication. Aberrant DNA replication results in mutations and chromosome rearrangements that may be associated with human disorders. Therefore, cellular surveillance mechanisms have evolved to counteract potential threats to DNA replication. These mechanisms include checkpoints and specialized enzymatic activities that prevent the replication and segregation of defective DNA molecules. We employed a genome-wide approach to investigate how chromatin structure affects DNA replication under stress. We report that coordination of chromatin assembly and checkpoint activity by a histone modification, H2B ubiquitylation (H2Bub), is critical for the cell response to HU-induced replication stress. In cells with a mutation that abolishes H2Bub, replication progression is enhanced, and the forks are more susceptible to damage by environmental insults. The replication proteins on replicating DNA are akin to a train on the tracks, and movement of this train is carefully controlled. Our data indicate that H2Bub helps organize DNA in the nuclei during DNA replication; this process plays a similar role to the brakes on a train, serving to slow down replication, and maintaining stable progression of replication under environmental stress.
Collapse
Affiliation(s)
- Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Graduate Institute of Nutrition and Food Sciences, Fu-Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Meng-Ying Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Sophie Gay
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), IFOM-IEO Campus, Milan, Italy
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Mong Sing Lai
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), IFOM-IEO Campus, Milan, Italy
| | - Wei-Chun Hsiao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shih-Hsun Hung
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Hsin-Yi Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Duncan Edward Wright
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Chen-Yi Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Institut de Génétique et de Biologie Moléculaire. CNRS UMR 7104, INSERM U 596, Université Louis Pasteur de Strasbourg, Illkirch, CU de Strasbourg, France
| | - Guoo-Shyng W. Hsu
- Graduate Institute of Nutrition and Food Sciences, Fu-Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire. CNRS UMR 7104, INSERM U 596, Université Louis Pasteur de Strasbourg, Illkirch, CU de Strasbourg, France
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Ryu HY, Ahn S. Yeast histone H3 lysine 4 demethylase Jhd2 regulates mitotic rDNA condensation. BMC Biol 2014; 12:75. [PMID: 25248920 PMCID: PMC4201760 DOI: 10.1186/s12915-014-0075-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 11/24/2022] Open
Abstract
Background Nucleolar ribosomal DNA is tightly associated with silent heterochromatin, which is important for rDNA stability, nucleolar integration and cellular senescence. Two pathways have been described that lead to rDNA silencing in yeast: 1) the RENT (regulator of nucleolar silencing and telophase exit) complex, which is composed of Net1, Sir2 and Cdc14 and is required for Sir2-dependent rDNA silencing; and 2) the Sir2-independent silencing mechanism, which involves the Tof2 and Tof2-copurified complex, made up of Lrs4 and Csm1. Here, we present evidence that changes in histone H3 lysine methylation levels distinctly regulate rDNA silencing by recruiting different silencing proteins to rDNA, thereby contributing to rDNA silencing and nucleolar organization in yeast. Results We found that Lys4, Lys79 and Lys36 methylation within histone H3 acts as a bivalent marker for the regulation of rDNA recombination and RENT complex-mediated rDNA silencing, both of which are Sir2-dependent pathways. By contrast, we found that Jhd2, an evolutionarily conserved JARID1 family H3 Lys4 demethylase, affects all states of methylated H3K4 within the nontranscribed spacer (NTS) regions of rDNA and that its activity is required for the regulation of rDNA silencing in a Sir2-independent manner. In this context, Jhd2 regulates rDNA recombination through the Tof2/Csm1/Lrs4 pathway and prevents excessive recruitment of Tof2, Csm1/Lrs4 and condensin subunits to the replication fork barrier site within the NTS1 region. Our FISH analyses further demonstrate that the demethylase activity of Jhd2 regulates mitotic rDNA condensation and that JHD2-deficient cells contain the mostly hypercondensed rDNA mislocalized away from the nuclear periphery. Conclusions Our results show that yeast Jhd2, which demethylates histone H3 Lys4 near the rDNA locus, regulates rDNA repeat stability and rDNA silencing in a Sir2-independent manner by maintaining Csm1/Lrs4 and condensin association with rDNA regions during mitosis. These data suggest that Jhd2-mediated alleviation of excessive Csm1/Lrs4 or condensin at the NTS1 region of rDNA is required for the integrity of rDNA repeats and proper rDNA silencing during mitosis. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0075-3) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Bonizec M, Hérissant L, Pokrzywa W, Geng F, Wenzel S, Howard GC, Rodriguez P, Krause S, Tansey WP, Hoppe T, Dargemont C. The ubiquitin-selective chaperone Cdc48/p97 associates with Ubx3 to modulate monoubiquitylation of histone H2B. Nucleic Acids Res 2014; 42:10975-86. [PMID: 25183520 PMCID: PMC4176170 DOI: 10.1093/nar/gku786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/14/2022] Open
