1
|
Leconte M, Bonne G, Bertrand AT. Recent insights in striated muscle laminopathies. Curr Opin Neurol 2024; 37:509-514. [PMID: 38989655 DOI: 10.1097/wco.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW To highlight recent insights in different aspects of striated muscle laminopathies (SMLs) related to LMNA mutations. RECENT FINDINGS Clinical and genetic studies allow better patient management and diagnosis, with confirmation of ventricular tachyarrhythmias (VTA) risk prediction score to help with ICD implantation and development of models to help with classification of LMNA variants of uncertain significance. From a pathophysiology perspective, characterization of lamin interactomes in different contexts revealed new lamin A/C partners. Expression or function modulation of these partners evidenced them as potential therapeutic targets. After a positive phase 2, the first phase 3 clinical trial, testing a p38 inhibitor targeting the life-threatening cardiac disease of SML, has been recently stopped, thus highlighting the need for new therapeutic approaches together with new animal and cell models. SUMMARY Since the first LMNA mutation report in 1999, lamin A/C structure and functions have been actively explored to understand the SML pathophysiology. The latest discoveries of partners and altered pathways, highlight the importance of lamin A/C at the nuclear periphery and in the nucleoplasm. Modulation of altered pathways allowed some benefits, especially for cardiac involvement. However, additional studies are still needed to fully assess treatment efficacy and safety.
Collapse
Affiliation(s)
- Marine Leconte
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en Myologie, Paris, France
| | | | | |
Collapse
|
2
|
Farley A, Gao Y, Sun Y, Zohrabian S, Pu WT, Lin Z. Activation of VGLL4 Suppresses Cardiomyocyte Maturational Hypertrophic Growth. Cells 2024; 13:1342. [PMID: 39195232 PMCID: PMC11352427 DOI: 10.3390/cells13161342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
From birth to adulthood, the mammalian heart grows primarily through increasing cardiomyocyte (CM) size, which is known as maturational hypertrophic growth. The Hippo-YAP signaling pathway is well known for regulating heart development and regeneration, but its roles in CM maturational hypertrophy have not been clearly addressed. Vestigial-like 4 (VGLL4) is a crucial component of the Hippo-YAP pathway, and it functions as a suppressor of YAP/TAZ, the terminal transcriptional effectors of this signaling pathway. To develop an in vitro model for studying CM maturational hypertrophy, we compared the biological effects of T3 (triiodothyronine), Dex (dexamethasone), and T3/Dex in cultured neonatal rat ventricular myocytes (NRVMs). The T3/Dex combination treatment stimulated greater maturational hypertrophy than either the T3 or Dex single treatment. Using T3/Dex treatment of NRVMs as an in vitro model, we found that activation of VGLL4 suppressed CM maturational hypertrophy. In the postnatal heart, activation of VGLL4 suppressed heart growth, impaired heart function, and decreased CM size. On the molecular level, activation of VGLL4 inhibited the PI3K-AKT pathway, and disrupting VGLL4 and TEAD interaction abolished this inhibition. In conclusion, our data suggest that VGLL4 suppresses CM maturational hypertrophy by inhibiting the YAP/TAZ-TEAD complex and its downstream activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Aaron Farley
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (A.F.)
| | - Yunan Gao
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (A.F.)
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (A.F.)
| | - Sylvia Zohrabian
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA (W.T.P.)
| | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA (W.T.P.)
| | - Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA; (A.F.)
| |
Collapse
|
3
|
Song S, Zhang X, Huang Z, Zhao Y, Lu S, Zeng L, Cai F, Wang T, Pei Z, Weng X, Luo W, Lu H, Wei Z, Wu J, Yu P, Shen L, Zhang X, Sun A, Ge J. TEA domain transcription factor 1(TEAD1) induces cardiac fibroblasts cells remodeling through BRD4/Wnt4 pathway. Signal Transduct Target Ther 2024; 9:45. [PMID: 38374140 PMCID: PMC10876703 DOI: 10.1038/s41392-023-01732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/21/2024] Open
Abstract
Cardiac fibroblasts (CFs) are the primary cells tasked with depositing and remodeling collagen and significantly associated with heart failure (HF). TEAD1 has been shown to be essential for heart development and homeostasis. However, fibroblast endogenous TEAD1 in cardiac remodeling remains incompletely understood. Transcriptomic analyses revealed consistently upregulated cardiac TEAD1 expression in mice 4 weeks after transverse aortic constriction (TAC) and Ang-II infusion. Further investigation revealed that CFs were the primary cell type expressing elevated TEAD1 levels in response to pressure overload. Conditional TEAD1 knockout was achieved by crossing TEAD1-floxed mice with CFs- and myofibroblasts-specific Cre mice. Echocardiographic and histological analyses demonstrated that CFs- and myofibroblasts-specific TEAD1 deficiency and treatment with TEAD1 inhibitor, VT103, ameliorated TAC-induced cardiac remodeling. Mechanistically, RNA-seq and ChIP-seq analysis identified Wnt4 as a novel TEAD1 target. TEAD1 has been shown to promote the fibroblast-to-myofibroblast transition through the Wnt signalling pathway, and genetic Wnt4 knockdown inhibited the pro-transformation phenotype in CFs with TEAD1 overexpression. Furthermore, co-immunoprecipitation combined with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated interaction between TEAD1 and BET protein BRD4, leading to the binding and activation of the Wnt4 promoter. In conclusion, TEAD1 is an essential regulator of the pro-fibrotic CFs phenotype associated with pathological cardiac remodeling via the BRD4/Wnt4 signalling pathway.
Collapse
Affiliation(s)
- Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zihang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shuyang Lu
- Department of cardiac surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fengze Cai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Tongyao Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Zilun Wei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jian Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
- State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Chen C, Wang J, Liu C, Hu J, Liu L. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies. Biomed Pharmacother 2023; 166:115306. [PMID: 37572633 DOI: 10.1016/j.biopha.2023.115306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Acute myocardial infarction (MI), despite significant progress in its treatment, remains a leading cause of chronic heart failure and cardiovascular events such as cardiac arrest. Promoting angiogenesis in the myocardial tissue after MI to restore blood flow in the ischemic and hypoxic tissue is considered an effective treatment strategy. The repair of the myocardial tissue post-MI involves a robust angiogenic response, with mechanisms involved including endothelial cell proliferation and migration, capillary growth, changes in the extracellular matrix, and stabilization of pericytes for neovascularization. In this review, we provide a detailed overview of six key pathways in angiogenesis post-MI: the PI3K/Akt/mTOR signaling pathway, the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, the Sonic Hedgehog signaling pathway, and the JAK/STAT signaling pathway. We also discuss novel therapeutic approaches targeting these pathways, including drug therapy, gene therapy, protein therapy, cell therapy, and extracellular vesicle therapy. A comprehensive understanding of these key pathways and their targeted therapies will aid in our understanding of the pathological and physiological mechanisms of angiogenesis after MI and the development and application of new treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
5
|
Federti E, Vinchi F, Iatcenko I, Ghigo A, Matte A, Toya SCM, Siciliano A, Chiabrando D, Tolosano E, Vance SZ, Riccardi V, Andolfo I, Iezzi M, Lamolinara A, Iolascon A, De Franceschi L. Duality of Nrf2 in iron-overload cardiomyopathy. Haematologica 2023; 108:1335-1348. [PMID: 36700398 PMCID: PMC10153524 DOI: 10.3324/haematol.2022.281995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Cardiomyopathy deeply affects quality of life and mortality of patients with b-thalassemia or with transfusion-dependent myelodysplastic syndromes. Recently, a link between Nrf2 activity and iron metabolism has been reported in liver ironoverload murine models. Here, we studied C57B6 mice as healthy control and nuclear erythroid factor-2 knockout (Nrf2-/-) male mice aged 4 and 12 months. Eleven-month-old wild-type and Nrf2-/- mice were fed with either standard diet or a diet containing 2.5% carbonyl-iron (iron overload [IO]) for 4 weeks. We show that Nrf2-/- mice develop an age-dependent cardiomyopathy, characterized by severe oxidation, degradation of SERCA2A and iron accumulation. This was associated with local hepcidin expression and increased serum non-transferrin-bound iron, which promotes maladaptive cardiac remodeling and interstitial fibrosis related to overactivation of the TGF-b pathway. When mice were exposed to IO diet, the absence of Nrf2 was paradoxically protective against further heart iron accumulation. Indeed, the combination of prolonged oxidation and the burst induced by IO diet resulted in activation of the unfolded protein response (UPR) system, which in turn promotes hepcidin expression independently from heart iron accumulation. In the heart of Hbbth3/+ mice, a model of b-thalassemia intermedia, despite the activation of Nrf2 pathway, we found severe protein oxidation, activation of UPR system and cardiac fibrosis independently from heart iron content. We describe the dual role of Nrf2 when aging is combined with IO and its novel interrelation with UPR system to ensure cell survival. We open a new perspective for early and intense treatment of cardiomyopathy in patients with b-thalassemia before the appearance of heart iron accumulation.
