1
|
Datta SP, Dey CS. Evolutionary duplication of the leishmanial adaptor protein α-SNAP plays a role in its pathogenicity. J Biol Chem 2025; 301:108427. [PMID: 40118450 PMCID: PMC12019078 DOI: 10.1016/j.jbc.2025.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025] Open
Abstract
Essential-gene duplication during evolution promotes specialized functions beyond the typical role. Our in silico study unveiled two α-SNAP paralogs in Leishmania, a crucial component that, along with NSF, triggers disassembly of the cis-SNARE complex, formed during vesicle fusion with target membranes. While multiple α-SNAPs are common in many flagellated protists, including the trypanosomatids, they are unusual among other eukaryotes. This study explores the evolutionary and functional relevance of α-SNAP gene duplication in Leishmania donovani, emphasizing both subfunctionalization and neofunctionalization. We discovered that L. donovani α-SNAP (Ldα-SNAP) genes are transcribed in promastigote and amastigote stages, indicating they are not pseudogenes. Although the two paralogs share essential residues and structural features, only Ldα-SNAP1660 (Ldα-SNAP1) can effectively substitute the function of its yeast counterpart, while Ldα-SNAP3040 (Ldα-SNAP2) cannot. This functional difference is attributed to a replacement of alanine with phosphorylatable-serine in Ldα-SNAP1 during evolution from the most common ancestral ortholog. This modification is rarely observed in corresponding orthologs of other trypanosomatids. Incidentally, Ldα-SNAP paralogs exhibit differential localization in the ER and flagellar pocket. However, both paralogs, either actively or passively, regulate the secretion of exosomes and PM blebs, containing the virulence protein GP63. This indicates functional division and their indirect participation in the host's macrophage inactivation. Moreover, a small fraction of Ldα-SNAP1's presence in the flagellum hints at a potential role in sensing environmental cues and aiding the parasite's attachment to the sandfly's hindgut. Our findings underscore that duplicated Ldα-SNAPs have retained ancestral functions through subfunctionalization, and subsequently, they acquired parasite-specific neofunction(s) through the accumulation of natural mutation(s).
Collapse
Affiliation(s)
- Shankari Prasad Datta
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.
| |
Collapse
|
2
|
Yang J, Kong L, Zou L, Liu Y. The role of synaptic protein NSF in the development and progression of neurological diseases. Front Neurosci 2024; 18:1395294. [PMID: 39498393 PMCID: PMC11532144 DOI: 10.3389/fnins.2024.1395294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
This document provides a comprehensive examination of the pivotal function of the N-ethylmaleimide-sensitive factor (NSF) protein in synaptic function. The NSF protein directly participates in critical biological processes, including the cyclic movement of synaptic vesicles (SVs) between exocytosis and endocytosis, the release and transmission of neurotransmitters, and the development of synaptic plasticity through interactions with various proteins, such as SNARE proteins and neurotransmitter receptors. This review also described the multiple functions of NSF in intracellular membrane fusion events and its close associations with several neurological disorders, such as Parkinson's disease, Alzheimer's disease, and epilepsy. Subsequent studies should concentrate on determining high-resolution structures of NSF in different domains, identifying its specific alterations in various diseases, and screening small molecule regulators of NSF from multiple perspectives. These research endeavors aim to reveal new therapeutic targets associated with the biological functions of NSF and disease mechanisms.
Collapse
Affiliation(s)
- Jingyue Yang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingyue Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zou
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Duan M, Plemel RL, Takenaka T, Lin A, Delgado BM, Nattermann U, Nickerson DP, Mima J, Miller EA, Merz AJ. SNARE chaperone Sly1 directly mediates close-range vesicle tethering. J Cell Biol 2024; 223:e202001032. [PMID: 38478018 PMCID: PMC10943277 DOI: 10.1083/jcb.202001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
The essential Golgi protein Sly1 is a member of the Sec1/mammalian Unc-18 (SM) family of SNARE chaperones. Sly1 was originally identified through remarkable gain-of-function alleles that bypass requirements for diverse vesicle tethering factors. Employing genetic analyses and chemically defined reconstitutions of ER-Golgi fusion, we discovered that a loop conserved among Sly1 family members is not only autoinhibitory but also acts as a positive effector. An amphipathic lipid packing sensor (ALPS)-like helix within the loop directly binds high-curvature membranes. Membrane binding is required for relief of Sly1 autoinhibition and also allows Sly1 to directly tether incoming vesicles to the Qa-SNARE on the target organelle. The SLY1-20 mutation bypasses requirements for diverse tethering factors but loses this ability if the tethering activity is impaired. We propose that long-range tethers, including Golgins and multisubunit tethering complexes, hand off vesicles to Sly1, which then tethers at close range to initiate trans-SNARE complex assembly and fusion in the early secretory pathway.
Collapse
Affiliation(s)
- Mengtong Duan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rachael L. Plemel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Ariel Lin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Biology, California State University, San Bernardino, CA, USA
| | | | - Una Nattermann
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Biophysics, Structure, and Design Graduate Program, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Joji Mima
- Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Alexey J. Merz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Liu F, He R, Xu X, Zhu M, Yu H, Liu Y. Munc18c accelerates SNARE-dependent membrane fusion in the presence of regulatory proteins α-SNAP and NSF. J Biol Chem 2024; 300:105782. [PMID: 38395304 PMCID: PMC10959665 DOI: 10.1016/j.jbc.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Intracellular vesicle fusion is driven by the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and their cofactors, including Sec1/Munc18 (SM), α-SNAP, and NSF. α-SNAP and NSF play multiple layers of regulatory roles in the SNARE assembly, disassembling the cis-SNARE complex and the prefusion SNARE complex. How SM proteins coupled with NSF and α-SNAP regulate SNARE-dependent membrane fusion remains incompletely understood. Munc18c, an SM protein involved in the exocytosis of the glucose transporter GLUT4, binds and activates target (t-) SNAREs to accelerate the fusion reaction through a SNARE-like peptide (SLP). Here, using an in vitro reconstituted system, we discovered that α-SNAP blocks the GLUT4 SNAREs-mediated membrane fusion. Munc18c interacts with t-SNAREs to displace α-SNAP, which overcomes the fusion inhibition. Furthermore, Munc18c shields the trans-SNARE complex from NSF/α-SNAP-mediated disassembly and accelerates SNARE-dependent fusion kinetics in the presence of NSF and α-SNAP. The SLP in domain 3a is indispensable in Munc18c-assisted resistance to NSF and α-SNAP. Together, our findings demonstrate that Munc18c protects the prefusion SNARE complex from α-SNAP and NSF, promoting SNARE-dependent membrane fusion through its SLP.