Abstract
Cdc48/p97 is an evolutionary conserved ubiquitin-dependent chaperone involved in a broad array of cellular functions due to its ability to associate with multiple cofactors. Aside from its role in removing RNA polymerase II from chromatin after DNA damage, little is known about how this AAA-ATPase is involved in the transcriptional process. Here, we show that yeast Cdc48 is recruited to chromatin in a transcription-coupled manner and modulates gene expression. Cdc48, together with its cofactor Ubx3 controls monoubiquitylation of histone H2B, a conserved modification regulating nucleosome dynamics and chromatin organization. Mechanistically, Cdc48 facilitates the recruitment of Lge1, a cofactor of the H2B ubiquitin ligase Bre1. The function of Cdc48 in controlling H2B ubiquitylation appears conserved in human cells because disease-related mutations or chemical inhibition of p97 function affected the amount of ubiquitylated H2B in muscle cells. Together, these results suggest a prominent role of Cdc48/p97 in the coordination of chromatin remodeling with gene transcription to define cellular differentiation processes.
Collapse
Affiliation(s)
- Mélanie Bonizec
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Lucas Hérissant
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Fuqiang Geng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Sabine Wenzel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Paco Rodriguez
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| | - Sabine Krause
- Laboratory for Molecular Myology, Friedrich Baur Institute, Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Catherine Dargemont
- Sorbonne Paris Cité, INSERM UMR944, CNRS UMR7212, Equipe labellisée Ligue contre le cancer, University of Paris Diderot, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 Paris Cedex 10, France
| |
Collapse
|
29
|
|
30
|
Bonnet J, Devys D, Tora L. Histone H2B ubiquitination: signaling not scrapping. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 12:e19-e27. [PMID: 25027370 DOI: 10.1016/j.ddtec.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Monoubiquitination of histone H2B has emerged as an important chromatin modification with roles not only in transcription but also in cell differentiation, DNA repair or mRNA processing. Recently, the genome-wide distribution of histone H2B ubiquitination in different organisms has been reported. In this review we discuss the mechanisms regulating H2B ubiquitination and its downstream effectors as well as the suggested functions for this mark in light of these recent studies.:
Collapse
Affiliation(s)
- Jacques Bonnet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U 964, Université de Strasbourg, France.
| |
Collapse
|
31
|
Ryu HY, Rhie BH, Ahn SH. Loss of the Set2 histone methyltransferase increases cellular lifespan in yeast cells. Biochem Biophys Res Commun 2014; 446:113-8. [DOI: 10.1016/j.bbrc.2014.02.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/14/2014] [Indexed: 11/29/2022]
|
32
|
Rhie BH, Song YH, Ryu HY, Ahn SH. Cellular aging is associated with increased ubiquitylation of histone H2B in yeast telomeric heterochromatin. Biochem Biophys Res Commun 2013; 439:570-5. [DOI: 10.1016/j.bbrc.2013.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
|
33
|
Sen R, Lahudkar S, Durairaj G, Bhaumik SR. Functional analysis of Bre1p, an E3 ligase for histone H2B ubiquitylation, in regulation of RNA polymerase II association with active genes and transcription in vivo. J Biol Chem 2013; 288:9619-9633. [PMID: 23417674 DOI: 10.1074/jbc.m113.450403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H2B ubiquitylation is carried out by Bre1p, an E3 ligase, along with an E2 conjugase, Rad6p. H2B ubiquitylation has been previously implicated in promoting the association of RNA polymerase II with the coding sequence of the active GAL1 gene, and hence transcriptional elongation. Intriguingly, we find here that the association of RNA polymerase II with the active GAL1 coding sequence is not decreased in Δbre1, although it is required for H2B ubiquitylation. In contrast, the loss of Rad6p significantly impairs the association of RNA polymerase II with GAL1. Likewise, the point mutation of lysine 123 (ubiquitylation site) to arginine of H2B (H2B-K123R) also lowers the association of RNA polymerase II with GAL1, consistent with the role of H2B ubiquitylation in promoting RNA polymerase II association. Surprisingly, unlike the Δrad6 and H2B-K123R strains, complete deletion of BRE1 does not impair the association of RNA polymerase II with GAL1. However, deletion of the RING domain of Bre1p (that is essential for H2B ubiquitylation) impairs RNA polymerase II association with GAL1. These results imply that a non-RING domain of Bre1p counteracts the stimulatory role of the RING domain in regulating the association of RNA polymerase II with GAL1, and hence RNA polymerase II occupancy is not impaired in Δbre1. Consistently, GAL1 transcription is impaired in the absence of the RING domain of Bre1p, but not in Δbre1. Similar results are also obtained at other genes. Collectively, our results implicate both the stimulatory and repressive roles of Bre1p in regulation of RNA polymerase II association with active genes (and hence transcription) in vivo.