Collapse
Affiliation(s)
- Enrica Federti
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, USA; Dept. of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | - Iana Iatcenko
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Alessandra Ghigo
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarrone", University of Torino, Torino
| | - Alessandro Matte
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | | | - Angela Siciliano
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Deborah Chiabrando
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarrone", University of Torino, Torino
| | - Emanuela Tolosano
- Department Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarrone", University of Torino, Torino
| | - Steven Zebulon Vance
- Iron Research Laboratory, Lindsley Kimball Research Institute, New York Blood Center, New York, NY
| | - Veronica Riccardi
- Department of Medicine, University of Verona and AOUI Verona, Verona
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples; CEINGE - Biotecnologie Avanzate, Naples
| | - Manuela Iezzi
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti, Chieti
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti, Chieti
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples; CEINGE - Biotecnologie Avanzate, Naples
| | | |
Collapse
|
6
|
Yamada S, Ko T, Ito M, Sassa T, Nomura S, Okuma H, Sato M, Imasaki T, Kikkawa S, Zhang B, Yamada T, Seki Y, Fujita K, Katoh M, Kubota M, Hatsuse S, Katagiri M, Hayashi H, Hamano M, Takeda N, Morita H, Takada S, Toyoda M, Uchiyama M, Ikeuchi M, Toyooka K, Umezawa A, Yamanishi Y, Nitta R, Aburatani H, Komuro I. TEAD1 trapping by the Q353R-Lamin A/C causes dilated cardiomyopathy. SCIENCE ADVANCES 2023; 9:eade7047. [PMID: 37058558 PMCID: PMC10104473 DOI: 10.1126/sciadv.ade7047] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Mutations in the LMNA gene encoding Lamin A and C (Lamin A/C), major components of the nuclear lamina, cause laminopathies including dilated cardiomyopathy (DCM), but the underlying molecular mechanisms have not been fully elucidated. Here, by leveraging single-cell RNA sequencing (RNA-seq), assay for transposase-accessible chromatin using sequencing (ATAC-seq), protein array, and electron microscopy analysis, we show that insufficient structural maturation of cardiomyocytes owing to trapping of transcription factor TEA domain transcription factor 1 (TEAD1) by mutant Lamin A/C at the nuclear membrane underlies the pathogenesis of Q353R-LMNA-related DCM. Inhibition of the Hippo pathway rescued the dysregulation of cardiac developmental genes by TEAD1 in LMNA mutant cardiomyocytes. Single-cell RNA-seq of cardiac tissues from patients with DCM with the LMNA mutation confirmed the dysregulated expression of TEAD1 target genes. Our results propose an intervention for transcriptional dysregulation as a potential treatment of LMNA-related DCM.
Collapse
Affiliation(s)
- Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuro Sassa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Bo Zhang
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Takanobu Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Yuka Seki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanna Fujita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Manami Katoh
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Masayuki Kubota
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Hatsuse
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromu Hayashi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masashi Ikeuchi
- Division of Biofunctional Restoration, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Hu W, Wang X, Bi Y, Bao J, Shang M, Zhang L. The Molecular Mechanism of the TEAD1 Gene and miR-410-5p Affect Embryonic Skeletal Muscle Development: A miRNA-Mediated ceRNA Network Analysis. Cells 2023; 12:cells12060943. [PMID: 36980284 PMCID: PMC10047409 DOI: 10.3390/cells12060943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Muscle development is a complex biological process involving an intricate network of multiple factor interactions. Through the analysis of transcriptome data and molecular biology confirmation, this study aims to reveal the molecular mechanism underlying sheep embryonic skeletal muscle development. The RNA sequencing of embryos was conducted, and microRNA (miRNA)-mediated competitive endogenous RNA (ceRNA) networks were constructed. qRT-PCR, siRNA knockdown, CCK-8 assay, scratch assay, and dual luciferase assay were used to carry out gene function identification. Through the analysis of the ceRNA networks, three miRNAs (miR-493-3p, miR-3959-3p, and miR-410-5p) and three genes (TEAD1, ZBTB34, and POGLUT1) were identified. The qRT-PCR of the DE-miRNAs and genes in the muscle tissues of sheep showed that the expression levels of the TEAD1 gene and miR-410-5p were correlated with the growth rate. The knockdown of the TEAD1 gene by siRNA could significantly inhibit the proliferation of sheep primary embryonic myoblasts, and the expression levels of SLC1A5, FoxO3, MyoD, and Pax7 were significantly downregulated. The targeting relationship between miR-410-5p and the TEAD1 gene was validated by a dual luciferase assay, and miR-410-5p can significantly downregulate the expression of TEAD1 in sheep primary embryonic myoblasts. We proved the regulatory relationship between miR-410-5p and the TEAD1 gene, which was related to the proliferation of sheep embryonic myoblasts. The results provide a reference and molecular basis for understanding the molecular mechanism of embryonic muscle development.
Collapse
Affiliation(s)
- Wenping Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinyue Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yazhen Bi
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Bao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingyu Shang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Li F, Negi V, Yang P, Lee J, Ma K, Moulik M, Yechoor V. TEAD1 regulates cell proliferation through a pocket-independent transcription repression mechanism. Nucleic Acids Res 2022; 50:12723-12738. [PMID: 36484096 PMCID: PMC9825168 DOI: 10.1093/nar/gkac1063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The Hippo-TEAD pathway regulates cellular proliferation and function. The existing paradigm is that TEAD co-activators, YAP and TAZ, and co-repressor, VGLL4, bind to the pocket region of TEAD1 to enable transcriptional activation or repressive function. Here we demonstrate a pocket-independent transcription repression mechanism whereby TEAD1 controls cell proliferation in both non-malignant mature differentiated cells and in malignant cell models. TEAD1 overexpression can repress tumor cell proliferation in distinct cancer cell lines. In pancreatic β cells, conditional knockout of TEAD1 led to a cell-autonomous increase in proliferation. Genome-wide analysis of TEAD1 functional targets via transcriptomic profiling and cistromic analysis revealed distinct modes of target genes, with one class of targets directly repressed by TEAD1. We further demonstrate that TEAD1 controls target gene transcription in a motif-dependent and orientation-independent manner. Mechanistically, we show that TEAD1 has a pocket region-independent, direct repressive function via interfering with RNA polymerase II (POLII) binding to target promoters. Our study reveals that TEAD1 target genes constitute a mutually restricted regulatory loop to control cell proliferation and uncovers a novel direct repression mechanism involved in its transcriptional control that could be leveraged in future studies to modulate cell proliferation in tumors and potentially enhance the proliferation of normal mature cells.
Collapse
Affiliation(s)
- Feng Li
- Correspondence may also be addressed to Feng Li.
| | - Vinny Negi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ping Yang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeongkyung Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ke Ma
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Mousumi Moulik
- Division of Pediatric Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vijay K Yechoor
- To whom correspondence should be addressed. Tel: +1 412 383 4251; Fax: +1 412 648 3290;
| |
Collapse
|
9
|
Yeh HH, Chang YM, Chang YW, Lu MYJ, Chen YH, Lee CC, Chen CC. Multiomic analyses reveal enriched glycolytic processes in β-myosin heavy chain-expressed cardiomyocytes in early cardiac hypertrophy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2022; 1:100011. [PMID: 39801720 PMCID: PMC11708374 DOI: 10.1016/j.jmccpl.2022.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 01/16/2025]
Abstract
Background Cardiac pressure overload induces cardiac hypertrophy and eventually leads to heart failure. One distinct feature of pathological cardiac hypertrophy is fetal-gene re-expression, but not every cardiomyocyte exhibits fetal gene re-expression in the diseased heart. Adult cardiomyocytes are terminally differentiated cells, so we do not know how the heterogeneity is determined and whether the differential fetal-gene reprogramming indicates a different degree of remodeling among cardiomyocytes. We hypothesized that fetal gene-expressed cardiomyocytes show more pathological features in the pressure-overloaded heart. Results We induced pressure overload in mice by transverse aortic constriction (TAC) and observed a cardiomyocyte population with expression of β-myosin heavy chain (βMHC, a fetal gene encoded by Myh7) after TAC for 3 days. On transcriptomic and proteomic analyses, βMHC-expressed cardiomyocytes of 3-day TAC hearts were enriched in genes in cardiomyopathy-associated pathways and glycolytic processes. Moreover, results of immunoblotting and enzyme activity assay suggested higher glycolytic activity in βMHC-expressed than non-expressed cardiomyocytes. When we inhibited the glycolytic flux by 2-deoxy-d-glucose, a widely used glycolysis inhibitor, the number of βMHC-expressed cardiomyocytes was reduced, and the level of TEA domain family member 1 (TEAD1), a transcriptional enhancer, was decreased. Also, our spatial transcriptomic results demonstrated that naïve and 3-day TAC hearts had fetal-gene-rich tissue domains that were enriched in pathways in extracellular matrix organization and tissue remodeling. As well, gene levels of glycolytic enzymes were higher in Myh7-positive than Myh7-negative domains. Conclusions Our data suggest that βMHC-expressed cardiomyocytes progress to pathological remodeling in the early stages of cardiac hypertrophy. In addition, the diverse glycolytic activity among cardiomyocytes might play a role in regulating gene expression via TEAD1 signaling.
