1
|
Sommariva M, Dolci M, Triulzi T, Ambrogi F, Dugo M, De Cecco L, Le Noci V, Bernardo G, Anselmi M, Montanari E, Pupa SM, Signorini L, Gagliano N, Sfondrini L, Delbue S, Tagliabue E. Impact of in vitro SARS-CoV-2 infection on breast cancer cells. Sci Rep 2024; 14:13134. [PMID: 38849411 PMCID: PMC11161491 DOI: 10.1038/s41598-024-63804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The pandemic of coronavirus disease 19 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), had severe repercussions for breast cancer patients. Increasing evidence indicates that SARS-CoV-2 infection may directly impact breast cancer biology, but the effects of SARS-CoV-2 on breast tumor cells are still unknown. Here, we analyzed the molecular events occurring in the MCF7, MDA-MB-231 and HCC1937 breast cancer cell lines, representative of the luminal A, basal B/claudin-low and basal A subtypes, respectively, upon SARS-CoV-2 infection. Viral replication was monitored over time, and gene expression profiling was conducted. We found that MCF7 cells were the most permissive to viral replication. Treatment of MCF7 cells with Tamoxifen reduced the SARS-CoV-2 replication rate, suggesting an involvement of the estrogen receptor in sustaining virus replication in malignant cells. Interestingly, a metagene signature based on genes upregulated by SARS-CoV-2 infection in all three cell lines distinguished a subgroup of premenopausal luminal A breast cancer patients with a poor prognosis. As SARS-CoV-2 still spreads among the population, it is essential to understand the impact of SARS-CoV-2 infection on breast cancer, particularly in premenopausal patients diagnosed with the luminal A subtype, and to assess the long-term impact of COVID-19 on breast cancer outcomes.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy.
| | - Maria Dolci
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Tiziana Triulzi
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Federico Ambrogi
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Celoria 22, 20133, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Martina Anselmi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Elena Montanari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Serenella M Pupa
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Lucia Signorini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Elda Tagliabue
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| |
Collapse
|
2
|
Abrams KL, Ward DA, Sabiniewicz A, Hummel T. Olfaction evaluation in dogs with sudden acquired retinal degeneration syndrome. Vet Ophthalmol 2024; 27:127-138. [PMID: 37399129 DOI: 10.1111/vop.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE To evaluate olfaction in dogs with sudden acquired retinal degeneration syndrome (SARDS) compared with sighted dogs and blind dogs without SARDS as control groups. ANIMALS STUDIED Forty client-owned dogs. PROCEDURE Olfactory threshold testing was performed on three groups: SARDS, sighted, and blind/non-SARDS using eugenol as the test odorant. The olfactory threshold was determined when subjects indicated the detection of a specific eugenol concentration with behavioral responses. Olfactory threshold, age, body weight, and environmental room factors were evaluated. RESULTS Sixteen dogs with SARDS, 12 sighted dogs, and 12 blind/non-SARDS dogs demonstrated mean olfactory threshold pen numbers of 2.8 (SD = 1.4), 13.8 (SD = 1.4), and 13.4 (SD = 1.1), respectively, which correspond to actual mean concentrations of 0.017 g/mL, 1.7 × 10-13 g/mL and 4.26 × 10-13 g/mL, respectively. Dogs with SARDS had significantly poorer olfactory threshold scores compared with the two control groups (p < .001), with no difference between the control groups (p = .5). Age, weight, and room environment did not differ between the three groups. CONCLUSIONS Dogs with SARDS have severely decreased olfaction capabilities compared with sighted dogs and blind/non-SARDS dogs. This finding supports the suspicion that SARDS is a systemic disease causing blindness, endocrinopathy, and hyposmia. Since the molecular pathways are similar in photoreceptors, olfactory receptors, and steroidogenesis with all using G-protein coupled receptors in the cell membrane, the cause of SARDS may exist at the G-protein associated interactions with intracellular cyclic nucleotides. Further investigations into G-protein coupled receptors pathway and canine olfactory receptor genes in SARDS patients may be valuable in revealing the cause of SARDS.