Collapse
Affiliation(s)
- Rwik Sen
- Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Shweta Lahudkar
- Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Geetha Durairaj
- Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901.
| |
Collapse
|
34
|
Jung I, Kim SK, Kim M, Han YM, Kim YS, Kim D, Lee D. H2B monoubiquitylation is a 5'-enriched active transcription mark and correlates with exon-intron structure in human cells. Genome Res 2012; 22:1026-35. [PMID: 22421545 PMCID: PMC3371706 DOI: 10.1101/gr.120634.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/07/2012] [Indexed: 11/25/2022]
Abstract
H2B monoubiquitylation (H2Bub1), which is required for multiple methylations of both H3K4 and H3K79, has been implicated in gene expression in numerous organisms ranging from yeast to human. However, the molecular crosstalk between H2Bub1 and other modifications, especially the methylations of H3K4 and H3K79, remains unclear in vertebrates. To better understand the functional role of H2Bub1, we measured genome-wide histone modification patterns in human cells. Our results suggest that H2Bub1 has dual roles, one that is H3 methylation dependent, and another that is H3 methylation independent. First, H2Bub1 is a 5'-enriched active transcription mark and co-occupies with H3K79 methylations in actively transcribed regions. Second, this study shows for the first time that H2Bub1 plays a histone H3 methylations-independent role in chromatin architecture. Furthermore, the results of this work indicate that H2Bub1 is largely positioned at the exon-intron boundaries of highly expressed exons, and it demonstrates increased occupancy in skipped exons compared with flanking exons in the human and mouse genomes. Our findings collectively suggest that a potentiating mechanism links H2Bub1 to both H3K79 methylations in actively transcribed regions and the exon-intron structure of highly expressed exons via the regulation of nucleosome dynamics during transcription elongation.
Collapse
Affiliation(s)
- Inkyung Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | - Seung-Kyoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | - Mirang Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Yong-Mahn Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | - Yong Sung Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Korea
| |
Collapse
|
35
|
Kaplan CD, Jin H, Zhang IL, Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012; 8:e1002627. [PMID: 22511879 PMCID: PMC3325174 DOI: 10.1371/journal.pgen.1002627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process. Transcription by multisubunit RNA polymerases (msRNAPs) is essential for all kingdoms of life. A conserved region within msRNAPs called the trigger loop (TL) is critical for selection of nucleotide substrates and activity. We present analysis of the RNA Polymerase II (Pol II) TL from the model eukaryote Saccharomyces cerevisiae. Our experiments reveal how TL residues differentially contribute to viability and transcriptional activity. We find that in vivo growth phenotypes correlate with severity of transcriptional defects and that changing Pol II activity to either faster or slower than wild type causes specific transcription defects. We identify transcription start site selection as sensitive to Pol II catalytic activity, proposing that RNA synthesis (an event downstream of many steps in the initiation process) contributes to where productive transcription occurs. Pol II transcription activity was excluded from previous models for selection of productive Pol II start sites. Finally, drug sensitivity data have been widely interpreted to indicate that Pol II mutants defective in elongation properties are sensitized to reduction in GTP levels (a Pol II substrate). Our data suggest an alternate explanation, that sensitivity to decreased GTP levels may be explained in light of Pol II mutant transcriptional start site defects.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
36
|
Shieh GS, Pan CH, Wu JH, Sun YJ, Wang CC, Hsiao WC, Lin CY, Tung L, Chang TH, Fleming AB, Hillyer C, Lo YC, Berger SL, Osley MA, Kao CF. H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast. BMC Genomics 2011; 12:627. [PMID: 22188810 PMCID: PMC3274495 DOI: 10.1186/1471-2164-12-627] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/22/2011] [Indexed: 11/23/2022] Open
Abstract