Collapse
Affiliation(s)
- Hsiao-hui Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Wang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Che Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Limyati Y, Sanjaya A, Lucretia T, Gunadi JW, Biben V, Jasaputra DK, Lesmana R. Potential Role of Exercise in Regulating YAP and TAZ During Cardiomyocytes Aging. Curr Cardiol Rev 2022; 18:24-33. [PMID: 35379136 PMCID: PMC9896415 DOI: 10.2174/1573403x18666220404152924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Adaptation of cardiac muscle to regular exercise results in morphological and structural changes known as physiological cardiac hypertrophy, to which the Hippo signaling pathway might have contributed. Two major terminal effectors in the Hippo signaling pathway are Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ). The latest studies have reported the role of YAP and TAZ in different life stages, such as in fetal, neonatal, and adult hearts. Their regulation might involve several mechanisms and effectors. One of the possible coregulators is exercise. Exercise plays a role in cardiomyocyte hypertrophic changes during different stages of life, including in aged hearts. YAP/TAZ signaling pathway has a role in physiological cardiac hypertrophy induced by exercise and is associated with cardiac remodelling. Thus, it can be believed that exercise has roles in activating the signaling pathway of YAP and TAZ in aged cardiomyocytes. However, the studies regarding the roles of YAP and TAZ during cardiomyocyte aging are limited. The primary purpose of this review is to explore the response of cardiovascular aging to exercise via signaling pathway of YAP and TAZ.
Collapse
Affiliation(s)
- Yenni Limyati
- Address correspondence to this author at the Postgraduate Doctoral Program Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161; Department of Physical Medicine and Rehabilitation, Unggul Karsa Medika Hospital, Bandung, West Java, 40218; Department of Clinical Skills, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia; Tel/Fax: +62222012186, +62222017621;
| | | | | | | | | | | | | |
Collapse
|
11
|
Porter HL, Brown CA, Roopnarinesingh X, Giles CB, Georgescu C, Freeman WM, Wren JD. Many chronological aging clocks can be found throughout the epigenome: Implications for quantifying biological aging. Aging Cell 2021; 20:e13492. [PMID: 34655509 PMCID: PMC8590098 DOI: 10.1111/acel.13492] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023] Open
Abstract
Epigenetic alterations are a hallmark of aging and age-related diseases. Computational models using DNA methylation data can create "epigenetic clocks" which are proposed to reflect "biological" aging. Thus, it is important to understand the relationship between predictive clock sites and aging biology. To do this, we examined over 450,000 methylation sites from 9,699 samples. We found ~20% of the measured genomic cytosines can be used to make many different epigenetic clocks whose age prediction performance surpasses that of telomere length. Of these predictive sites, the average methylation change over a lifetime was small (~1.5%) and these sites were under-represented in canonical regions of epigenetic regulation. There was only a weak association between "accelerated" epigenetic aging and disease. We also compare tissue-specific and pan-tissue clock performance. This is critical to applying clocks both to new sample sets in basic research, as well as understanding if clinically available tissues will be feasible samples to evaluate "epigenetic aging" in unavailable tissues (e.g., brain). Despite the reproducible and accurate age predictions from DNA methylation data, these findings suggest they may have limited utility as currently designed in understanding the molecular biology of aging and may not be suitable as surrogate endpoints in studies of anti-aging interventions. Purpose-built clocks for specific tissues age ranges or phenotypes may perform better for their specific purpose. However, if purpose-built clocks are necessary for meaningful predictions, then the utility of clocks and their application in the field needs to be considered in that context.
Collapse
Affiliation(s)
- Hunter L. Porter
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingOklahomaOKUSA
| | - Chase A. Brown
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
| | - Xiavan Roopnarinesingh
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
| | - Cory B. Giles
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingOklahomaOKUSA
| | | | - Willard M. Freeman
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
| | - Jonathan D. Wren
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingOklahomaOKUSA
| |
Collapse
|
12
|
Lu T, Li Y, Lu W, Spitters TWGM, Fang X, Wang J, Cai S, Gao J, Zhou Y, Duan Z, Xiong H, Liu L, Li Q, Jiang H, Chen K, Zhou H, Lin H, Feng H, Zhou B, Antos CL, Luo C. Discovery of a subtype-selective, covalent inhibitor against palmitoylation pocket of TEAD3. Acta Pharm Sin B 2021; 11:3206-3219. [PMID: 34729310 PMCID: PMC8546857 DOI: 10.1016/j.apsb.2021.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The TEA domain (TEAD) family proteins (TEAD1‒4) are essential transcription factors that control cell differentiation and organ size in the Hippo pathway. Although the sequences and structures of TEAD family proteins are highly conserved, each TEAD isoform has unique physiological and pathological functions. Therefore, the development and discovery of subtype selective inhibitors for TEAD protein will provide important chemical probes for the TEAD-related function studies in development and diseases. Here, we identified a novel TEAD1/3 covalent inhibitor (DC-TEADin1072) with biochemical IC50 values of 0.61 ± 0.02 and 0.58 ± 0.12 μmol/L against TEAD1 and TEAD3, respectively. Further chemical optimization based on DC-TEAD in 1072 yielded a selective TEAD3 inhibitor DC-TEAD3in03 with the IC50 value of 0.16 ± 0.03 μmol/L, which shows 100-fold selectivity over other TEAD isoforms in activity-based protein profiling (ABPP) assays. In cells, DC-TEAD3in03 showed selective inhibitory effect on TEAD3 in GAL4-TEAD (1-4) reporter assays with the IC50 value of 1.15 μmol/L. When administered to zebrafish juveniles, experiments showed that DC-TEAD3in03 reduced the growth rate of zebrafish caudal fins, indicating the importance of TEAD3 activity in controlling proportional growth of vertebrate appendages.
Collapse
Affiliation(s)
- Tian Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Li
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Wenchao Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - TWGM Spitters
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueyu Fang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simian Cai
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanting Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhe Duan
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Huan Xiong
- Pharmacological and Toxicological Chemistry and Biochemistry Laboratory, UMR 8601 CNRS, University of Paris, Paris Cedex 06, 75270, France
| | - Liping Liu
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Li
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Lin
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huijin Feng
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Zhou
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Christopher L. Antos
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
13
|
Meng F, Xie B, Martin JF. Targeting the Hippo pathway in heart repair. Cardiovasc Res 2021; 118:2402-2414. [PMID: 34528077 DOI: 10.1093/cvr/cvab291] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo pathway is an evolutionarily and functionally conserved signaling pathway that controls organ size by regulating cell proliferation, apoptosis, and differentiation. Emerging evidence has shown that the Hippo pathway plays critical roles in cardiac development, homeostasis, disease, and regeneration. Targeting the Hippo pathway has tremendous potential as a therapeutic strategy for treating intractable cardiovascular diseases such as heart failure. In this review, we summarize the function of the Hippo pathway in the heart. Particularly, we highlight the posttranslational modification of Hippo pathway components, including the core kinases LATS1/2 and their downstream effectors YAP/TAZ, in different contexts, which has provided new insights and avenues in cardiac research.
Collapse
Affiliation(s)
- Fansen Meng
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - Bing Xie
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030.,Texas Heart Institute, Houston, Texas, 77030
| |
Collapse
|
14
|
TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death Differ 2021; 28:2045-2059. [PMID: 33469230 PMCID: PMC8257617 DOI: 10.1038/s41418-020-00732-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023] Open
Abstract
The Hippo signaling effector, TEAD1 plays an essential role in cardiovascular development. However, a role for TEAD1 in postmitotic cardiomyocytes (CMs) remains incompletely understood. Herein we reported that TEAD1 is required for postmitotic CM survival. We found that adult mice with ubiquitous or CM-specific loss of Tead1 present with a rapid lethality due to an acute-onset dilated cardiomyopathy. Surprisingly, deletion of Tead1 activated the necroptotic pathway and induced massive cardiomyocyte necroptosis, but not apoptosis. In contrast to apoptosis, necroptosis is a pro-inflammatory form of cell death and consistent with this, dramatically higher levels of markers of activated macrophages and pro-inflammatory cytokines were observed in the hearts of Tead1 knockout mice. Blocking necroptosis by administration of necrostatin-1 rescued Tead1 deletion-induced heart failure. Mechanistically, genome-wide transcriptome and ChIP-seq analysis revealed that in adult hearts, Tead1 directly activates a large set of nuclear DNA-encoded mitochondrial genes required for assembly of the electron transfer complex and the production of ATP. Loss of Tead1 expression in adult CMs increased mitochondrial reactive oxygen species, disrupted the structure of mitochondria, reduced complex I-IV driven oxygen consumption and ATP levels, resulting in the activation of necroptosis. This study identifies an unexpected paradigm in which TEAD1 is essential for postmitotic CM survival by maintaining the expression of nuclear DNA-encoded mitochondrial genes required for ATP synthesis.