Collapse
Affiliation(s)
- Kenneth L Abrams
- Veterinary Ophthalmology Services, North Kingstown, Rhode Island, USA
| | - Daniel A Ward
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Agnieszka Sabiniewicz
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wrocław, Wrocław, Poland
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks? J Xenobiot 2023; 13:121-131. [PMID: 36976159 PMCID: PMC10051690 DOI: 10.3390/jox13010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Fragrance compounds (synthetic fragrances or natural essential oils) comprise formulations of specific combinations of individual materials or mixtures. Natural or synthetic scents are core constituents of personal care and household products (PCHPs) that impart attractiveness to the olfactory perception and disguise the unpleasant odor of the formula components of PCHPs. Fragrance chemicals have beneficial properties that allow their use in aromatherapy. However, because fragrances and formula constituents of PCHPs are volatile organic compounds (VOCs), vulnerable populations are exposed daily to variable indoor concentrations of these chemicals. Fragrance molecules may trigger various acute and chronic pathological conditions because of repetitive human exposure to indoor environments at home and workplaces. The negative impact of fragrance chemicals on human health includes cutaneous, respiratory, and systemic effects (e.g., headaches, asthma attacks, breathing difficulties, cardiovascular and neurological problems) and distress in workplaces. Pathologies related to synthetic perfumes are associated with allergic reactions (e.g., cutaneous and pulmonary hypersensitivity) and potentially with the perturbation of the endocrine-immune-neural axis. The present review aims to critically call attention to odorant VOCs, particularly synthetic fragrances and associated formula components of PCHPs, potentially impacting indoor air quality and negatively affecting human health.
Collapse
|
4
|
A Comparison of the Composition of Selected Commercial Sandalwood Oils with the International Standard. Molecules 2021; 26:molecules26082249. [PMID: 33924603 PMCID: PMC8070282 DOI: 10.3390/molecules26082249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/29/2023] Open
Abstract
Sandalwood oils are highly desired but expensive, and hence many counterfeit oils are sold in high street shops. The study aimed to determine the content of oils sold under the name sandalwood oil and then compare their chromatographic profile and α- and β santalol content with the requirements of ISO 3518:2002. Gas chromatography with mass spectrometry analysis found that none of the six tested “sandalwood” oils met the ISO standard, especially in terms of α-santalol content. Only one sample was found to contain both α- and β-santalol, characteristic of Santalum album. In three samples, valerianol, elemol, eudesmol isomers, and caryophyllene dominated, indicating the presence of Amyris balsamifera oil. Another two oil samples were found to be synthetic mixtures: benzyl benzoate predominating in one, and synthetic alcohols, such as javanol, polysantol and ebanol, in the other. The product label only gave correct information in three cases: one sample containing Santalum album oil and two samples containing Amyris balsamifera oil. The synthetic samples described as 100% natural essential oil from sandalwood are particularly dangerous and misleading to the consumer. Moreover, the toxicological properties of javanol, polysantol and ebanol, for example, are unknown.
Collapse
|
5
|
Raka RN, Wu H, Xiao J, Hossen I, Cao Y, Huang M, Jin J. Human ectopic olfactory receptors and their food originated ligands: a review. Crit Rev Food Sci Nutr 2021; 62:5424-5443. [PMID: 33605814 DOI: 10.1080/10408398.2021.1885007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ectopic olfactory receptors (EORs) are expressed in non-nasal tissues of human body. They belong to the G-protein coupled receptor (GPCR) superfamily. EORs may not be capable of differentiating odorants as nasal olfactory receptors (ORs), but still can be triggered by odorants and are involved in different biological processes such as anti-inflammation, energy metabolism, apoptosis etc. Consumption of strong flavored foods like celery, oranges, onions, and spices, is a good aid to attenuate inflammation and boost our immune system. During the digestion of these foods in human digestive system and the metabolization by gut microbiota, the odorants closely interacting with EORs, may play important roles in various bio-functions like serotonin release, appetite regulation etc., and ultimately impact health and diseases. Thus, EORs could be a potential target linking the ligands from food and their bioactivities. There have been related studies in different research fields of medicine and physiology, but still no systematic food oriented review. Our review portrays that EORs could be a potential target for functional food development. In this review, we summarized the EORs found in human tissues, their impacts on health and disease, ligands interacting with EORs exerting specific biological effects, and the mechanisms involved.