Collapse
Affiliation(s)
- Furong Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xinyu Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
5
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
6
|
Abstract
Membrane fusion is driven by Sec17, Sec18, and SNARE zippering. Sec17 bound to SNAREs promotes fusion through its membrane-proximal N-terminal apolar loop domain. At its membrane-distal end, Sec17 serves as a high-affinity receptor for Sec18. At that distance from the fusion site, it has been unclear how Sec18 can aid Sec17 to promote fusion. We now report that Sec18, with ATPγS, lowers the Km of Sec17 for fusion. A C-terminal and membrane-distal Sec17 mutation, L291A,L292A, diminishes Sec17 affinity for Sec18. High levels of wild-type Sec17 or Sec17-L291AL292A show equivalent fusion without Sec18, but Sec18 causes far less fusion enhancement with low levels of Sec17-L291AL292A than with wild-type Sec17. Another mutant, Sec17-F21SM22S, has reduced N-loop apolarity. Only very high levels of this mutant protein support fusion, but Sec18 still lowers the apparent fusion Km for Sec17-F21SM22S. Thus Sec18 stimulates fusion through Sec17 and acts at the well-described interface between Sec18 and Sec17. ATP acts as a ligand to activate Sec18 for Sec17-dependent fusion, but ATP hydrolysis is not required. Even without SNAREs, Sec18 and Sec17 exhibit interdependent stable association with lipids, with several Sec17 bound for each Sec18 hexamer, explaining how Sec18 stabilization of surface-concentrated clusters of Sec17 lowers the Sec17 Km for assembly with SNAREs. Each of the associations, between SNARE complex, Sec18, Sec17, and lipid, helps assemble the fusion machinery.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755,*Address correspondence to: William Wickner ()
| |
Collapse
|
7
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
8
|
Alpha-Soluble NSF Attachment Protein Prevents the Cleavage of the SARS-CoV-2 Spike Protein by Functioning as an Interferon-Upregulated Furin Inhibitor. mBio 2022; 13:e0244321. [PMID: 35012335 PMCID: PMC8749436 DOI: 10.1128/mbio.02443-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of the furin cleavage motif in the SARS-CoV-2 spike protein reduces the virulence and transmission of SARS-CoV-2, suggesting that furin is an attractive antiviral drug target. However, lack of understanding of the regulation of furin activity has largely limited the development of furin-based therapeutic strategies. Here, we find that alpha-soluble NSF attachment protein (α-SNAP), an indispensable component of vesicle trafficking machinery, inhibits the cleavage of SARS-CoV-2 spike protein and other furin-dependent virus glycoproteins. SARS-CoV-2 infection increases the expression of α-SNAP, and overexpression of α-SNAP reduces SARS-CoV-2 infection in cells. We further reveal that α-SNAP is an interferon-upregulated furin inhibitor that inhibits furin function by interacting with its P domain. Our study demonstrates that α-SNAP, in addition to its role in vesicle trafficking, plays an important role in the host defense against furin-dependent virus infection and therefore could be a target for the development of therapeutic options for COVID-19. IMPORTANCE Some key mutations of SARS-CoV-2 spike protein, such as D614G and P681R mutations, increase the transmission or pathogenicity by enhancing the cleavage efficacy of spike protein by furin. Loss of the furin cleavage motif of SARS-CoV-2 spike protein reduces the virulence and transmission, suggesting that furin is an attractive antiviral drug target. However, lack of understanding of the regulation of furin activity has largely limited the development of furin-based therapeutic strategies. Here, we found that in addition to its canonical role in vesicle trafficking, alpha-soluble NSF attachment protein (α-SNAP) plays an important role in the host defense against furin-dependent virus infection. we identified that α-SNAP is a novel interferon-upregulated furin inhibitor and inhibits the cleavage of SARS-CoV-2 spike protein and other furin-dependent virus glycoproteins by interacting with P domain of furin. Our study demonstrates that α-SNAP could be a target for the development of therapeutic options for COVID-19.
Collapse
|
9
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nat Commun 2021; 12:3206. [PMID: 34050166 PMCID: PMC8163800 DOI: 10.1038/s41467-021-23530-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022] Open
Abstract
Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental and processive motions, but the molecular underpinnings of its remarkable energy efficiency remain largely unknown. Using multiple single-molecule methods, we found remarkable cooperativity in mechanical connection between NSF and the SNARE complex, which prevents dysfunctional 20S complexes that consume ATP without productive disassembly. We also constructed ATP hydrolysis cycle of the 20S complex, in which NSF largely shows randomness in ATP binding but switches to perfect ATP hydrolysis synchronization to induce global SNARE disassembly, minimizing ATP hydrolysis by non-20S complex-forming NSF molecules. These two mechanisms work in concert to concentrate ATP consumption into functional 20S complexes, suggesting evolutionary adaptations by the 20S complex to the energetically expensive mechanical task of SNARE complex disassembly. Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles SNARE complexes in a single unravelling step. Here authors use single-molecule methods to show cooperativity between the NSF and SNARE complex, which prevents ATP consumption without productive disassembly.
Collapse
|
11
|
Song H, Torng TL, Orr AS, Brunger AT, Wickner WT. Sec17/Sec18 can support membrane fusion without help from completion of SNARE zippering. eLife 2021; 10:67578. [PMID: 33944780 PMCID: PMC8143792 DOI: 10.7554/elife.67578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/αSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 can drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE that face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Thomas L Torng
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Amy S Orr
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Axel T Brunger
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology Stanford University, Stanford, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
12
|
Liu F, Li JP, Li LS, Liu Q, Li SW, Song ML, Li S, Zhang Y. The canonical α-SNAP is essential for gametophytic development in Arabidopsis. PLoS Genet 2021; 17:e1009505. [PMID: 33886546 PMCID: PMC8096068 DOI: 10.1371/journal.pgen.1009505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ji-Peng Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lu-Shen Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Qi Liu
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shan-Wei Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Ming-Lei Song
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Sha Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail: (SL); (YZ)
| | - Yan Zhang
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail: (SL); (YZ)
| |
Collapse
|
13
|
Song H, Orr AS, Lee M, Harner ME, Wickner WT. HOPS recognizes each SNARE, assembling ternary trans-complexes for rapid fusion upon engagement with the 4th SNARE. eLife 2020; 9:53559. [PMID: 31961324 PMCID: PMC6994237 DOI: 10.7554/elife.53559] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/19/2020] [Indexed: 01/23/2023] Open
Abstract
Yeast vacuole fusion requires R-SNARE, Q-SNAREs, and HOPS. A HOPS SM-family subunit binds the R- and Qa-SNAREs. We now report that HOPS binds each of the four SNAREs. HOPS catalyzes fusion when the Q-SNAREs are not pre-assembled, ushering them into a functional complex. Co-incubation of HOPS, proteoliposomes bearing R-SNARE, and proteoliposomes with any two Q-SNAREs yields a rapid-fusion complex with 3 SNAREs in a trans-assembly. The missing Q-SNARE then induces sudden fusion. HOPS can 'template' SNARE complex assembly through SM recognition of R- and Qa-SNAREs. Though the Qa-SNARE is essential for spontaneous SNARE assembly, HOPS also assembles a rapid-fusion complex between R- and QbQc-SNARE proteoliposomes in the absence of Qa-SNARE, awaiting Qa for fusion. HOPS-dependent fusion is saturable at low concentrations of each Q-SNARE, showing binding site functionality. HOPS thus tethers membranes and recognizes each SNARE, assembling R+Qa or R+QbQc rapid fusion intermediates.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Amy S Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Max E Harner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
14
|
Pleiotropic effects of alpha-SNAP M105I mutation on oocyte biology: ultrastructural and cellular changes that adversely affect female fertility in mice. Sci Rep 2019; 9:17374. [PMID: 31758001 PMCID: PMC6874563 DOI: 10.1038/s41598-019-53574-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
After sperm-oocyte fusion, cortical granules (CGs) located in oocyte cortex undergo exocytosis and their content is released into the perivitelline space to avoid polyspermy. Thus, cortical granule exocytosis (CGE) is a key process for fertilization success. We have demonstrated that alpha-SNAP -and its functional partner NSF- mediate fusion of CGs with the plasma membrane in mouse oocytes. Here, we examined at cellular and ultrastructural level oocytes from hyh (hydrocephalus with hop gait) mice, which present a missense mutation in the Napa gene that results in the substitution of methionine for isoleucine at position 105 (M105I) of alpha-SNAP. Mutated alpha-SNAP was mislocalized in hyh oocytes while NSF expression increased during oocyte maturation. Staining of CGs showed that 9.8% of hyh oocytes had abnormal localization of CGs and oval shape. Functional tests showed that CGE was impaired in hyh oocytes. Interestingly, in vitro fertilization assays showed a decreased fertilization rate for hyh oocytes. Furthermore, fertilized hyh oocytes presented an increased polyspermy rate compared to wild type ones. At ultrastructural level, hyh oocytes showed small mitochondria and a striking accumulation and secretion of degradative structures. Our findings demonstrate the negative effects of alpha-SNAP M105 mutation on oocyte biology and further confirm the relevance of alpha-SNAP in female fertility.
Collapse
|
15
|
Munc18-1 is crucial to overcome the inhibition of synaptic vesicle fusion by αSNAP. Nat Commun 2019; 10:4326. [PMID: 31548544 PMCID: PMC6757032 DOI: 10.1038/s41467-019-12188-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/23/2019] [Indexed: 12/02/2022] Open
Abstract
Munc18-1 and Munc13-1 orchestrate assembly of the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin, allowing exquisite regulation of neurotransmitter release. Non-regulated neurotransmitter release might be prevented by αSNAP, which inhibits exocytosis and SNARE-dependent liposome fusion. However, distinct mechanisms of inhibition by αSNAP were suggested, and it is unknown how such inhibition is overcome. Using liposome fusion assays, FRET and NMR spectroscopy, here we provide a comprehensive view of the mechanisms underlying the inhibitory functions of αSNAP, showing that αSNAP potently inhibits liposome fusion by: binding to syntaxin-1, hindering Munc18-1 binding; binding to syntaxin-1-SNAP-25 heterodimers, precluding SNARE complex formation; and binding to trans-SNARE complexes, preventing fusion. Importantly, inhibition by αSNAP is avoided only when Munc18-1 binds first to syntaxin-1, leading to Munc18-1-Munc13-1-dependent liposome fusion. We propose that at least some of the inhibitory activities of αSNAP ensure that neurotransmitter release occurs through the highly-regulated Munc18-1-Munc13-1 pathway at the active zone. Munc18-1 and Munc13-1 are key for the exquisite regulation of neurotransmitter release. Here biophysical experiments show how αSNAP inhibits liposome fusion mediated by the neuronal SNAREs and how Munc18-1 overcomes this inhibition, ensuring that release depends on Munc18-1 and Munc13-1.