Collapse
|
15
|
Currey L, Thor S, Piper M. TEAD family transcription factors in development and disease. Development 2021; 148:269158. [PMID: 34128986 DOI: 10.1242/dev.196675] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The balance between stem cell potency and lineage specification entails the integration of both extrinsic and intrinsic cues, which ultimately influence gene expression through the activity of transcription factors. One example of this is provided by the Hippo signalling pathway, which plays a central role in regulating organ size during development. Hippo pathway activity is mediated by the transcriptional co-factors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which interact with TEA domain (TEAD) proteins to regulate gene expression. Although the roles of YAP and TAZ have been intensively studied, the roles played by TEAD proteins are less well understood. Recent studies have begun to address this, revealing that TEADs regulate the balance between progenitor self-renewal and differentiation throughout various stages of development. Furthermore, it is becoming apparent that TEAD proteins interact with other co-factors that influence stem cell biology. This Primer provides an overview of the role of TEAD proteins during development, focusing on their role in Hippo signalling as well as within other developmental, homeostatic and disease contexts.
Collapse
Affiliation(s)
- Laura Currey
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Aljanabi MA, Alfaqih MA, Al-Khayat AMA, Bataineh HN. Sildenafil reverses the hypertrophy of mice right ventricle caused by hypoxia but does not reverse the changes in the myosin heavy chain isoforms. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2020; 12:79-87. [PMID: 32714496 PMCID: PMC7364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the effect of hypoxia and concomitant sildenafil treatment on MHC isoforms in hypoxia-induced hypertrophied right ventricles. Right ventricular hypertrophy was induced in mice by exposing them to hypoxic stimulus (11% ambient oxygen) in a normobaric chamber for 20 days. 45 mice were used in this study, distributed randomly into three groups: the first group served as a control (CO), the second group was exposed to hypoxia for 20 days without sildenafil treatment (HY), and the third group was given sildenafil orally at a dose of 30 mg.kg-1.day-1 plus exposure to hypoxia for 20 days (HS). Relative amounts of MHC isoforms were calculated using two ELISA kits containing antibodies against α and β MHC, and by SDS-PAGE. Compared with the CO group, the HY group showed a significant increase in right ventricle weight/left ventricle plus septum ratio (Fulton's ratio). The HS group showed a significant decrease in Fulton's ratio compared with the HY group, but not with the CO group. Expression of the MHC-β isoform was significantly increased in the HY group compared with the CO group. There was no significant difference in MHC-β between the HY group and the HS group. Plasma atrial natriuretic peptide level was significantly higher in HY group than HS group and did not return to normal after sildenafil treatment. Conclusion: sildenafil reversed the right ventricular hypertrophy induced by hypoxia but did not decrease the expression of MHC-β to normal levels.
Collapse
Affiliation(s)
- Mukhallad A Aljanabi
- Department of Physiology/Faculty of MEDICINE/Jordan University of Science and Technology P.O. Box 3030, Irbid 22110, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology/Faculty of MEDICINE/Jordan University of Science and Technology P.O. Box 3030, Irbid 22110, Jordan
| | - Anwar Mohammad A Al-Khayat
- Department of Physiology/Faculty of MEDICINE/Jordan University of Science and Technology P.O. Box 3030, Irbid 22110, Jordan
| | - Hameed N Bataineh
- Department of Physiology/Faculty of MEDICINE/Jordan University of Science and Technology P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
17
|
LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1. Life Sci 2020; 256:117811. [PMID: 32422306 DOI: 10.1016/j.lfs.2020.117811] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Acute myocardial infarction (AMI) is a major cardiovascular disease with high mortality worldwide. Hypoxia is a key inducing factor for AMI. We aimed to examine the expression and functions of Kcnq1ot1 (KCNQ1 overlapping transcript 1) in hypoxia-induced cardiomyocytes in the process of AMI. The left anterior descending coronary artery ligation (LAD) was used for inducing in-vivo AMI model and the primary cardiomyocytes were extracted; in-vitro H9c2 cell model was simulated by hypoxia treatment. TUNEL, flow cytometry and JC-1 assay were carried out to evaluate cell apoptosis. Mechanism assays including luciferase reporter assay and RIP assay revealed interplays between RNAs. To begin with, Kcnq1ot1 was revealed to be conspicuously upregulated in myocardium infracted zone and border zone within 2 days since establishment of the model. Moreover, inhibition of Kcnq1ot1 protected cardiomyocytes against hypoxia-triggered cell apoptosis during the process of AMI. Then, miR-466k and miR-466i-5p were proved to bind with Kcnq1ot1 and participated in Kcnq1ot1-mediated cardiomyocyte injury under hypoxia. Subsequently, Kcnq1ot1 was found to elevate Tead1 (TEA domain transcription factor 1) expression via sponging miR-466k and miR-466i-5p. Finally, it was verified that Kcnq1ot1 regulated hypoxia-induced cardiomyocyte injury dependent on Tead1. In conclusion, Kcnq1ot1 sponged miR-466k and miR-466i-5p to up-regulate Tead1, thus triggering cardiomyocyte injury in the process of AMI.
Collapse
|
18
|
Biological Pathways of Long-Term Visit-to-Visit Blood Pressure Variability in the American Population: Cardiovascular Health Study and Women’s Health Initiatives. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/3841945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies reported a positive relationship between visit-to-visit blood pressure variability (VVBPV) and cardiovascular morbidity and mortality independently of the mean arterial blood pressure across clinical visits. The literature is scarce on the genes and biological mechanisms that regulate long-term VVBPV. We sought to identify biological pathways that regulate visit-to-visit blood pressure variability. We used phenotypic and genotype data from the Women’s Health Initiatives and Cardiovascular Health Studies. We defined VVBPV of systolic and diastolic blood pressure phenotypes as the standard deviation about the participant’s regression line with systolic and diastolic blood pressure regressed separately across visits. We imputed missing genotypes and then conducted a genome-wide association analysis to identify genomic variants related to the VVBPV and detect biological pathways. For systolic VVBPV, we identified a neurological pathway, the GABAergic pathway (P values = 1.1E − 2), and a vascular pathway, the RAP1 signaling pathway (P values = 5.8E − 2). For diastolic VVBPV, the hippo signaling (P values = 4.1E − 2), CDO myogenesis (P values = 7.0E − 2), and O-glycosylation of TSR domain-containing protein pathways (P values = 9.0E − 2) were the significant pathways. Future studies are warranted to validate these results. Further understanding of the roles of the genes regulating the identified pathways will help researchers to improve future pharmacological interventions to treat VVBPV in clinical practice.
Collapse
|
19
|
Paavola J, Alakoski T, Ulvila J, Kilpiö T, Sirén J, Perttunen S, Narumanchi S, Wang H, Lin R, Porvari K, Junttila J, Huikuri H, Immonen K, Lakkisto P, Magga J, Tikkanen I, Kerkelä R. Vezf1 regulates cardiac structure and contractile function. EBioMedicine 2020; 51:102608. [PMID: 31911272 PMCID: PMC6948172 DOI: 10.1016/j.ebiom.2019.102608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022] Open
Abstract
Background Vascular endothelial zinc finger 1 (Vezf1) is a transcription factor previously shown to regulate vasculogenesis and angiogenesis. We aimed to investigate the role of Vezf1 in the postnatal heart. Methods The role of Vezf1 in regulating cardiac growth and contractile function was studied in zebrafish and in primary cardiomyocytes. Findings We find that expression of Vezf1 is decreased in diseased human myocardium and mouse hearts. Our experimental data shows that knockdown of zebrafish Vezf1 reduces cardiac growth and results in impaired ventricular contractile response to β-adrenergic stimuli. However, Vezf1 knockdown is not associated with dysregulation of cardiomyocyte Ca2+ transient kinetics. Gene ontology enrichment analysis indicates that Vezf1 regulates cardiac muscle contraction and dilated cardiomyopathy related genes and we identify cardiomyocyte Myh7/β-MHC as key target for Vezf1. We further identify a key role for an MCAT binding site in the Myh7 promoter regulating the response to Vezf1 knockdown and show that TEAD-1 is a binding partner of Vezf1. Interpretation We demonstrate a role for Vezf1 in regulation of compensatory cardiac growth and cardiomyocyte contractile function, which may be relevant in human cardiac disease.