Collapse
Affiliation(s)
- Rifat Nowshin Raka
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Hua Wu
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| | - Junsong Xiao
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Imam Hossen
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, China
| | - Yanping Cao
- Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing, China
| | - Mingquan Huang
- Beijing Technology and Business University, Beijing, China.,Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing, China
| | - Jianming Jin
- Beijing Technology and Business University, Beijing, China.,Beijing Key Lab of Plant Resource Research and Development, Beijing, China
| |
Collapse
|
6
|
Yuan S, Dahoun T, Brugarolas M, Pick H, Filipek S, Vogel H. Computational modeling of the olfactory receptor Olfr73 suggests a molecular basis for low potency of olfactory receptor-activating compounds. Commun Biol 2019; 2:141. [PMID: 31044166 PMCID: PMC6478719 DOI: 10.1038/s42003-019-0384-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian olfactory system uses hundreds of specialized G-protein-coupled olfactory receptors (ORs) to discriminate a nearly unlimited number of odorants. Cognate agonists of most ORs have not yet been identified and potential non-olfactory processes mediated by ORs are unknown. Here, we used molecular modeling, fingerprint interaction analysis and molecular dynamics simulations to show that the binding pocket of the prototypical olfactory receptor Olfr73 is smaller, but more flexible, than binding pockets of typical non-olfactory G-protein-coupled receptors. We extended our modeling to virtual screening of a library of 1.6 million compounds against Olfr73. Our screen predicted 25 Olfr73 agonists beyond traditional odorants, of which 17 compounds, some with therapeutic potential, were validated in cell-based assays. Our modeling suggests a molecular basis for reduced interaction contacts between an odorant and its OR and thus the typical low potency of OR-activating compounds. These results provide a proof-of-principle for identifying novel therapeutic OR agonists.
Collapse
Affiliation(s)
- Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory of Biomodelling, Faculty of Chemistry & Biological and Chemical Research Centre, Uni-versity of Warsaw, 02-093 Warsaw, Poland
| | - Thamani Dahoun
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marc Brugarolas
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Pick
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Slawomir Filipek
- Laboratory of Biomodelling, Faculty of Chemistry & Biological and Chemical Research Centre, Uni-versity of Warsaw, 02-093 Warsaw, Poland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Courtens F, Demangeat JL, Benabdallah M. Could the Olfactory System Be a Target for Homeopathic Remedies as Nanomedicines? J Altern Complement Med 2018; 24:1032-1038. [PMID: 29889551 PMCID: PMC6247980 DOI: 10.1089/acm.2018.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Homeopathic remedies (HRs) contain odorant molecules such as flavonoids or terpenes and can lose their efficiency in presence of some competitive odors. Such similarities, along with extreme sensitivity of the olfactory system, widespread presence of olfactory receptors over all organic tissues (where they have metabolic roles besides perception of odors), and potential direct access to the brain through olfactory nerves (ONs) and trigeminal nerves, may suggest the olfactory system as target for HRs. Recent works highlighted that HRs exist in a dual form, that is, a still molecular form at low dilution and a nanoparticulate form at high dilution, and that remnants of source remedy persist in extremely high dilutions. From the literature, both odorants and nanoparticles (NPs) can enter the body through inhalation, digestive absorption, or through the skin, especially, NPs or viruses can directly reach the brain through axons of nerves. Assuming that HRs are recognized by olfactory receptors, their information could be transmitted to numerous tissues through receptor-ligand interaction, or to the brain by either activating the axon potential of ONs and trigeminal nerves or, in their nanoparticulate form, by translocating through axons of these nerves. Moreover, the nanoparticulate form may activate the immune system at multiple levels, induce systemic various biological responses through the pituitary axis and inflammation factors, or modulate gene expression at the cellular level. As immunity, inflammation, pituitary axis, and olfactory system are closely linked together, their permanent interaction triggered by olfactory receptors may thus ensure homeostasis.
Collapse
|
8
|
Bienenstock J, Kunze WA, Forsythe P. Disruptive physiology: olfaction and the microbiome-gut-brain axis. Biol Rev Camb Philos Soc 2017; 93:390-403. [DOI: 10.1111/brv.12348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
Affiliation(s)
- John Bienenstock
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Department of Pathology and Molecular Medicine; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| | - Wolfgang A. Kunze
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Department of Psychiatry & Behavioural Sciences; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| | - Paul Forsythe
- McMaster Brain-Body Institute at St Joseph's Healthcare Hamilton; 50 Charlton Ave. E. Room T3304 Hamilton L8N 4A6 Canada
- Firestone Institute for Respiratory Health; Hamilton 50 Charlton Ave. E., Room T3302 L8N 4A6 Canada
- Department of Medicine; McMaster University, 1280 Main St. W.; Hamilton L8S 4L8 Canada
| |
Collapse
|
9
|
Pavan B, Dalpiaz A. Odorants could elicit repair processes in melanized neuronal and skin cells. Neural Regen Res 2017; 12:1401-1404. [PMID: 29089976 PMCID: PMC5649451 DOI: 10.4103/1673-5374.215246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The expression of ectopic olfactory receptors (ORs) in melanized cells, such as the human brain nigrostriatal dopaminergic neurons and skin melanocytes, is here pointed out. ORs are recognized to regulate skin melanogenesis, whereas OR expression in the dopaminergic neurons, characterized by accumulation of pigment neuromelanin, is downregulated in Parkinson's disease. Furthermore, the correlation between the pigmentation process and the dopamine pathway through α-synuclein expression is also highlighted. Purposely, these ORs are suggested as therapeutic target for neurodegenerative diseases related to the pigmentation disorders. Based on this evidence, a possible way of turning odorants into drugs, acting on three specific olfactory receptors, OR51E2, OR2AT4 and VN1R1, is thus introduced. Various odorous molecules are shown to interact with these ORs and their therapeutic potential against melanogenic and neurodegenerative dysfunctions, including melanoma and Parkinson's disease, is suggested. Finally, a direct functional link between olfactory and endocrine systems in human brain through VN1R1 is proposed, helping to counteract female susceptibility to Parkinson's disease in quiescent life.