Collapse
|
16
|
Brunger AT, Choi UB, Lai Y, Leitz J, White KI, Zhou Q. The pre-synaptic fusion machinery. Curr Opin Struct Biol 2019; 54:179-188. [PMID: 30986753 PMCID: PMC6939388 DOI: 10.1016/j.sbi.2019.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 11/26/2022]
Abstract
Here, we review recent insights into the neuronal presynaptic fusion machinery that releases neurotransmitter molecules into the synaptic cleft upon stimulation. The structure of the pre-fusion state of the SNARE/complexin-1/synaptotagmin-1 synaptic protein complex suggests a new model for the initiation of fast Ca2+-triggered membrane fusion. Functional studies have revealed roles of the essential factors Munc18 and Munc13, demonstrating that a part of their function involves the proper assembly of synaptic protein complexes. Near-atomic resolution structures of the NSF/αSNAP/SNARE complex provide first glimpses of the molecular machinery that disassembles the SNARE complex during the synaptic vesicle cycle. These structures show how this machinery captures the SNARE substrate and provide clues as to a possible processing mechanism.
Collapse
Affiliation(s)
- Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, USA; Department of Structural Biology, Stanford University, Stanford, USA; Department of Photon Science, Stanford University, Stanford, USA; Howard Hughes Medical Institute, Stanford University, Stanford, USA.
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, USA; Department of Structural Biology, Stanford University, Stanford, USA; Department of Photon Science, Stanford University, Stanford, USA; Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, USA; Department of Structural Biology, Stanford University, Stanford, USA; Department of Photon Science, Stanford University, Stanford, USA; Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, USA; Department of Structural Biology, Stanford University, Stanford, USA; Department of Photon Science, Stanford University, Stanford, USA; Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Kristopher Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, USA; Department of Structural Biology, Stanford University, Stanford, USA; Department of Photon Science, Stanford University, Stanford, USA; Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, USA; Department of Structural Biology, Stanford University, Stanford, USA; Department of Photon Science, Stanford University, Stanford, USA; Howard Hughes Medical Institute, Stanford University, Stanford, USA
| |
Collapse
|
17
|
Huang X, Sun S, Wang X, Fan F, Zhou Q, Lu S, Cao Y, Wang QW, Dong MQ, Yao J, Sui SF. Mechanistic insights into the SNARE complex disassembly. SCIENCE ADVANCES 2019; 5:eaau8164. [PMID: 30989110 PMCID: PMC6457932 DOI: 10.1126/sciadv.aau8164] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/19/2019] [Indexed: 05/16/2023]
Abstract
NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (α-soluble NSF attachment protein) bind to the SNARE (soluble NSF attachment protein receptor) complex, the minimum machinery to mediate membrane fusion, to form a 20S complex, which disassembles the SNARE complex for reuse. We report the cryo-EM structures of the α-SNAP-SNARE subcomplex and the NSF-D1D2 domain in the 20S complex at 3.9- and 3.7-Å resolutions, respectively. Combined with the biochemical and electrophysiological analyses, we find that α-SNAPs use R116 through electrostatic interactions and L197 through hydrophobic interactions to apply force mainly on two positions of the VAMP protein to execute disassembly process. Furthermore, we define the interaction between the amino terminus of the SNARE helical bundle and the pore loop of the NSF-D1 domain and demonstrate its essential role as a potential anchor for SNARE complex disassembly. Our studies provide a rotation model of α-SNAP-mediated disassembly of the SNARE complex.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojing Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fenghui Fan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Zhou
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Corresponding author.
| |
Collapse
|
18
|
Monihan SM, Ryu CH, Magness CA, Schumaker KS. Linking Duplication of a Calcium Sensor to Salt Tolerance in Eutrema salsugineum. PLANT PHYSIOLOGY 2019; 179:1176-1192. [PMID: 30606887 PMCID: PMC6393783 DOI: 10.1104/pp.18.01400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/16/2018] [Indexed: 05/24/2023]
Abstract
The SALT-OVERLY-SENSITIVE (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to prevent the toxic accumulation of sodium in the cytosol when plants are grown in salt-affected soils. In this pathway, the CALCINEURIN B-LIKE10 (AtCBL10) calcium sensor interacts with the AtSOS2 kinase to activate the AtSOS1 plasma membrane sodium/proton exchanger. CBL10 has been duplicated in Eutrema (Eutrema salsugineum), a salt-tolerant relative of Arabidopsis. Because Eutrema maintains growth in salt-affected soils that kill most crop plants, the duplication of CBL10 provides a unique opportunity to functionally test the outcome of gene duplication and its link to plant salt tolerance. In Eutrema, individual down-regulation of the duplicated CBL10 genes (EsCBL10a and EsCBL10b) decreased growth in the presence of salt and, in combination, led to an even greater decrease, suggesting that both genes function in response to salt and have distinct functions. Cross-species complementation assays demonstrated that EsCBL10b has an enhanced ability to activate the SOS pathway while EsCBL10a has a function not performed by AtCBL10 or EsCBL10b Chimeric EsCBL10a/EsCBL10b proteins revealed that the specific functions of the EsCBL10 proteins resulted from changes in the amino terminus. The duplication of CBL10 increased calcium-mediated signaling capacity in Eutrema and conferred increased salt tolerance to salt-sensitive Arabidopsis.
Collapse
Affiliation(s)
- Shea M Monihan
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Choong-Hwan Ryu
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | | | - Karen S Schumaker
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
19
|
Prinslow EA, Stepien KP, Pan YZ, Xu J, Rizo J. Multiple factors maintain assembled trans-SNARE complexes in the presence of NSF and αSNAP. eLife 2019; 8:38880. [PMID: 30657450 PMCID: PMC6353594 DOI: 10.7554/elife.38880] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitter release requires formation of trans-SNARE complexes between the synaptic vesicle and plasma membranes, which likely underlies synaptic vesicle priming to a release-ready state. It is unknown whether Munc18-1, Munc13-1, complexin-1 and synaptotagmin-1 are important for priming because they mediate trans-SNARE complex assembly and/or because they prevent trans-SNARE complex disassembly by NSF-αSNAP, which can lead to de-priming. Here we show that trans-SNARE complex formation in the presence of NSF-αSNAP requires both Munc18-1 and Munc13-1, as proposed previously, and is facilitated by synaptotagmin-1. Our data also show that Munc18-1, Munc13-1, complexin-1 and likely synaptotagmin-1 contribute to maintaining assembled trans-SNARE complexes in the presence of NSF-αSNAP. We propose a model whereby Munc18-1 and Munc13-1 are critical not only for mediating vesicle priming but also for precluding de-priming by preventing trans-SNARE complex disassembly; in this model, complexin-1 also impairs de-priming, while synaptotagmin-1 may assist in priming and hinder de-priming.