Background The packaging of DNA into chromatin regulates transcription from initiation through 3' end processing. One aspect of transcription in which chromatin plays a poorly understood role is the co-transcriptional splicing of pre-mRNA. Results Here we provide evidence that H2B monoubiquitylation (H2BK123ub1) marks introns in Saccharomyces cerevisiae. A genome-wide map of H2BK123ub1 in this organism reveals that this modification is enriched in coding regions and that its levels peak at the transcribed regions of two characteristic subgroups of genes. First, long genes are more likely to have higher levels of H2BK123ub1, correlating with the postulated role of this modification in preventing cryptic transcription initiation in ORFs. Second, genes that are highly transcribed also have high levels of H2BK123ub1, including the ribosomal protein genes, which comprise the majority of intron-containing genes in yeast. H2BK123ub1 is also a feature of introns in the yeast genome, and the disruption of this modification alters the intragenic distribution of H3 trimethylation on lysine 36 (H3K36me3), which functionally correlates with alternative RNA splicing in humans. In addition, the deletion of genes encoding the U2 snRNP subunits, Lea1 or Msl1, in combination with an htb-K123R mutation, leads to synthetic lethality. Conclusion These data suggest that H2BK123ub1 facilitates cross talk between chromatin and pre-mRNA splicing by modulating the distribution of intronic and exonic histone modifications.
Collapse
Affiliation(s)
- Grace S Shieh
- Institute of Statistical Sciences, Academia Sinica, Academia Road, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 2011; 25:2254-65. [PMID: 22056671 DOI: 10.1101/gad.177238.111] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).
Collapse
Affiliation(s)
- Kiran Batta
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| | | | | | | | | |
Collapse
|
38
|
Schulze JM, Hentrich T, Nakanishi S, Gupta A, Emberly E, Shilatifard A, Kobor MS. Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123. Genes Dev 2011; 25:2242-7. [PMID: 22056669 DOI: 10.1101/gad.177220.111] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monoubiquitination of H2BK123 (H2BK123ub), catalyzed by Rad6/Bre1, is a transient histone modification with roles in transcription and is essential for establishing H3K4 and H3K79 trimethylations (H3K4me3 and H3K79me3). Here, we investigated the chromatin network around H2BK123ub by examining its localization and co-occurrence with its dependent marks as well as the transcription elongation mark H3K36me3 across the genome of Saccharomyces cerevisiae. In yeast, H2BK123ub is removed by the deubiquitinases Ubp8 and Ubp10, but their genomic target regions remain to be determined. Genome-wide maps of H2BK123ub in the absence of Ubp8 and Ubp10 revealed their distinct target loci, which were genomic sites enriched for H3K4me3 and H3K79me3, respectively. We propose an extended model of the H2BK123ub cross-talk by integrating existing relationships with the substrate specificities of Ubp8 and Ubp10 reported here.
Collapse
Affiliation(s)
- Julia M Schulze
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
A chemical-genetic screen to unravel the genetic network of CDC28/CDK1 links ubiquitin and Rad6-Bre1 to cell cycle progression. Proc Natl Acad Sci U S A 2011; 108:18748-53. [PMID: 22042866 DOI: 10.1073/pnas.1115885108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) control the eukaryotic cell cycle, and a single CDK, Cdc28 (also known as Cdk1), is necessary and sufficient for cell cycle regulation in the budding yeast Saccharomyces cerevisiae. Cdc28 regulates cell cycle-dependent processes such as transcription, DNA replication and repair, and chromosome segregation. To gain further insight into the functions of Cdc28, we performed a high-throughput chemical-genetic array (CGA) screen aimed at unraveling the genetic network of CDC28. We identified 107 genes that strongly genetically interact with CDC28. Although these genes serve multiple cellular functions, genes involved in cell cycle regulation, transcription, and chromosome metabolism were overrepresented. DOA1, which is involved in maintaining free ubiquitin levels, as well as the RAD6-BRE1 pathway, which is involved in transcription, displayed particularly strong genetic interactions with CDC28. We discovered that DOA1 is important for cell cycle entry by supplying ubiquitin. Furthermore, we found that the RAD6-BRE1 pathway functions downstream of DOA1/ubiquitin but upstream of CDC28, by promoting transcription of cyclins. These results link cellular ubiquitin levels and the Rad6-Bre1 pathway to cell cycle progression.