Collapse
Affiliation(s)
- Barbara Pavan
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandro Dalpiaz
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Ruddigkeit L, Awale M, Reymond JL. Expanding the fragrance chemical space for virtual screening. J Cheminform 2014; 6:27. [PMID: 24876890 PMCID: PMC4037718 DOI: 10.1186/1758-2946-6-27] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 12/30/2022] Open
Abstract
The properties of fragrance molecules in the public databases SuperScent and Flavornet were analyzed to define a “fragrance-like” (FL) property range (Heavy Atom Count ≤ 21, only C, H, O, S, (O + S) ≤ 3, Hydrogen Bond Donor ≤ 1) and the corresponding chemical space including FL molecules from PubChem (NIH repository of molecules), ChEMBL (bioactive molecules), ZINC (drug-like molecules), and GDB-13 (all possible organic molecules up to 13 atoms of C, N, O, S, Cl). The FL subsets of these databases were classified by MQN (Molecular Quantum Numbers, a set of 42 integer value descriptors of molecular structure) and formatted for fast MQN-similarity searching and interactive exploration of color-coded principal component maps in form of the FL-mapplet and FL-browser applications freely available at http://www.gdb.unibe.ch. MQN-similarity is shown to efficiently recover 15 different fragrance molecule families from the different FL subsets, demonstrating the relevance of the MQN-based tool to explore the fragrance chemical space.
Collapse
Affiliation(s)
- Lars Ruddigkeit
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
11
|
Audouze K, Tromelin A, Le Bon AM, Belloir C, Petersen RK, Kristiansen K, Brunak S, Taboureau O. Identification of odorant-receptor interactions by global mapping of the human odorome. PLoS One 2014; 9:e93037. [PMID: 24695519 PMCID: PMC3973694 DOI: 10.1371/journal.pone.0093037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/27/2014] [Indexed: 12/14/2022] Open
Abstract
The human olfactory system recognizes a broad spectrum of odorants using approximately 400 different olfactory receptors (hORs). Although significant improvements of heterologous expression systems used to study interactions between ORs and odorant molecules have been made, screening the olfactory repertoire of hORs remains a tremendous challenge. We therefore developed a chemical systems level approach based on protein-protein association network to investigate novel hOR-odorant relationships. Using this new approach, we proposed and validated new bioactivities for odorant molecules and OR2W1, OR51E1 and OR5P3. As it remains largely unknown how human perception of odorants influence or prevent diseases, we also developed an odorant-protein matrix to explore global relationships between chemicals, biological targets and disease susceptibilities. We successfully experimentally demonstrated interactions between odorants and the cannabinoid receptor 1 (CB1) and the peroxisome proliferator-activated receptor gamma (PPARγ). Overall, these results illustrate the potential of integrative systems chemical biology to explore the impact of odorant molecules on human health, i.e. human odorome.