Collapse
Affiliation(s)
- Eric A Prinslow
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Karolina P Stepien
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
20
|
Datta SP, Jana K, Mondal A, Ganguly S, Sarkar S. Multiple paralogues of α-SNAP in Giardia lamblia exhibit independent subcellular localization and redistribution during encystation and stress. Parasit Vectors 2018; 11:539. [PMID: 30286802 PMCID: PMC6172762 DOI: 10.1186/s13071-018-3112-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The differently-diverged parasitic protist Giardia lamblia is known to have minimal machinery for vesicular transport. Yet, it has three paralogues of SNAP, a crucial component that together with NSF brings about disassembly of the cis-SNARE complex formed following vesicle fusion to target membranes. Given that most opisthokont hosts of this gut parasite express only one α-SNAP, this study was undertaken to determine whether these giardial SNAP proteins have undergone functional divergence. RESULTS All three SNAP paralogues are expressed in trophozoites, encysting trophozoites and cysts. Even though one of them clusters with γ-SNAP sequences in a phylogenetic tree, functional complementation analysis in yeast indicates that all the three proteins are functionally orthologous to α-SNAP. Localization studies showed a mostly non-overlapping distribution of these α-SNAPs in trophozoites, encysting cells and cysts. In addition, two of the paralogues exhibit substantial subcellular redistribution during encystation, which was also seen following exposure to oxidative stress. However, the expression of the three genes remained unchanged during this redistribution process. There is also a difference in the affinity of each of these α-SNAP paralogues for GlNSF. CONCLUSIONS None of the genes encoding the three α-SNAPs are pseudogenes and the encoded proteins are likely to discharge non-redundant functions in the different morphological states of G. lamblia. Based on the difference in the interaction of individual α-SNAPs with GlNSF and their non-overlapping pattern of subcellular redistribution during encystation and under stress conditions, it may be concluded that the three giardial α-SNAP paralogues have undergone functional divergence. Presence of one of the giardial α-SNAPs at the PDRs of flagella, where neither GlNSF nor any of the SNAREs localize, indicates that this α-SNAP discharges a SNARE-independent role in this gut pathogen.
Collapse
Affiliation(s)
- Shankari Prasad Datta
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Avisek Mondal
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India.,Present Address: Section on Developmental Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Sandipan Ganguly
- Division of Parasitology, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata, West Bengal, 700010, India
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P 1/12 CIT Road Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
21
|
Rizo J. Mechanism of neurotransmitter release coming into focus. Protein Sci 2018; 27:1364-1391. [PMID: 29893445 DOI: 10.1002/pro.3445] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+ -triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+ -dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N-ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18-1 and Munc13-1 orchestrate SNARE complex formation in an NSF-SNAP-resistant manner by a mechanism whereby Munc18-1 binds to synaptobrevin and to a self-inhibited "closed" conformation of syntaxin-1, thus forming a template to assemble the SNARE complex, and Munc13-1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin-1. Synaptotagmin-1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
22
|
Choi UB, Zhao M, White KI, Pfuetzner RA, Esquivies L, Zhou Q, Brunger AT. NSF-mediated disassembly of on- and off-pathway SNARE complexes and inhibition by complexin. eLife 2018; 7:36497. [PMID: 29985126 PMCID: PMC6130971 DOI: 10.7554/elife.36497] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022] Open
Abstract
SNARE complex disassembly by the ATPase NSF is essential for neurotransmitter release and other membrane trafficking processes. We developed a single-molecule FRET assay to monitor repeated rounds of NSF-mediated disassembly and reassembly of individual SNARE complexes. For ternary neuronal SNARE complexes, disassembly proceeds in a single step within 100 msec. We observed short- (<0.32 s) and long-lived (≥0.32 s) disassembled states. The long-lived states represent fully disassembled SNARE complex, while the short-lived states correspond to failed disassembly or immediate reassembly. Either high ionic strength or decreased αSNAP concentration reduces the disassembly rate while increasing the frequency of short-lived states. NSF is also capable of disassembling anti-parallel ternary SNARE complexes, implicating it in quality control. Finally, complexin-1 competes with αSNAP binding to the SNARE complex; addition of complexin-1 has an effect similar to that of decreasing the αSNAP concentration, possibly differentially regulating cis and trans SNARE complexes disassembly.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, United States.,Department of Structural Biology, Stanford University, Stanford, United States.,Department of Photon Science, Stanford University, Stanford, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, United States
| |
Collapse
|
23
|
Yavuz H, Kattan I, Hernandez JM, Hofnagel O, Witkowska A, Raunser S, Walla PJ, Jahn R. Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion. J Biol Chem 2018; 293:8645-8655. [PMID: 29666192 PMCID: PMC5986196 DOI: 10.1074/jbc.ra118.003313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/03/2022] Open
Abstract
Soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion in the secretory pathway. They contain conserved regions, termed SNARE motifs, that assemble between opposing membranes directionally from their N termini to their membrane-proximal C termini in a highly exergonic reaction. However, how this energy is utilized to overcome the energy barriers along the fusion pathway is still under debate. Here, we have used mutants of the SNARE synaptobrevin to arrest trans-SNARE zippering at defined stages. We have uncovered two distinct vesicle docking intermediates where the membranes are loosely and tightly connected, respectively. The tightly connected state is irreversible and independent of maintaining assembled SNARE complexes. Together, our results shed new light on the intermediate stages along the pathway of membrane fusion.
Collapse
Affiliation(s)
| | - Iman Kattan
- Biomolecular Spectroscopy and Single-Molecule Detection Research Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Javier M Hernandez
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Peter J Walla
- Biomolecular Spectroscopy and Single-Molecule Detection Research Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Biomolecular Spectroscopy and Single-Molecule Detection Research Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | |
Collapse
|
24
|
Li Y, Wang S, Li T, Zhu L, Ma C. Tomosyn guides
SNARE
complex formation in coordination with Munc18 and Munc13. FEBS Lett 2018; 592:1161-1172. [DOI: 10.1002/1873-3468.13018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Yun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Tianzhi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan China
- The Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
25
|
Harner M, Wickner W. Assembly of intermediates for rapid membrane fusion. J Biol Chem 2017; 293:1346-1352. [PMID: 29208657 DOI: 10.1074/jbc.ra117.000791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/27/2017] [Indexed: 11/06/2022] Open
Abstract
Membrane fusion is essential for intracellular protein sorting, cell growth, hormone secretion, and neurotransmission. Rapid membrane fusion requires tethering and Sec1-Munc18 (SM) function to catalyze R-, Qa-, Qb-, and Qc-SNARE complex assembly in trans, as well as SNARE engagement by the SNARE-binding chaperone Sec17/αSNAP. The hexameric vacuolar HOPS (homotypic fusion and vacuole protein sorting) complex in the yeast Saccharomyces cerevisiae tethers membranes through its affinities for the membrane Rab GTPase Ypt7. HOPS also has specific affinities for the vacuolar SNAREs and catalyzes SNARE complex assembly, but the order of their assembly into a 4-SNARE complex is unclear. We now report defined assembly intermediates on the path to membrane fusion. We found that a prefusion intermediate will assemble with HOPS and the R, Qa, and Qc SNAREs, and that this assembly undergoes rapid fusion upon addition of Qb and Sec17. HOPS-tethered membranes and all four vacuolar SNAREs formed a complex that underwent an even more dramatic burst of fusion upon Sec17p addition. These findings provide initial insights into an ordered fusion pathway consisting of the following intermediates and events: 1) Rab- and HOPS-tethered membranes, 2) a HOPS:R:Qa:Qc trans-complex, 3) a HOPS:4-SNARE trans-complex, 4) an engagement with Sec17, and 5) the rapid lipid rearrangements during fusion. In conclusion, our results indicate that the R:Qa:Qc complex forms in the context of membrane, Ypt7, HOPS, and trans-SNARE assembly and serves as a functional intermediate for rapid fusion after addition of the Qb-SNARE and Sec17 proteins.
Collapse
Affiliation(s)
- Max Harner
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844
| | - William Wickner
- From the Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844
| |
Collapse
|
26
|
Wickner W, Rizo J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 2017; 28:707-711. [PMID: 28292915 PMCID: PMC5349777 DOI: 10.1091/mbc.e16-07-0517] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 11/11/2022] Open
Abstract
Recent studies suggest revisions to the SNARE paradigm of membrane fusion. Membrane tethers and/or SNAREs recruit proteins of the Sec 1/Munc18 family to catalyze SNARE assembly into trans-complexes. SNARE-domain zippering draws the bilayers into immediate apposition and provides a platform to position fusion triggers such as Sec 17/α-SNAP and/or synaptotagmin, which insert their apolar "wedge" domains into the bilayers, initiating the lipid rearrangements of fusion.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 )
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390 )
| |
Collapse
|
27
|
Schwartz ML, Nickerson DP, Lobingier BT, Plemel RL, Duan M, Angers CG, Zick M, Merz AJ. Sec17 (α-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo. eLife 2017; 6:27396. [PMID: 28925353 PMCID: PMC5643095 DOI: 10.7554/elife.27396] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023] Open
Abstract
Zippering of SNARE complexes spanning docked membranes is essential for most intracellular fusion events. Here, we explore how SNARE regulators operate on discrete zippering states. The formation of a metastable trans-complex, catalyzed by HOPS and its SM subunit Vps33, is followed by subsequent zippering transitions that increase the probability of fusion. Operating independently of Sec18 (NSF) catalysis, Sec17 (α-SNAP) either inhibits or stimulates SNARE-mediated fusion. If HOPS or Vps33 are absent, Sec17 inhibits fusion at an early stage. Thus, Vps33/HOPS promotes productive SNARE assembly in the presence of otherwise inhibitory Sec17. Once SNAREs are partially zipped, Sec17 promotes fusion in either the presence or absence of HOPS, but with faster kinetics when HOPS is absent, suggesting that ejection of the SM is a rate-limiting step.