Collapse
Affiliation(s)
- Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tarja Alakoski
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Johanna Ulvila
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Teemu Kilpiö
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juuso Sirén
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hong Wang
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ruizhu Lin
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Katja Porvari
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Forensic Medicine, Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Juhani Junttila
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Division of Cardiology, Research Unit of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huikuri
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Division of Cardiology, Research Unit of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Katariina Immonen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Helsinki, Finland; Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Helsinki, Finland; Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
20
|
Mia MM, Singh MK. The Hippo Signaling Pathway in Cardiac Development and Diseases. Front Cell Dev Biol 2019; 7:211. [PMID: 31632964 PMCID: PMC6779857 DOI: 10.3389/fcell.2019.00211] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023] Open
Abstract
Heart disease continues to be the leading cause of morbidity and mortality worldwide. Cardiac malformation during development could lead to embryonic or postnatal death. However, matured heart tissue has a very limited regenerative capacity. Thus, loss of cardiomyocytes from injury or diseases in adults could lead to heart failure. The Hippo signaling pathway is a newly identified signaling cascade that modulates regenerative response by regulating cardiomyocyte proliferation in the embryonic heart, as well as in postnatal hearts after injury. In this review, we summarize recent findings highlighting the function and regulation of the Hippo signaling pathway in cardiac development and diseases.
Collapse
Affiliation(s)
- Masum M Mia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore
| |
Collapse
|
21
|
Abstract
The Hippo-YAP (Yes-associated protein) pathway is an evolutionarily and functionally conserved regulator of organ size and growth with crucial roles in cell proliferation, apoptosis, and differentiation. This pathway has great potential for therapeutic manipulation in different disease states and to promote organ regeneration. In this Review, we summarize findings from the past decade revealing the function and regulation of the Hippo-YAP pathway in cardiac development, growth, homeostasis, disease, and regeneration. In particular, we highlight the roles of the Hippo-YAP pathway in endogenous heart muscle renewal, including the pivotal role of the Hippo-YAP pathway in regulating cardiomyocyte proliferation and differentiation, stress response, and mechanical signalling. The human heart lacks the capacity to self-repair; therefore, the loss of cardiomyocytes after injury such as myocardial infarction can result in heart failure and death. Despite substantial advances in the treatment of heart failure, an enormous unmet clinical need exists for alternative treatment options. Targeting the Hippo-YAP pathway has tremendous potential for developing therapeutic strategies for cardiac repair and regeneration for currently intractable cardiovascular diseases such as heart failure. The lessons learned from cardiac repair and regeneration studies will also bring new insights into the regeneration of other tissues with limited regenerative capacity.
Collapse
|
22
|
Sophie B, Jacob H, Jordan VJS, Yungki P, Laura FM, Yannick P. YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells. Front Mol Neurosci 2019; 12:177. [PMID: 31379499 PMCID: PMC6650784 DOI: 10.3389/fnmol.2019.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are exquisitely sensitive to the elasticity of their environment and their differentiation and capacity to myelinate depend on the transduction of mechanical stimuli by YAP and TAZ. YAP/TAZ, in concert with other transcription factors, regulate several pathways including lipid and sterol biosynthesis as well as extracellular matrix receptor expressions such as integrins and G-proteins. Yet, the characterization of the signaling downstream YAP/TAZ in SCs is incomplete. Myelin sheath production by SC coincides with rapid up-regulation of numerous transcription factors. Here, we show that ablation of YAP/TAZ alters the expression of transcription regulators known to regulate SC myelin gene transcription and differentiation. Furthermore, we link YAP/TAZ to two DNA binding proteins, Cc2d1b and Purβ, which have no described roles in myelinating glial cells. We demonstrate that silencing of either Cc2d1b or Purβ limits the formation of myelin segments. These data provide a deeper insight into the myelin gene transcriptional network and the role of YAP/TAZ in myelinating glial cells.
Collapse
Affiliation(s)
- Belin Sophie
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Herron Jacob
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - VerPlank J S Jordan
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Park Yungki
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States
| | - Feltri M Laura
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Poitelon Yannick
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| |
Collapse
|
23
|
Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim BS, Yang P, Yechoor VK, Moulik M. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS One 2019; 14:e0212017. [PMID: 30811446 PMCID: PMC6392249 DOI: 10.1371/journal.pone.0212017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Adult heart size is determined predominantly by the cardiomyocyte number and size. The cardiomyocyte number is determined primarily in the embryonic and perinatal period, as adult cardiomyocyte proliferation is restricted in comparison to that seen during the perinatal period. Recent evidence has implicated the mammalian Hippo kinase pathway as being critical in cardiomyocyte proliferation. Though the transcription factor, Tead1, is the canonical downstream transcriptional factor of the hippo kinase pathway in cardiomyocytes, the specific role of Tead1 in cardiomyocyte proliferation in the perinatal period has not been determined. Here, we report the generation of a cardiomyocyte specific perinatal deletion of Tead1, using Myh6-Cre deletor mice (Tead1-cKO). Perinatal Tead1 deletion was lethal by postnatal day 9 in Tead1-cKO mice due to dilated cardiomyopathy. Tead1-deficient cardiomyocytes have significantly decreased proliferation during the immediate postnatal period, when proliferation rate is normally high. Deletion of Tead1 in HL-1 cardiac cell line confirmed that cell-autonomous Tead1 function is required for normal cardiomyocyte proliferation. This was secondary to significant decrease in levels of many proteins, in vivo, that normally promote cell cycle in cardiomyocytes. Taken together this demonstrates the non-redundant critical requirement for Tead1 in regulating cell cycle proteins and proliferation in cardiomyocytes in the perinatal heart.
Collapse
Affiliation(s)
- Ruya Liu
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rajaganapathi Jagannathan
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Feng Li
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nikhil Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Byung S. Kim
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ping Yang
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vijay K. Yechoor
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Pediatrics, UTHealth McGovern Medical School, Houston, Texas, United States of America
| |
Collapse
|
24
|
Byun J, Del Re DP, Zhai P, Ikeda S, Shirakabe A, Mizushima W, Miyamoto S, Brown JH, Sadoshima J. Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. J Biol Chem 2019; 294:3603-3617. [PMID: 30635403 DOI: 10.1074/jbc.ra118.006123] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/27/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, and heart failure is a major component of CVD-related morbidity and mortality. The development of cardiac hypertrophy in response to hemodynamic overload is initially considered to be beneficial; however, this adaptive response is limited and, in the presence of prolonged stress, will transition to heart failure. Yes-associated protein (YAP), the central downstream effector of the Hippo signaling pathway, regulates proliferation and survival in mammalian cells. Our previous work demonstrated that cardiac-specific loss of YAP leads to increased cardiomyocyte (CM) apoptosis and impaired CM hypertrophy during chronic myocardial infarction (MI) in the mouse heart. Because of its documented cardioprotective effects, we sought to determine the importance of YAP in response to acute pressure overload (PO). Our results indicate that endogenous YAP is activated in the heart during acute PO. YAP activation that depended upon RhoA was also observed in CMs subjected to cyclic stretch. To examine the function of endogenous YAP during acute PO, Yap +/ flox;Cre α-MHC (YAP-CHKO) and Yap +/ flox mice were subjected to transverse aortic constriction (TAC). We found that YAP-CHKO mice had attenuated cardiac hypertrophy and significant increases in CM apoptosis and fibrosis that correlated with worsened cardiac function after 1 week of TAC. Loss of CM YAP also impaired activation of the cardioprotective kinase Akt, which may underlie the YAP-CHKO phenotype. Together, these data indicate a prohypertrophic, prosurvival function of endogenous YAP and suggest a critical role for CM YAP in the adaptive response to acute PO.