Collapse
Affiliation(s)
- Karine Audouze
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Anne Tromelin
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Bourgogne University, Dijon, France
| | - Anne Marie Le Bon
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Bourgogne University, Dijon, France
| | - Christine Belloir
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Bourgogne University, Dijon, France
| | | | | | - Søren Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Olivier Taboureau
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- INSERM UMR-S973, Molecules Thérapeutiques In Silico, Paris Diderot University, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Pick H, Terrettaz S, Baud O, Laribi O, Brisken C, Vogel H. Monitoring proliferative activities of hormone-like odorants in human breast cancer cells by gene transcription profiling and electrical impedance spectroscopy. Biosens Bioelectron 2013; 50:431-6. [DOI: 10.1016/j.bios.2013.06.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022]
|
13
|
Klomp JA, Furge KA. Genome-wide matching of genes to cellular roles using guilt-by-association models derived from single sample analysis. BMC Res Notes 2012; 5:370. [PMID: 22824328 PMCID: PMC3599284 DOI: 10.1186/1756-0500-5-370] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background High-throughput methods that ascribe a cellular or physiological function for each gene product are useful to understand the roles of genes that have not been extensively characterized by molecular or genetic approaches. One method to infer gene function is "guilt-by-association", in which the expression pattern of a poorly characterized gene is shown to co-vary with the expression of better-characterized genes. The function of the poorly characterized gene is inferred from the known function(s) of the well-described genes. For example, genes co-expressed with transcripts that vary during the cell cycle, development, environmental stresses, and with oncogenesis have been implicated in those processes. Findings While examining the expression characteristics of several poorly characterized genes, we noted that we could associate each of the genes with a cellular phenotype by correlating individual gene expression changes with gene set enrichment scores from individual samples. We evaluated the effectiveness of this approach using a modest sized gene expression data set (expO) and a compendium of gene expression phenotypes (MSigDBv3.0). We found the transcripts that correlated best with enrichment in mitochondrial and lysosomal gene sets were mostly related to those processes (89/100 and 44/50, respectively). The reciprocal evaluation, ranking gene sets according to correlation of enrichment with an individual gene’s expression, also reflected known associations for prominent genes in the biomedical literature (16/19). In evaluating the model, we also found that 4% of the genome encodes proteins that are associated with small molecule and small peptide signal transduction gene sets, implicating a large number of genes in both internal and external environmental sensing. Conclusions Our results show that this approach is useful to infer functions of disparate sets of genes. This method mirrors the biological experimental approaches used by others to associate individual genes with defined gene expression changes. Moreover, the approach can be used beyond discovering genes related to a cellular process to discover meaningful expression phenotypes from a compendium that are associated with a given gene. The effectiveness, versatility, and breadth of this approach make possible its application in a variety of contexts and with a variety of downstream analyses.
Collapse
Affiliation(s)
- Jeff A Klomp
- Center for Cancer Genomics and Computational Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | | |
Collapse
|
14
|
Kohl JV. Human pheromones and food odors: epigenetic influences on the socioaffective nature of evolved behaviors. SOCIOAFFECTIVE NEUROSCIENCE & PSYCHOLOGY 2012; 2:17338. [PMID: 24693349 PMCID: PMC3960071 DOI: 10.3402/snp.v2i0.17338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Olfactory cues directly link the environment to gene expression. Two types of olfactory cues, food odors and social odors, alter genetically predisposed hormone-mediated activity in the mammalian brain. METHODS The honeybee is a model organism for understanding the epigenetic link from food odors and social odors to neural networks of the mammalian brain, which ultimately determine human behavior. RESULTS Pertinent aspects that extend the honeybee model to human behavior include bottom-up followed by top-down gene, cell, tissue, organ, organ-system, and organism reciprocity; neurophysiological effects of food odors and of sexually dimorphic, species-specific social odors; a model of motor function required for social selection that precedes sexual selection; and hormonal effects that link current neuroscience to social science affects on the development of animal behavior. CONCLUSION As the psychological influence of food odors and social orders is examined in detail, the socioaffective nature of olfactory cues on the biologically based development of sexual preferences across all species that sexually reproduce becomes clearer.
Collapse
Affiliation(s)
- James V. Kohl
- James V. Kohl, Independent Researcher, 175 Crimson Lane, Epworth, GA 30541, USA. Tel: (706) 455-7967.
| |
Collapse
|
15
|
Dzięcioł M, Stańczyk E, Noszczyk-Nowak A, Niżański W, Ochota M, Kozdrowski R. Influence of bitches sex pheromones on the heart rate and other chosen parameters of blood flow in stud dogs (Canis familiaris). Res Vet Sci 2012; 93:1241-7. [PMID: 22401977 DOI: 10.1016/j.rvsc.2012.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/16/2012] [Accepted: 02/12/2012] [Indexed: 11/28/2022]
Abstract
The aim of this study was to verify the usefulness of the measurement of chosen cardiovascular activity parameters for examination of sex pheromones effects in male dogs. We evaluated the influence of the bitches' sexual pheromones (BSP) on heart rate (HR) with the use of a Holter monitor, and chosen parameters of blood flow in vessels of penis, testes and kidney, with color-coded and pulsed Doppler ultrasonography. We found that the BSP increased HR in all examined males even without showing any other signs of arousal. There were no changes in the RI (resistant index) and PI (pulsative index) in any trials during the pheromone presentation. The increase in blood flow intensity was noted in penile vessels but not in the testes and kidney. We concluded that measurement of flow intensity in the penis as well as the changes in heart rate as the male's reaction to the BSP can be useful in research concerning sex pheromones in dogs.