Collapse
Affiliation(s)
- Matthew L Schwartz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Daniel P Nickerson
- Department of Biology, California State University, San Bernardino, United States
| | - Braden T Lobingier
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Mengtong Duan
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Cortney G Angers
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States
| | - Michael Zick
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Alexey J Merz
- Department of Biochemistry, University of Washington School of Medicine, Seattle, United States.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
28
|
Arcos A, de Paola M, Gianetti D, Acuña D, Velásquez ZD, Miró MP, Toro G, Hinrichsen B, Muñoz RI, Lin Y, Mardones GA, Ehrenfeld P, Rivera FJ, Michaut MA, Batiz LF. α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility. Sci Rep 2017; 7:11765. [PMID: 28924180 PMCID: PMC5603506 DOI: 10.1038/s41598-017-12292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events. In addition, it regulates cell-to-cell adhesion, AMPK signaling, autophagy and apoptosis in different cell types. In this study we examined the expression pattern of α-SNAP in ovarian tissue and the consequences of α-SNAP (M105I) mutation (hyh mutation) in folliculogenesis and female fertility. Our results showed that α-SNAP protein is highly expressed in GCs and its expression is modulated by gonadotropin stimuli. On the other hand, α-SNAP-mutant mice show a reduction in α-SNAP protein levels. Moreover, increased apoptosis of GCs and follicular atresia, reduced ovulation rate, and a dramatic decline in fertility is observed in α-SNAP-mutant females. In conclusion, α-SNAP plays a critical role in the balance between follicular development and atresia. Consequently, a reduction in its expression/function (M105I mutation) causes early depletion of ovarian follicles and female subfertility.
Collapse
Affiliation(s)
- Alexis Arcos
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Matilde de Paola
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Diego Gianetti
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Acuña
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Zahady D Velásquez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - María Paz Miró
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriela Toro
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Bryan Hinrichsen
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rosa Iris Muñoz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Yimo Lin
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Gonzalo A Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria
| | - Marcela A Michaut
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina. .,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Luis Federico Batiz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile. .,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile. .,Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
29
|
Lai Y, Choi UB, Leitz J, Rhee HJ, Lee C, Altas B, Zhao M, Pfuetzner RA, Wang AL, Brose N, Rhee J, Brunger AT. Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18. Neuron 2017; 95:591-607.e10. [PMID: 28772123 DOI: 10.1016/j.neuron.2017.07.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 05/08/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022]
Abstract
Munc13 catalyzes the transit of syntaxin from a closed complex with Munc18 into the ternary SNARE complex. Here we report a new function of Munc13, independent of Munc18: it promotes the proper syntaxin/synaptobrevin subconfiguration during assembly of the ternary SNARE complex. In cooperation with Munc18, Munc13 additionally ensures the proper syntaxin/SNAP-25 subconfiguration. In a reconstituted fusion assay with SNAREs, complexin, and synaptotagmin, inclusion of both Munc13 and Munc18 quadruples the Ca2+-triggered amplitude and achieves Ca2+ sensitivity at near-physiological concentrations. In Munc13-1/2 double-knockout neurons, expression of a constitutively open mutant of syntaxin could only minimally restore neurotransmitter release relative to Munc13-1 rescue. Together, the physiological functions of Munc13 may be related to regulation of proper SNARE complex assembly.
Collapse
Affiliation(s)
- Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hong Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Choongku Lee
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Minglei Zhao
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Austin L Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA; Department of Photon Science, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Song H, Orr A, Duan M, Merz AJ, Wickner W. Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. eLife 2017; 6:e26646. [PMID: 28718762 PMCID: PMC5540461 DOI: 10.7554/elife.26646] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
At physiological protein levels, the slow HOPS- and SNARE-dependent fusion which occurs upon complete SNARE zippering is stimulated by Sec17 and Sec18:ATP without requiring ATP hydrolysis. To stimulate, Sec17 needs its central residues which bind the 0-layer of the SNARE complex and its N-terminal apolar loop. Adding a transmembrane anchor to the N-terminus of Sec17 bypasses this requirement for apolarity of the Sec17 loop, suggesting that the loop functions for membrane binding rather than to trigger bilayer rearrangement. In contrast, when complete C-terminal SNARE zippering is prevented, fusion strictly requires Sec18 and Sec17, and the Sec17 apolar loop has functions beyond membrane anchoring. Thus Sec17 and Sec18 act twice in the fusion cycle, binding to trans-SNARE complexes to accelerate fusion, then hydrolyzing ATP to disassemble cis-SNARE complexes.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| | - Mengtong Duan
- Departments of Biochemistry, University of Washington, Seattle, United States
| | - Alexey J Merz
- Departments of Biochemistry, University of Washington, Seattle, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, United States
| |
Collapse
|
31
|
Zhang Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci 2017; 26:1252-1265. [PMID: 28097727 PMCID: PMC5477538 DOI: 10.1002/pro.3116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of MedicineYale UniversityNew HavenConnecticut06511
| |
Collapse
|
32
|
Jakhanwal S, Lee CT, Urlaub H, Jahn R. An activated Q-SNARE/SM protein complex as a possible intermediate in SNARE assembly. EMBO J 2017; 36:1788-1802. [PMID: 28483813 DOI: 10.15252/embj.201696270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/15/2023] Open
Abstract
Assembly of the SNARE proteins syntaxin1, SNAP25, and synaptobrevin into a SNARE complex is essential for exocytosis in neurons. For efficient assembly, SNAREs interact with additional proteins but neither the nature of the intermediates nor the sequence of protein assembly is known. Here, we have characterized a ternary complex between syntaxin1, SNAP25, and the SM protein Munc18-1 as a possible acceptor complex for the R-SNARE synaptobrevin. The ternary complex binds synaptobrevin with fast kinetics, resulting in the rapid formation of a fully zippered SNARE complex to which Munc18-1 remains tethered by the N-terminal domain of syntaxin1. Intriguingly, only one of the synaptobrevin truncation mutants (Syb1-65) was able to bind to the syntaxin1:SNAP25:Munc18-1 complex, suggesting either a cooperative zippering mechanism that proceeds bidirectionally or the progressive R-SNARE binding via an SM template. Moreover, the complex is resistant to disassembly by NSF Based on these findings, we consider the ternary complex as a strong candidate for a physiological intermediate in SNARE assembly.
Collapse
Affiliation(s)
- Shrutee Jakhanwal
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
33
|
Pacheco J, Vaca L. STIM-TRP Pathways and Microdomain Organization: Auxiliary Proteins of the STIM/Orai Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:189-210. [DOI: 10.1007/978-3-319-57732-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of Legionella effectors. Proc Natl Acad Sci U S A 2016; 113:8807-12. [PMID: 27436892 DOI: 10.1073/pnas.1608755113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the Gram-negative pathogen causing Legionnaires' disease, infects host cells by hijacking endocytic pathways and forming a Legionella-containing vacuole (LCV) in which the bacteria replicate. To promote LCV expansion and prevent lysosomal targeting, effector proteins are translocated into the host cell where they alter membrane traffic. Here we show that three of these effectors [LegC2 (Legionella eukaryotic-like gene C2)/YlfB (yeast lethal factor B), LegC3, and LegC7/YlfA] functionally mimic glutamine (Q)-SNARE proteins. In infected cells, the three proteins selectively form complexes with the endosomal arginine (R)-SNARE vesicle-associated membrane protein 4 (VAMP4). When reconstituted in proteoliposomes, these proteins avidly fuse with liposomes containing VAMP4, resulting in a stable complex with properties resembling canonical SNARE complexes. Intriguingly, however, the LegC/SNARE hybrid complex cannot be disassembled by N-ethylmaleimide-sensitive factor. We conclude that LegCs use SNARE mimicry to divert VAMP4-containing vesicles for fusion with the LCV, thus promoting its expansion. In addition, the LegC/VAMP4 complex avoids the host's disassembly machinery, thus effectively trapping VAMP4 in an inactive state.