Collapse
Affiliation(s)
- Jaemin Byun
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Shohei Ikeda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Akihiro Shirakabe
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Wataru Mizushima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| | - Shigeki Miyamoto
- the Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Joan H Brown
- the Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, New Jersey 07103 and
| |
Collapse
|
25
|
Hou N, Wen Y, Yuan X, Xu H, Wang X, Li F, Ye B. Activation of Yap1/Taz signaling in ischemic heart disease and dilated cardiomyopathy. Exp Mol Pathol 2017; 103:267-275. [PMID: 29154888 DOI: 10.1016/j.yexmp.2017.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
Genetic manipulation of key components of the evolutionally conserved Hippo pathway has shown that the precise control of these signaling molecules is critical to cardiac development and response to stresses. However, how this pathway is involved in the progression of cardiac dysfunction in different heart diseases remains unclear. We investigated the expressional levels and subcellular localization of Yap1, Taz, and Tead1 and determined Hippo target gene expression in failing human hearts with ischemic heart disease (IHD) and idiopathic dilated cardiomyopathy (IDC) and mouse desmin-related cardiomyopathy (DES). Our results demonstrated that Yap1, Taz, and Tead1 were significantly increased in failing human and DES hearts compared with the non-failing controls (NFH) or wild type (WT) mouse hearts at both mRNA and protein levels. Interestingly, adult human and mouse hearts had more Taz than Yap1 by mRNA and protein expression and their increases in diseased hearts were proportional and did not change Yap1/Taz ratio. Yap1, Taz, and Tead1 were accumulated in the nuclear fraction and cardiomyocyte nuclei of diseased hearts. The ratio of Yap1 phosphorylated at serine 127 (human) or serine 112 (mouse) to the total Yap1 (pYap1/Yap1) was significantly lower in the nuclear fraction of diseased hearts than that in normal controls. More importantly, Hippo downstream targets Ankrd1, Ctgf, and Cyr61 were transcriptionally elevated in the diseased hearts. These results suggest that Yap1/Taz signaling is activated in human and mouse dysfunctional hearts. Further investigation with relevant animal models will determine whether this pathway is a potential target for preventing and reversing abnormal remodeling during the progression of different cardiac disorders.
Collapse
Affiliation(s)
- Ning Hou
- Department of Pharmacology, School of Pharmaceutical Sciences, and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ying Wen
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Xun Yuan
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA
| | - Haodong Xu
- Department of Pathology, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Faqian Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Lillehei Heart Institute, Cancer & Cardiovascular Research Center, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| | - Bo Ye
- Department of Laboratory Medicine and Pathology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Liu R, Lee J, Kim BS, Wang Q, Buxton SK, Balasubramanyam N, Kim JJ, Dong J, Zhang A, Li S, Gupte AA, Hamilton DJ, Martin JF, Rodney GG, Coarfa C, Wehrens XH, Yechoor VK, Moulik M. Tead1 is required for maintaining adult cardiomyocyte function, and its loss results in lethal dilated cardiomyopathy. JCI Insight 2017; 2:93343. [PMID: 28878117 DOI: 10.1172/jci.insight.93343] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022] Open
Abstract
Heart disease remains the leading cause of death worldwide, highlighting a pressing need to identify novel regulators of cardiomyocyte (CM) function that could be therapeutically targeted. The mammalian Hippo/Tead pathway is critical in embryonic cardiac development and perinatal CM proliferation. However, the requirement of Tead1, the transcriptional effector of this pathway, in the adult heart is unknown. Here, we show that tamoxifen-inducible adult CM-specific Tead1 ablation led to lethal acute-onset dilated cardiomyopathy, associated with impairment in excitation-contraction coupling. Mechanistically, we demonstrate Tead1 is a cell-autonomous, direct transcriptional activator of SERCA2a and SR-associated protein phosphatase 1 regulatory subunit, Inhibitor-1 (I-1). Thus, Tead1 deletion led to a decrease in SERCA2a and I-1 transcripts and protein, with a consequent increase in PP1-activity, resulting in accumulation of dephosphorylated phospholamban (Pln) and decreased SERCA2a activity. Global transcriptomal analysis in Tead1-deleted hearts revealed significant changes in mitochondrial and sarcomere-related pathways. Additional studies demonstrated there was a trend for correlation between protein levels of TEAD1 and I-1, and phosphorylation of PLN, in human nonfailing and failing hearts. Furthermore, TEAD1 activity was required to maintain PLN phosphorylation and expression of SERCA2a and I-1 in human induced pluripotent stem cell-derived (iPS-derived) CMs. To our knowledge, taken together, this demonstrates a nonredundant, novel role of Tead1 in maintaining normal adult heart function.
Collapse
Affiliation(s)
- Ruya Liu
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Byung S Kim
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Qiongling Wang
- Cardiovascular Research Institute.,Department of Molecular Physiology and Biophysics
| | - Samuel K Buxton
- Cardiovascular Research Institute.,Department of Molecular Physiology and Biophysics
| | | | - Jean J Kim
- Stem Cells and Regenerative Medicine Center, and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jianrong Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anisha A Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - James F Martin
- Cardiovascular Research Institute.,Department of Molecular Physiology and Biophysics.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Xander Ht Wehrens
- Cardiovascular Research Institute.,Department of Molecular Physiology and Biophysics
| | - Vijay K Yechoor
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine.,Cardiovascular Research Institute
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Texas (UT) Health McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
27
|
Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci Rep 2017; 7:7168. [PMID: 28769032 PMCID: PMC5540913 DOI: 10.1038/s41598-017-07149-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is composed of heterogeneous populations of myofibers that are classified as slow- and fast-twitch fibers. The muscle fiber-type is regulated in a coordinated fashion by multiple genes, including transcriptional factors and microRNAs (miRNAs). However, players involved in this regulation are not fully elucidated. One of the members of the Vestigial-like factors, Vgll2, is thought to play a pivotal role in TEA domain (TEAD) transcription factor-mediated muscle-specific gene expression because of its restricted expression in skeletal muscles of adult mice. Here, we generated Vgll2 null mice and investigated Vgll2 function in adult skeletal muscles. These mice presented an increased number of fast-twitch type IIb fibers and exhibited a down-regulation of slow type I myosin heavy chain (MyHC) gene, Myh7, which resulted in exercise intolerance. In accordance with the decrease in Myh7, down-regulation of miR-208b, encoded within Myh7 gene and up-regulation of targets of miR-208b, Sox6, Sp3, and Purβ, were observed in Vgll2 deficient mice. Moreover, we detected the physical interaction between Vgll2 and TEAD1/4 in neonatal skeletal muscles. These results suggest that Vgll2 may be both directly and indirectly involved in the programing of slow muscle fibers through the formation of the Vgll2-TEAD complex.
Collapse
|
28
|
Landin-Malt A, Benhaddou A, Zider A, Flagiello D. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors. Gene 2016; 591:292-303. [PMID: 27421669 DOI: 10.1016/j.gene.2016.07.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/22/2023]
Abstract
TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression.
Collapse
Affiliation(s)
- André Landin-Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Ataaillah Benhaddou
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, Team Molecular Oncology and Ovarian Pathologies, IJM, UMR 7592 CNRS, Paris, France.
| | - Domenico Flagiello
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| |
Collapse
|
29
|
Gabriel BM, Hamilton DL, Tremblay AM, Wackerhage H. The Hippo signal transduction network for exercise physiologists. J Appl Physiol (1985) 2016; 120:1105-17. [PMID: 26940657 DOI: 10.1152/japplphysiol.01076.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022] Open
Abstract
The ubiquitous transcriptional coactivators Yap (gene symbol Yap1) and Taz (gene symbol Wwtr1) regulate gene expression mainly by coactivating the Tead transcription factors. Being at the center of the Hippo signaling network, Yap and Taz are regulated by the Hippo kinase cassette and additionally by a plethora of exercise-associated signals and signaling modules. These include mechanotransduction, the AKT-mTORC1 network, the SMAD transcription factors, hypoxia, glucose homeostasis, AMPK, adrenaline/epinephrine and angiotensin II through G protein-coupled receptors, and IL-6. Consequently, exercise should alter Hippo signaling in several organs to mediate at least some aspects of the organ-specific adaptations to exercise. Indeed, Tead1 overexpression in muscle fibers has been shown to promote a fast-to-slow fiber type switch, whereas Yap in muscle fibers and cardiomyocytes promotes skeletal muscle hypertrophy and cardiomyocyte adaptations, respectively. Finally, genome-wide association studies in humans have linked the Hippo pathway members LATS2, TEAD1, YAP1, VGLL2, VGLL3, and VGLL4 to body height, which is a key factor in sports.
Collapse
Affiliation(s)
- Brendan M Gabriel
- School of Medicine, Dentistry and Nutrition, University of Aberdeen, Scotland, UK; The Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Integrative Physiology, University of Copenhagen, Denmark; and Integrative physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Annie M Tremblay
- Stem Cell Program, Children's Hospital, Boston, Massachusetts; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Henning Wackerhage
- School of Medicine, Dentistry and Nutrition, University of Aberdeen, Scotland, UK; Faculty of Sport and Health Science, Technical University Munich, Germany;
| |
Collapse
|
30
|
Affiliation(s)
- Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers – New Jersey Medical School
| |
Collapse
|
31
|
Abstract
The heart is the first organ formed during mammalian development. A properly sized and functional heart is vital throughout the entire lifespan. Loss of cardiomyocytes because of injury or diseases leads to heart failure, which is a major cause of human morbidity and mortality. Unfortunately, regenerative potential of the adult heart is limited. The Hippo pathway is a recently identified signaling cascade that plays an evolutionarily conserved role in organ size control by inhibiting cell proliferation, promoting apoptosis, regulating fates of stem/progenitor cells, and in some circumstances, limiting cell size. Interestingly, research indicates a key role of this pathway in regulation of cardiomyocyte proliferation and heart size. Inactivation of the Hippo pathway or activation of its downstream effector, the Yes-associated protein transcription coactivator, improves cardiac regeneration. Several known upstream signals of the Hippo pathway such as mechanical stress, G-protein-coupled receptor signaling, and oxidative stress are known to play critical roles in cardiac physiology. In addition, Yes-associated protein has been shown to regulate cardiomyocyte fate through multiple transcriptional mechanisms. In this review, we summarize and discuss current findings on the roles and mechanisms of the Hippo pathway in heart development, injury, and regeneration.