Collapse
|
40
|
Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2011; 24:410-421. [PMID: 22033037 DOI: 10.1016/j.cellsig.2011.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Rivaling or cooperating with other post-translational modifications, ubiquitination plays central roles in regulating numerous cellular processes. Not surprisingly, gain- or loss-of-function mutations in several components of the ubiquitin system are causally linked to human pathologies including cancer. The covalent attachment of ubiquitin to target proteins occurs in sequential steps and involves ubiquitin ligases (E3s) which are the most abundant enzymes of the ubiquitin system. Although often associated with proteasomal degradation, ubiquitination is also involved in regulatory events in a proteasome-independent manner. Moreover, ubiquitination is reversible and specific proteases, termed deubiquitinases (DUBs), remove ubiquitin from protein substrates. While we now appreciate the importance of ubiquitin signaling in coordinating a plethora of physio-pathological processes, the molecular mechanisms are not fully understood. This review summarizes current findings on the critical functions exerted by E3s and DUBs in transcriptional control, particularly chromatin remodeling and transcription initiation/elongation.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada.
| |
Collapse
|
41
|
Zhang F, Yu X. WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol Cell 2011; 41:384-97. [PMID: 21329877 DOI: 10.1016/j.molcel.2011.01.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/11/2010] [Accepted: 12/22/2010] [Indexed: 10/24/2022]
Abstract
Histone H2B ubiquitination plays an important role in regulating chromatin organization during gene transcription. It has been shown that RNF20/40 regulates H2B ubiquitination. Here, using protein affinity purification, we have identified WAC as a functional partner of RNF20/40. Depletion of WAC abolishes H2B ubiquitination. WAC interacts with RNF20/40 through its C-terminal coiled-coil region and promotes RNF20/40 s E3 ligase activity for H2B ubiquitination. The N-terminal WW domain of WAC recognizes RNA polymerase II. During gene transcription, WAC targets RNF20/40 to associate with RNA polymerase II complex for H2B ubiquitination at active transcription sites, which regulates transcription. Moreover, WAC-dependent transcription is important for cell-cycle checkpoint activation in response to genotoxic stress. Taken together, our results demonstrate an important regulator for transcription-coupled histone H2B ubiquitination.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
42
|
Kwon DW, Ahn SH. Role of yeast JmjC-domain containing histone demethylases in actively transcribed regions. Biochem Biophys Res Commun 2011; 410:614-9. [PMID: 21684259 DOI: 10.1016/j.bbrc.2011.06.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/06/2011] [Indexed: 11/16/2022]
Abstract
In budding yeast, there are five JmjC domain-containing proteins, Jhd1, Jhd2, Rph1, Ecm5, and Gis1, which have been suggested to directly remove histone lysine methylation via a hydroxylation reaction. Of these demethylases, the ability of Jhd1 or Rph1 to demethylate histone H3 as a substrate has been identified in vivo. However, the overall roles of endogenous JmjC demethylases in the demethylation of histones encompassed by genes that are constitutively transcribed or their specificities towards histone H3 lysine modification at mono-, di-, or trimethylation states are still unclear. Using chromatin immunoprecipitation with nine specific antibodies directed against mono-, di-, or trimethylated histone H3 at lysines 4, 36, or 79, we show the whole patterns of histone H3 lysine methylation and the net changes in methylations that are caused by the deletion of each of the five JmjC demethylases in actively transcribed regions. Our results show that of the JmjC-containing proteins, Rph1 is the demethylase that is specific for histone H3K36 trimethylation during transcription elongation in vivo, and the abilities of other endogenous JmjC demethylasesto demethylate histone H3 are weak toward histone H3in actively transcribed regions.
Collapse
Affiliation(s)
- Dae-Whan Kwon
- Division of Molecular and Life Science, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | | |
Collapse
|