Collapse
|
35
|
Ma L, Kang Y, Jiao J, Rebane AA, Cha HK, Xi Z, Qu H, Zhang Y. α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle. Cell Rep 2016; 15:531-539. [PMID: 27068468 DOI: 10.1016/j.celrep.2016.03.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/09/2016] [Accepted: 03/11/2016] [Indexed: 01/03/2023] Open
Abstract
Intracellular membrane fusion is mediated by dynamic assembly and disassembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors (SNAREs). α-SNAP guides NSF to disassemble SNARE complexes after membrane fusion. Recent experiments showed that α-SNAP also dramatically enhances SNARE assembly and membrane fusion. How α-SNAP is involved in these opposing activities is not known. Here, we examine the effect of α-SNAP on the stepwise assembly of the synaptic SNARE complex using optical tweezers. We found that α-SNAP destabilized the linker domain (LD) of the SNARE complex but stabilized its C-terminal domain (CTD) through a conformational selection mechanism. In contrast, α-SNAP minimally affected assembly of the SNARE N-terminal domain (NTD), indicating that α-SNAP barely bound the partially assembled trans-SNARE complex. Thus, α-SNAP recognizes the folded CTD for SNARE disassembly with NSF and subtly modulates membrane fusion by altering the stabilities of the SNARE CTD and LD.
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuhao Kang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Junyi Jiao
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, New Haven, CT 06520, USA
| | - Aleksander A Rebane
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Hyo Keun Cha
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hong Qu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
36
|
Uytterhoeven V, Lauwers E, Maes I, Miskiewicz K, Melo MN, Swerts J, Kuenen S, Wittocx R, Corthout N, Marrink SJ, Munck S, Verstreken P. Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy. Neuron 2016; 88:735-48. [PMID: 26590345 DOI: 10.1016/j.neuron.2015.10.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022]
Abstract
Synapses are often far from their cell bodies and must largely independently cope with dysfunctional proteins resulting from synaptic activity and stress. To identify membrane-associated machines that can engulf synaptic targets destined for degradation, we performed a large-scale in vitro liposome-based screen followed by functional studies. We identified a presynaptically enriched chaperone Hsc70-4 that bends membranes based on its ability to oligomerize. This activity promotes endosomal microautophagy and the turnover of specific synaptic proteins. Loss of microautophagy slows down neurotransmission while gain of microautophagy increases neurotransmission. Interestingly, Sgt, a cochaperone of Hsc70-4, is able to switch the activity of Hsc70-4 from synaptic endosomal microautophagy toward chaperone activity. Hence, Hsc70-4 controls rejuvenation of the synaptic protein pool in a dual way: either by refolding proteins together with Sgt, or by targeting them for degradation by facilitating endosomal microautophagy based on its membrane deforming activity.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Elsa Lauwers
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium.
| | - Ine Maes
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Katarzyna Miskiewicz
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Manuel N Melo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jef Swerts
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Sabine Kuenen
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Rafaël Wittocx
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB Bio-Imaging Core Facility, Herestraat 49, 3000 Leuven, Belgium
| | - Siewert-Jan Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sebastian Munck
- VIB Bio-Imaging Core Facility, Herestraat 49, 3000 Leuven, Belgium
| | - Patrik Verstreken
- KU Leuven, Center for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, Leuven Institute for Neurodegenerative Disease (LIND), Laboratory of Neuronal Communication, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Recent Advances in Deciphering the Structure and Molecular Mechanism of the AAA+ ATPase N-Ethylmaleimide-Sensitive Factor (NSF). J Mol Biol 2015; 428:1912-26. [PMID: 26546278 DOI: 10.1016/j.jmb.2015.10.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
Abstract
N-ethylmaleimide-sensitive factor (NSF), first discovered in 1988, is a key factor for eukaryotic trafficking, including protein and hormone secretion and neurotransmitter release. It is a member of the AAA+ family (ATPases associated with diverse cellular activities). NSF disassembles soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes in conjunction with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP). Structural studies of NSF and its complex with SNAREs and SNAPs (known as 20S supercomplex) started about 20years ago. Crystal structures of individual N and D2 domains of NSF and low-resolution electron microscopy structures of full-length NSF and 20S supercomplex have been reported over the years. Nevertheless, the molecular architecture of the 20S supercomplex and the molecular mechanism of NSF-mediated SNARE complex disassembly remained unclear until recently. Here we review recent atomic-resolution or near-atomic resolution structures of NSF and of the 20S supercomplex, as well as recent insights into the molecular mechanism and energy requirements of NSF. We also compare NSF with other known AAA+ family members.
Collapse
|
38
|
Abstract
Sec17 [soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein; α-SNAP] and Sec18 (NSF) perform ATP-dependent disassembly of cis-SNARE complexes, liberating SNAREs for subsequent assembly of trans-complexes for fusion. A mutant of Sec17, with limited ability to stimulate Sec18, still strongly enhanced fusion when ample Sec18 was supplied, suggesting that Sec17 has additional functions. We used fusion reactions where the four SNAREs were initially separate, thus requiring no disassembly by Sec18. With proteoliposomes bearing asymmetrically disposed SNAREs, tethering and trans-SNARE pairing allowed slow fusion. Addition of Sec17 did not affect the levels of trans-SNARE complex but triggered sudden fusion of trans-SNARE paired proteoliposomes. Sec18 did not substitute for Sec17 in triggering fusion, but ADP- or ATPγS-bound Sec18 enhanced this Sec17 function. The extent of the Sec17 effect varied with the lipid headgroup and fatty acyl composition of the proteoliposomes. Two mutants further distinguished the two Sec17 functions: Sec17(L291A,L292A) did not stimulate Sec18 to disassemble cis-SNARE complex but triggered the fusion of trans-SNARE paired membranes. Sec17(F21S,M22S), with diminished apolar character to its hydrophobic loop, fully supported Sec18-mediated SNARE complex disassembly but had lost the capacity to stimulate the fusion of trans-SNARE paired membranes. To model the interactions of SNARE-bound Sec17 with membranes, we show that Sec17, but not Sec17(F21S,M22S), interacted synergistically with the soluble SNARE domains to enable their stable association with liposomes. We propose a model in which Sec17 binds to trans-SNARE complexes, oligomerizes, and inserts apolar loops into the apposed membranes, locally disturbing the lipid bilayer and thereby lowering the energy barrier for fusion.
Collapse
|
39
|
Ryu JK, Min D, Rah SH, Kim SJ, Park Y, Kim H, Hyeon C, Kim HM, Jahn R, Yoon TY. Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover. Science 2015; 347:1485-9. [PMID: 25814585 DOI: 10.1126/science.aaa5267] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During intracellular membrane trafficking, N-ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment protein (α-SNAP) disassemble the soluble NSF attachment protein receptor (SNARE) complex for recycling of the SNARE proteins. The molecular mechanism by which NSF disassembles the SNARE complex is largely unknown. Using single-molecule fluorescence spectroscopy and magnetic tweezers, we found that NSF disassembled a single SNARE complex in only one round of adenosine triphosphate (ATP) turnover. Upon ATP cleavage, the NSF hexamer developed internal tension with dissociation of phosphate ions. After latent time measuring tens of seconds, NSF released the built-up tension in a burst within 20 milliseconds, resulting in disassembly followed by immediate release of the SNARE proteins. Thus, NSF appears to use a "spring-loaded" mechanism to couple ATP hydrolysis and unfolding of substrate proteins.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea
| | - Duyoung Min
- National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea
| | - Sang-Hyun Rah
- National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea
| | - Soo Jin Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, South Korea
| | - Yongsoo Park
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Haesoo Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, South Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 130-722, South Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, South Korea
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Tae-Young Yoon
- National Creative Research Initiative Center for Single-Molecule Systems Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea. Department of Physics, KAIST, Daejeon 305-701, South Korea.