Collapse
Affiliation(s)
- Qi Zhou
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Li Li
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.)
| | - Bin Zhao
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| | - Kun-Liang Guan
- From the Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China (Q.Z., B.Z.); Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang, China (L.L.); and Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla (K.-L.G.).
| |
Collapse
|
32
|
The Huntington's disease-related cardiomyopathy prevents a hypertrophic response in the R6/2 mouse model. PLoS One 2014; 9:e108961. [PMID: 25268775 PMCID: PMC4182603 DOI: 10.1371/journal.pone.0108961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is neurodegenerative disorder for which the mutation results in an extra-long tract of glutamines that causes the huntingtin protein to aggregate. It is characterized by neurological symptoms and brain pathology that is associated with nuclear and cytoplasmic aggregates and with transcriptional deregulation. Despite the fact that HD has been recognized principally as a neurological disease, there are multiple epidemiological studies showing that HD patients exhibit a high rate of cardiovascular events leading to heart failure. To unravel the mechanistic basis of cardiac dysfunction in HD, we employed a wide range of molecular techniques using the well-established genetic R6/2 mouse model that develop a considerable degree of the cardiac atrophy at end stage disease. We found that chronic treatment with isoproterenol, a potent beta-adrenoreceptor agonist, did not change the overall gross morphology of the HD murine hearts. However, there was a partial response to the beta-adrenergenic stimulation by the further re-expression of foetal genes. In addition we have profiled the expression level of Hdacs in the R6/2 murine hearts and found that the isoproterenol stimulation of Hdac expression was partially blocked. For the first time we established the Hdac transcriptional profile under hypertrophic conditions and found 10 out of 18 Hdacs to be markedly deregulated. Therefore, we conclude that R6/2 murine hearts are not able to respond to the chronic isoproterenol treatment to the same degree as wild type hearts and some of the hypertrophic signals are likely attenuated in the symptomatic HD animals.
Collapse
|
33
|
Fannin J, Rice KM, Thulluri S, Dornon L, Arvapalli RK, Wehner P, Blough ER. Age-associated alterations of cardiac structure and function in the female F344xBN rat heart. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9684. [PMID: 25062714 PMCID: PMC4150897 DOI: 10.1007/s11357-014-9684-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
The Fischer 344/NNiaHSD × Brown Norway/BiNia F1 (F344xBN) rat model exhibits an increased life span and fewer age-associated pathologies compared to commonly used Fischer 344 (F344). How aging may affect cardiac structure and function in these animals, has to our knowledge, not been investigated. Echocardiography was performed on female F344xBN rats at 6, 26, and 30 months of age using a Phillips 5500 Echocardiography system. Before sacrifice, electrocardiograms were measured in the female F344xBN in order to determine heart rhythm interval changes. Aging was associated with an increase in heart to body weight ratio, cardiomyocyte cross-sectional area, posterior wall thickening, and left ventricle chamber dilatation. Aging was associated with slight evidence of diastolic dysfunction. Alterations in heart rhythm intervals were associated with alterations in the spatial distribution of connexin 43. The incidence of arrhythmias was not different with age; however, valvular dysfunction was increased. These data suggest that aging in the female F344xBN rat heart is associated with changes in cardiac structure as well as function. Further investigation regarding other parameters of cardiac biochemistry and function is needed to better understand the normal compensated cardiovascular aging process in the female F344xBN.
Collapse
Affiliation(s)
- Jacqueline Fannin
- />Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Kevin M. Rice
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
- />Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Srininvas Thulluri
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Lucy Dornon
- />Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Ravi Kumar Arvapalli
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
| | - Paulette Wehner
- />Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
| | - Eric R. Blough
- />Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV USA
- />Center for Diagnostic Nanosystems, Marshall University, BBSC 241R, 1700 3rd Avenue, 1 John Marshall Drive, Huntington, WV 25755-1090 USA
- />Department of Pharmaceutical Science Research, School of Pharmacy, Marshall University, Huntington, WV USA
| |
Collapse
|
34
|
Lin Z, Pu WT. Harnessing Hippo in the heart: Hippo/Yap signaling and applications to heart regeneration and rejuvenation. Stem Cell Res 2014; 13:571-81. [PMID: 24881775 DOI: 10.1016/j.scr.2014.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022] Open
Abstract
The adult mammalian heart exhibits limited regenerative capacity after myocardial injury, a shortcoming that is responsible for the current lack of definitive treatments for heart failure. A search for approaches that might enhance adult heart regeneration has led to interest in the Hippo/Yap signaling pathway, a recently discovered signaling pathway that regulates cell proliferation and organ growth. Here we provide a brief overview of the Hippo/Yap pathway and its known roles in the developing and adult heart. We discuss the implications of Hippo/Yap signaling for regulation of cardiomyocyte death and regeneration.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Department of Cardiology, Children's Hospital Boston, USA
| | - William T Pu
- Department of Cardiology, Children's Hospital Boston, USA; Harvard Stem Cell Institute, Harvard University, USA.
| |
Collapse
|
35
|
Iwaki H, Sasaki S, Matsushita A, Ohba K, Matsunaga H, Misawa H, Oki Y, Ishizuka K, Nakamura H, Suda T. Essential role of TEA domain transcription factors in the negative regulation of the MYH 7 gene by thyroid hormone and its receptors. PLoS One 2014; 9:e88610. [PMID: 24781449 PMCID: PMC4004540 DOI: 10.1371/journal.pone.0088610] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 01/14/2014] [Indexed: 12/20/2022] Open
Abstract
MYH7 (also referred to as cardiac myosin heavy chain β) gene expression is known to be repressed by thyroid hormone (T3). However, the molecular mechanism by which T3 inhibits the transcription of its target genes (negative regulation) remains to be clarified, whereas those of transcriptional activation by T3 (positive regulation) have been elucidated in detail. Two MCAT (muscle C, A, and T) sites and an A/T-rich region in the MYH7 gene have been shown to play a critical role in the expression of this gene and are known to be recognized by the TEAD/TEF family of transcription factors (TEADs). Using a reconstitution system with CV-1 cells, which has been utilized in the analysis of positive as well as negative regulation, we demonstrate that both T3 receptor (TR) β1 and α1 inhibit TEAD-dependent activation of the MYH7 promoter in a T3 dose-dependent manner. TRβ1 bound with GC-1, a TRβ-selective T3 analog, also repressed TEAD-induced activity. Although T3-dependent inhibition required the DNA-binding domain (DBD) of TRβ1, it remained after the putative negative T3-responsive elements were mutated. A co-immunoprecipitation study demonstrated the in vivo association of TRβ1 with TEAD-1, and the interaction surfaces were mapped to the DBD of the TRβ1 and TEA domains of TEAD-1, both of which are highly conserved among TRs and TEADs, respectively. The importance of TEADs in MYH7 expression was also validated with RNA interference using rat embryonic cardiomyocyte H9c2 cells. These results indicate that T3-bound TRs interfere with transactivation by TEADs via protein-protein interactions, resulting in the negative regulation of MYH7 promoter activity.