Collapse
Affiliation(s)
- Michał Dzięcioł
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 49, 50-366 Wrocław, Poland.
| | | | | | | | | | | |
Collapse
|
16
|
Corin K, Pick H, Baaske P, Cook BL, Duhr S, Wienken CJ, Braun D, Vogel H, Zhang S. Insertion of T4-lysozyme (T4L) can be a useful tool for studying olfactory-related GPCRs. MOLECULAR BIOSYSTEMS 2012; 8:1750-9. [DOI: 10.1039/c2mb05495g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Dahoun T, Grasso L, Vogel H, Pick H. Recombinant Expression and Functional Characterization of Mouse Olfactory Receptor mOR256-17 in Mammalian Cells. Biochemistry 2011; 50:7228-35. [DOI: 10.1021/bi2008596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thamani Dahoun
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Luigino Grasso
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Pick
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Baud O, Etter S, Spreafico M, Bordoli L, Schwede T, Vogel H, Pick H. The mouse eugenol odorant receptor: structural and functional plasticity of a broadly tuned odorant binding pocket. Biochemistry 2010; 50:843-53. [PMID: 21142015 DOI: 10.1021/bi1017396] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular interactions of odorants with their olfactory receptors (ORs) are of central importance for the ability of the mammalian olfactory system to detect and discriminate a vast variety of odors with a limited set of receptors. How a particular OR binds and distinguishes different odorant molecules remains largely unknown on a structural basis. Here we investigated this question for the mouse eugenol receptor (mOR-EG). By screening a large odorant library, we discovered a wide range of chemical structures activating the receptor in heterologous mammalian cells. Potent agonists comprise (i) benzene, (ii) cyclohexane, or (iii) polycyclic structures substituted with alcohol, aldehyde, keto, ether, or esterified carboxylic groups. To detect those amino acids within the receptor that are in contact with a particular bound odorant molecule, we investigated how distinct mOR-EG point mutants were activated by the different odorant agonists found for the wild-type receptor. We identified 11 amino acids as a part of the receptor's ligand binding pocket. Molecular modeling predicted 10 of these residues in transmembrane helices TM3-TM6 and one in the extracellular loop between TM2 and TM3. These amino acids participate in odorant binding with variable importance depending on the type of odorant, revealing functional "fingerprints" of ligand-receptor interactions.
Collapse
Affiliation(s)
- Olivia Baud
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Wendler A, Baldi E, Harvey BJ, Nadal A, Norman A, Wehling M. Position paper: Rapid responses to steroids: current status and future prospects. Eur J Endocrinol 2010; 162:825-30. [PMID: 20194525 DOI: 10.1530/eje-09-1072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Steroids exert their actions through several pathways. The classical genomic pathway, which involves binding of steroids to receptors and subsequent modulation of gene expression, is well characterized. Besides this, rapid actions of steroids have been shown to exist. Since 30 years, research on rapid actions of steroids is an emerging field of science. Today, rapid effects of steroids are well established, and are shown to exist for every type of steroid. The classical steroid receptors have been shown to be involved in rapid actions, but there is also strong evidence that unrelated structures mediate these rapid effects. Despite increasing knowledge about the mechanisms and structures which mediate these actions, there is still no unanimous acceptance of this category. This article briefly reviews the history of the field including current controversies and challenges. It is not meant as a broad review of literature, but should increase the awareness of the endocrinology society for rapid responses to steroids. As members of the organizing committee of the VI International Meeting on Rapid Responses to Steroid Hormones 2009, we propose a research agenda focusing on the identification of new receptoral structures and the identification of mechanisms of actions at physiological steroid concentrations. Additionally, efforts for the propagation of translational studies, which should finally lead to clinical benefit in the area of rapid steroid action research, should be intensified.
Collapse
Affiliation(s)
- Alexandra Wendler
- Clinical Pharmacology Mannheim, Faculty of Medicine Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|