| |
Collapse
|
40
|
Zhao M, Wu S, Zhou Q, Vivona S, Cipriano DJ, Cheng Y, Brunger AT. Mechanistic insights into the recycling machine of the SNARE complex. Nature 2015; 518:61-7. [PMID: 25581794 PMCID: PMC4320033 DOI: 10.1038/nature14148] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022]
Abstract
Evolutionarily conserved SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) proteins form a complex that drives membrane fusion in eukaryotes. The ATPase NSF (N-ethylmaleimide sensitive factor), together with SNAPs (soluble NSF attachment protein), disassembles the SNARE complex into its protein components, making individual SNAREs available for subsequent rounds of fusion. Here we report structures of ATP- and ADP-bound NSF, and the NSF/SNAP/SNARE (20S) supercomplex determined by single-particle electron cryomicroscopy at near-atomic to sub-nanometre resolution without imposing symmetry. Large, potentially force-generating, conformational differences exist between ATP- and ADP-bound NSF. The 20S supercomplex exhibits broken symmetry, transitioning from six-fold symmetry of the NSF ATPase domains to pseudo four-fold symmetry of the SNARE complex. SNAPs interact with the SNARE complex with an opposite structural twist, suggesting an unwinding mechanism. The interfaces between NSF, SNAPs, and SNAREs exhibit characteristic electrostatic patterns, suggesting how one NSF/SNAP species can act on many different SNARE complexes.
Collapse
Affiliation(s)
- Minglei Zhao
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Shenping Wu
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Sandro Vivona
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Daniel J Cipriano
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | - Axel T Brunger
- 1] Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
41
|
Shah N, Colbert KN, Enos MD, Herschlag D, Weis WI. Three αSNAP and 10 ATP molecules are used in SNARE complex disassembly by N-ethylmaleimide-sensitive factor (NSF). J Biol Chem 2014; 290:2175-88. [PMID: 25492864 DOI: 10.1074/jbc.m114.620849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fusion of intracellular membranes is driven by the formation of a highly stable four-helix bundle of SNARE proteins embedded in the vesicle and target membranes. N-Ethylmaleimide sensitive factor recycles SNAREs after fusion by binding to the SNARE complex through an adaptor protein, αSNAP, and using the energy of ATP hydrolysis to disassemble the complex. Although only a single molecule of αSNAP binds to a soluble form of the SNARE complex, we find that three molecules of αSNAP are used for SNARE complex disassembly. We describe an engineered αSNAP trimer that supports more efficient SNARE complex disassembly than monomeric αSNAP. Using the trimerized αSNAP, we find that N-ethylmaleimide-sensitive factor hydrolyzes 10 ATP molecules on average to disassemble a single SNARE complex.
Collapse
Affiliation(s)
- Niket Shah
- From the Departments of Structural Biology, Molecular and Cellular Physiology, and
| | - Karen N Colbert
- From the Departments of Structural Biology, Molecular and Cellular Physiology, and
| | - Michael D Enos
- From the Departments of Structural Biology, Molecular and Cellular Physiology, and
| | - Daniel Herschlag
- Biochemistry, Stanford University School of Medicine, Stanford, California 94305
| | - William I Weis
- From the Departments of Structural Biology, Molecular and Cellular Physiology, and
| |
Collapse
|
42
|
Chen D, Li L, Yan J, Yang X, You Y, Zhou Y, Ling X. The loss of αSNAP downregulates the expression of occludin in the intestinal epithelial cell of acute pancreatitis model. Pancreatology 2014; 14:347-55. [PMID: 25278303 DOI: 10.1016/j.pan.2014.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/11/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Intestinal barrier damage is an important event during the occurrence and progression of severe acute pancreatitis. The expression of occludin, one of the main components of the intestinal barrier proteins, is regulated by various factors related to intestinal barrier formation and the remodeling process. The αSNAP, as a novel membrane protein, is ubiquitously expressed in intestinal epithelial cells. This study aimed to investigate the role of αSNAP in acute pancreatitis and the relationship between occludin and αSNAP. METHODS Mild and severe acute pancreatitis models were established by retrograde injections of 0.5% and 3.8% sodium taurocholate solutions, respectively, into rat pancreaticobiliary ducts. The animals were killed at 1, 2, and 3 days after the injection, and the pathological changes of the pancreas and intestinal mucosa, the changes in intestinal permeability, and the protein expression of occludin and αSNAP were assessed. Cultured epithelial IEC-6 cells were further infected with lentiviral αSNAP shRNA, cell apoptosis was determined with flow cytometry (FCM), and any changes in occludin expression were detected by Western blotting and immunofluorescent staining. RESULTS This pathologic study of a rat acute pancreatitis model indicated pancreatic tissue necrosis and inflammatory cell infiltration; the intestinal villi in the severe acute pancreatitis (SAP) group demonstrated edema, lodging, atrophy, and intestinal epithelial cell necrosis, and shedding. The intestinal permeability in rats with pancreatitis increased significantly. The SAP group showed significantly increased levels of serum TNF-α and endotoxins. The results of immunofluorescent staining and Western blotting revealed that compared with the SO (sham operation) and MAP (mild acute pancreatitis) groups, the SAP group displayed significantly downregulated protein expressions of αSNAP and occludin in the intestinal epithelial cells. After the lentiviral transduction of αSNAP shRNA, apoptosis in IEC-6 cells was drastically increased, whereas the expression of occludin was decreased significantly. CONCLUSION The downregulated expression of αSNAP in intestinal epithelial cells leads to reduced occludin expression and enhanced apoptosis of intestinal epithelial cells. Hence, the permeability of the intestinal barrier may be increased in a severe acute pancreatitis model.
Collapse
Affiliation(s)
- Daixing Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Lili Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jing Yan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yang You
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuan Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Xianlong Ling
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
43
|
Park Y, Vennekate W, Yavuz H, Preobraschenski J, Hernandez JM, Riedel D, Walla PJ, Jahn R. α-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery. J Biol Chem 2014; 289:16326-35. [PMID: 24778182 DOI: 10.1074/jbc.m114.556803] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane.
Collapse
Affiliation(s)
| | - Wensi Vennekate
- From the Department of Neurobiology, the AG Biomolecular Spectroscopy and Single-Molecule Detection, and
| | | | | | | | - Dietmar Riedel
- the Facility for Electron Microscopy, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen and
| | - Peter Jomo Walla
- the AG Biomolecular Spectroscopy and Single-Molecule Detection, and the Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | | |
Collapse
|
44
|
Miao Y, Miner C, Zhang L, Hanson PI, Dani A, Vig M. An essential and NSF independent role for α-SNAP in store-operated calcium entry. eLife 2013; 2:e00802. [PMID: 23878724 PMCID: PMC3713520 DOI: 10.7554/elife.00802] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/11/2013] [Indexed: 01/21/2023] Open
Abstract
Store-operated calcium entry (SOCE) by calcium release activated calcium (CRAC) channels constitutes a primary route of calcium entry in most cells. Orai1 forms the pore subunit of CRAC channels and Stim1 is the endoplasmic reticulum (ER) resident Ca(2+) sensor. Upon store-depletion, Stim1 translocates to domains of ER adjacent to the plasma membrane where it interacts with and clusters Orai1 hexamers to form the CRAC channel complex. Molecular steps enabling activation of SOCE via CRAC channel clusters remain incompletely defined. Here we identify an essential role of α-SNAP in mediating functional coupling of Stim1 and Orai1 molecules to activate SOCE. This role for α-SNAP is direct and independent of its known activity in NSF dependent SNARE complex disassembly. Importantly, Stim1-Orai1 clustering still occurs in the absence of α-SNAP but its inability to support SOCE reveals that a previously unsuspected molecular re-arrangement within CRAC channel clusters is necessary for SOCE. DOI:http://dx.doi.org/10.7554/eLife.00802.001.
Collapse
Affiliation(s)
- Yong Miao
- Pathology and Immunology , Washington University School of Medicine , St Louis , United States
| | | | | | | | | | | |
Collapse
|
45
|
Vivona S, Cipriano DJ, O'Leary S, Li YH, Fenn TD, Brunger AT. Disassembly of all SNARE complexes by N-ethylmaleimide-sensitive factor (NSF) is initiated by a conserved 1:1 interaction between α-soluble NSF attachment protein (SNAP) and SNARE complex. J Biol Chem 2013; 288:24984-91. [PMID: 23836889 PMCID: PMC3750193 DOI: 10.1074/jbc.m113.489807] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Vesicle trafficking in eukaryotic cells is facilitated by SNARE-mediated membrane fusion. The ATPase NSF (N-ethylmaleimide-sensitive factor) and the adaptor protein α-SNAP (soluble NSF attachment protein) disassemble all SNARE complexes formed throughout different pathways, but the effect of SNARE sequence and domain variation on the poorly understood disassembly mechanism is unknown. By measuring SNARE-stimulated ATP hydrolysis rates, Michaelis-Menten constants for disassembly, and SNAP-SNARE binding constants for four different ternary SNARE complexes and one binary complex, we found a conserved mechanism, not influenced by N-terminal SNARE domains. α-SNAP and the ternary SNARE complex form a 1:1 complex as revealed by multiangle light scattering. We propose a model of NSF-mediated disassembly in which the reaction is initiated by a 1:1 interaction between α-SNAP and the ternary SNARE complex, followed by NSF binding. Subsequent additional α-SNAP binding events may occur as part of a processive disassembly mechanism.
Collapse
Affiliation(s)
- Sandro Vivona
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
46
|
Matsye PD, Lawrence GW, Youssef RM, Kim KH, Lawrence KS, Matthews BF, Klink VP. The expression of a naturally occurring, truncated allele of an α-SNAP gene suppresses plant parasitic nematode infection. PLANT MOLECULAR BIOLOGY 2012; 80:131-55. [PMID: 22689004 DOI: 10.1007/s11103-012-9932-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/17/2012] [Indexed: 05/23/2023]
Abstract
Transcriptional mapping experiments of the major soybean cyst nematode resistance locus, rhg1, identified expression of the vesicular transport machinery component, α soluble NSF attachment protein (α-SNAP), occurring during defense. Sequencing the α-SNAP coding regions from the resistant genotypes G. max ([Peking/PI 548402]) and G. max ([PI 437654]) revealed they are identical, but differ from the susceptible G. max ([Williams 82/PI 518671]) by the presence of several single nucleotide polymorphisms. Using G. max ([Williams 82/PI 518671]) as a reference, a G → T(2,822) transversion in the genomic DNA sequence at a functional splice site of the α-SNAP([Peking/PI 548402]) allele produced an additional 17 nucleotides of mRNA sequence that contains an in-frame stop codon caused by a downstream G → A(2,832) transition. The G. max ([Peking/PI 548402]) genotype has cell wall appositions (CWAs), structures identified as forming as part of a defense response by the activity of the vesicular transport machinery. In contrast, the 17 nt α-SNAP([Peking/PI 548402]) mRNA motif is not found in G. max ([PI 88788]) that exhibits defense to H. glycines, but lack CWAs. The α-SNAP([PI 88788]) promoter contains sequence elements that are nearly identical to the α-SNAP([Peking/PI 548402]) allele, but differs from the G. max ([Williams 82/PI 518671]) ortholog. Overexpressing the α-SNAP([Peking/PI 548402]) allele in the susceptible G. max ([Williams 82/PI 518671]) genotype suppressed H. glycines infection. The experiments indicate a role for the vesicular transport machinery during infection of soybean by the soybean cyst nematode. However, increased GmEREBP1, PR1, PR2, PR5 gene activity but suppressed PR3 expression accompanied the overexpression of the α-SNAP([Peking/PI 548402]) allele prior to infection.
Collapse
Affiliation(s)
- Prachi D Matsye
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Naydenov NG, Brown B, Harris G, Dohn MR, Morales VM, Baranwal S, Reynolds AB, Ivanov AI. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions. PLoS One 2012; 7:e34320. [PMID: 22485163 PMCID: PMC3317505 DOI: 10.1371/journal.pone.0034320] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/28/2012] [Indexed: 12/31/2022] Open
Abstract
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Bryan Brown
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Gianni Harris
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Michael R. Dohn
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Victor M. Morales
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Somesh Baranwal
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Albert B. Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andrei I. Ivanov
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
48
|
The intertransmembrane region of Kaposi's sarcoma-associated herpesvirus modulator of immune recognition 2 contributes to B7-2 downregulation. J Virol 2012; 86:5288-96. [PMID: 22379101 DOI: 10.1128/jvi.00219-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor virus, encodes two homologous membrane-associated E3 ubiquitin ligases, modulator of immune recognition 1 (MIR1) and MIR2, to evade host immunity. Both MIR1 and MIR2 downregulate the surface expression of major histocompatibility complex class I (MHC I) molecules through ubiquitin-mediated endocytosis followed by lysosomal degradation. Since MIR2 additionally downregulates a costimulatory molecule (B7-2) and an integrin ligand (intercellular adhesion molecule 1 [ICAM-1]), MIR2 is thought to be a more important molecule for immune evasion than MIR1; however, the molecular basis of the MIR2 substrate specificity remains unclear. To address this issue, we determined which regions of B7-2 and MIR2 are required for MIR2-mediated B7-2 downregulation. Experiments with chimeras made by swapping domains between human B7-2 and CD8α, a non-MIR2 substrate, and between MIR1 and MIR2 demonstrated a significant contribution of the juxtamembrane (JM) region of B7-2 and the intertransmembrane (ITM) region of MIR2 to MIR2-mediated downregulation. Structure prediction and mutagenesis analyses indicate that Phe119 and Ser120 in the MIR2 ITM region and Asp244 in the B7-2 JM region contribute to the recognition of B7-2 by MIR2. This finding provides new insight into the molecular basis of substrate recognition by MIR family members.
Collapse
|
49
|
Chang LF, Chen S, Liu CC, Pan X, Jiang J, Bai XC, Xie X, Wang HW, Sui SF. Structural characterization of full-length NSF and 20S particles. Nat Struct Mol Biol 2012; 19:268-75. [PMID: 22307055 DOI: 10.1038/nsmb.2237] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 12/20/2011] [Indexed: 11/09/2022]
Abstract
The 20S particle, which is composed of the N-ethylmaleimide-sensitive factor (NSF), soluble NSF attachment proteins (SNAPs) and the SNAP receptor (SNARE) complex, has an essential role in intracellular vesicle fusion events. Using single-particle cryo-EM and negative stain EM, we reconstructed four related three-dimensional structures: Chinese hamster NSF hexamer in the ATPγS, ADP-AlFx and ADP states, and the 20S particle. These structures reveal a parallel arrangement between the D1 and D2 domains of the hexameric NSF and characterize the nucleotide-dependent conformational changes in NSF. The structure of the 20S particle shows that it holds the SNARE complex at two interaction interfaces around the C terminus and N-terminal half of the SNARE complex, respectively. These findings provide insight into the molecular mechanism underlying disassembly of the SNARE complex by NSF.
Collapse
Affiliation(s)
- Lei-Fu Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Naydenov NG, Harris G, Brown B, Schaefer KL, Das SK, Fisher PB, Ivanov AI. Loss of soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP) induces epithelial cell apoptosis via down-regulation of Bcl-2 expression and disruption of the Golgi. J Biol Chem 2011; 287:5928-41. [PMID: 22194596 DOI: 10.1074/jbc.m111.278358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracellular trafficking represents a key mechanism that regulates cell fate by participating in either prodeath or prosurvival signaling. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is a well known component of vesicle trafficking machinery that mediates intermembrane fusion. αSNAP increases cell resistance to cytotoxic stimuli, although mechanisms of its prosurvival function are poorly understood. In this study, we found that either siRNA-mediated knockdown of αSNAP or expression of its dominant negative mutant induced epithelial cell apoptosis. Apoptosis was not caused by activation of the major prodeath regulators Bax and p53 and was independent of a key αSNAP binding partner, NSF. Instead, death of αSNAP-depleted cells was accompanied by down-regulation of the antiapoptotic Bcl-2 protein; it was mimicked by inhibition and attenuated by overexpression of Bcl-2. Knockdown of αSNAP resulted in impairment of Golgi to endoplasmic reticulum (ER) trafficking and fragmentation of the Golgi. Moreover, pharmacological disruption of ER-Golgi transport by brefeldin A and eeyarestatin 1 or siRNA-mediated depletion of an ER/Golgi-associated p97 ATPase recapitulated the effects of αSNAP inhibition by decreasing Bcl-2 level and triggering apoptosis. These results reveal a novel role for αSNAP in promoting epithelial cell survival by unique mechanisms involving regulation of Bcl-2 expression and Golgi biogenesis.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Medicine, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|