Collapse
Affiliation(s)
- Hiroyuki Iwaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shigekazu Sasaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Akio Matsushita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Ohba
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideyuki Matsunaga
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroko Misawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yutaka Oki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Keiko Ishizuka
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
36
|
Zhou L, Chen Z, Vanderslice P, So SP, Ruan KH, Willerson JT, Dixon RAF. Endothelial-like progenitor cells engineered to produce prostacyclin rescue monocrotaline-induced pulmonary arterial hypertension and provide right ventricle benefits. Circulation 2013; 128:982-94. [PMID: 23841984 DOI: 10.1161/circulationaha.113.003139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Intravenous prostacyclin is approved for treating pulmonary arterial hypertension (PAH), but it has a short half-life and must be delivered systemically via an indwelling intravenous catheter. We hypothesize that localized jugular vein delivery of prostacyclin-producing cells may provide sustained therapeutic effects without the limitations of systemic delivery. METHODS AND RESULTS We generated a vector expressing a human cyclooxygenase isoform 1 and prostacyclin synthase fusion protein that produces prostacyclin from arachidonic acid. Endothelial-like progenitor cells (ELPCs) were transfected with the cyclooxygenase isoform 1-prostacyclin synthase plasmid and labeled with lentivirus expressing nuclear-localized red fluorescent protein (nuRFP). The engineered ELPCs (expressing cyclooxygenase isoform 1-prostacyclin synthase and nuRFP) were tested in rats with monocrotaline (MCT)-induced PAH. In PAH prevention studies, treatment with engineered ELPCs or control ELPCs (expressing nuRFP alone) attenuated MCT-induced right ventricular systolic pressure increase, right ventricular hypertrophy, and pulmonary vessel wall thickening. Engineered ELPCs were more effective than control ELPCs in all variables evaluated. In PAH reversal studies, engineered ELPCs or control ELPCs increased the survival rate of rats with established PAH and decreased right ventricular hypertrophy. Engineered ELPCs provided a survival benefit 2 weeks earlier than did control ELPCs. Microarray-based gene ontology analysis of the right ventricle revealed that a number of MCT-altered genes and neurotransmitter pathways (dopamine, serotonin, and γ-aminobutyric acid) were restored after ELPC-based prostacyclin gene therapy. CONCLUSIONS Cyclooxygenase isoform 1-prostacyclin synthase-expressing ELPCs reversed MCT-induced PAH. A single jugular vein injection offered survival benefits for at least 4 weeks and may provide a promising option for PAH patients.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ames EG, Lawson MJ, Mackey AJ, Holmes JW. Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy. J Mol Cell Cardiol 2013; 62:99-107. [PMID: 23688780 DOI: 10.1016/j.yjmcc.2013.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are re-expressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy. We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA. We find a striking degree of overlap between the isoforms expressed differentially in fetal and pressure-overloaded hearts compared to control: forty-four percent of the isoforms with significantly altered expression in TAC hearts are also expressed at significantly different levels in fetal hearts compared to control (P<0.001). The isoforms that are shared between hypertrophy and fetal heart development are significantly enriched for genes involved in cytoskeletal organization, RNA processing, developmental processes, and metabolic enzymes. Our data strongly support the concept that mRNA splicing patterns normally associated with heart development recur as part of the hypertrophic response to pressure overload. These findings suggest that cardiac hypertrophy shares post-transcriptional as well as transcriptional regulatory mechanisms with fetal heart development.
Collapse
Affiliation(s)
- E G Ames
- Department of Biomedical Engineering, University of Virginia, Health System Box 800759, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
38
|
Kohli S, Ahuja S, Rani V. Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr Cardiol Rev 2013; 7:262-71. [PMID: 22758628 PMCID: PMC3322445 DOI: 10.2174/157340311799960618] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 01/08/2012] [Accepted: 01/08/2011] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. This is initially a compensatory mechanism but sustained hypertrophy may lead to heart failure. The growing knowledge of transcriptional control mechanisms is helpful in the development of novel therapies. This review summarizes the role of cardiac transcription factors in cardiac hypertrophy, emphasizing their potential as attractive therapeutic targets to prevent the onset of heart failure and sudden death as they can be converging targets for current therapy.
Collapse
Affiliation(s)
- Shrey Kohli
- Department of Biotechnology, Jaypee Institute of Information Technology University, NOIDA 210307, India
| | | | | |
Collapse
|
39
|
TEAD1 controls C2C12 cell proliferation and differentiation and regulates three novel target genes. Cell Signal 2012; 25:674-81. [PMID: 23220227 DOI: 10.1016/j.cellsig.2012.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/21/2022]
Abstract
TEAD1 is a transcription factor involved in activation of muscle specific genes, such as the cardiac muscle troponin T gene, skeletal muscle actin, myosin heavy chains genes. Here, we reported that TEAD1 was expressed ubiquitously in different mouse tissues and was up-regulated in differentiation process of the mouse myoblast cell line C2C12. Functional assay revealed that overexpression of TEAD1 gene can arrest the C2C12 cell cycle and promote C2C12 cell differentiation. To understand the physiological role of TEAD1 in muscle development, three new regulated genes of TEAD1, Mrpl21, Ndufa6 and Ccne1, were identified by expression analysis, promoter activity measurement assay. The expression patterns of target genes were detected in the cell differentiation process. The Mrpl21 and Ndufa6 genes were up-regulated in cell differentiation while Ccne1 gene was significantly down-regulated. Overexpression of Mrpl21 and Ndufa6 in C2C12 can up-regulate Myh4 gene expression thus promote C2C12 differentiation, but did not affect cell cycle. Co-overexpression of Ccne1 with Ndufa6 resulted in Myh4 expression decrease and the number of S-phase cells slight increase. Together, our results suggested that TEAD1 may mediate muscle development through its target genes, Mrpl21, Ndufa6 and Ccne1.
Collapse
|
40
|
Landin Malt A, Cagliero J, Legent K, Silber J, Zider A, Flagiello D. Alteration of TEAD1 expression levels confers apoptotic resistance through the transcriptional up-regulation of Livin. PLoS One 2012; 7:e45498. [PMID: 23029054 PMCID: PMC3454436 DOI: 10.1371/journal.pone.0045498] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background TEA domain (TEAD) proteins are highly conserved transcription factors involved in embryonic development and differentiation of various tissues. More recently, emerging evidences for a contribution of these proteins towards apoptosis and cell proliferation regulation have also been proposed. These effects appear to be mediated by the interaction between TEAD and its co-activator Yes-Associated Protein (YAP), the downstream effector of the Hippo tumour suppressor pathway. Methodology/Principal Findings We further investigated the mechanisms underlying TEAD-mediated apoptosis regulation and showed that overexpression or RNAi-mediated silencing of the TEAD1 protein is sufficient to protect mammalian cell lines from induced apoptosis, suggesting a proapoptotic function for TEAD1 and a non physiological cytoprotective effect for overexpressed TEAD1. Moreover we show that the apoptotic resistance conferred by altered TEAD1 expression is mediated by the transcriptional up-regulation of Livin, a member of the Inhibitor of Apoptosis Protein (IAP) family. In addition, we show that overexpression of a repressive form of TEAD1 can induce Livin up-regulation, indicating that the effect of TEAD1 on Livin expression is indirect and favoring a model in which TEAD1 activates a repressor of Livin by interacting with a limiting cofactor that gets titrated upon TEAD1 up-regulation. Interestingly, we show that overexpression of a mutated form of TEAD1 (Y421H) implicated in Sveinsson's chorioretinal atrophy that strongly reduces its interaction with YAP as well as its activation, can induce Livin expression and protect cells from induced apoptosis, suggesting that YAP is not the cofactor involved in this process. Conclusions/Significance Taken together our data reveal a new, Livin-dependent, apoptotic role for TEAD1 in mammals and provide mechanistic insight downstream of TEAD1 deregulation in cancers.
Collapse
Affiliation(s)
| | | | | | | | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, Equipe de Génétique Moléculaire de la Différenciation, IJM, UMR 7592 CNRS, Paris, France
- * E-mail: (AZ); (DF)
| | - Domenico Flagiello
- Univ Paris Diderot, Sorbonne Paris Cité, Equipe de Génétique Moléculaire de la Différenciation, IJM, UMR 7592 CNRS, Paris, France
- * E-mail: (AZ); (DF)
| |
Collapse
|
41
|
Jin Y, Messmer-Blust AF, Li J. The role of transcription enhancer factors in cardiovascular biology. Trends Cardiovasc Med 2012; 21:1-5. [PMID: 22498013 DOI: 10.1016/j.tcm.2011.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The transcriptional enhancer factor (TEF) multigene family is primarily functional in muscle-specific genes through binding to MCAT elements that activate or repress transcription of many genes in response to physiological and pathological stimuli. Among the TEF family, TEF-1, RTEF-1, and DTEF-1 are critical regulators of cardiac and smooth muscle-specific genes during cardiovascular development and cardiac disorders including cardiac hypertrophy. Emerging evidence suggests that in addition to functioning as muscle-specific transcription factors, members of the TEF family may be key mediators of gene expression induced by hypoxia in endothelial cells by virtue of its multidomain organization, potential for post-translational modifications, and interactions with numerous transcription factors, which represent a cell-selective control mediator of nuclear signaling. We review the recent literature demonstrating the involvement of the TEF family of transcription factors in the regulation of differential gene expression in cardiovascular physiology and pathology.
Collapse
Affiliation(s)
- Yi Jin
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
42
|
Ma L, Gul R, Habibi J, Yang M, Pulakat L, Whaley-Connell A, Ferrario CM, Sowers JR. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the transgenic (mRen2) rat. Am J Physiol Heart Circ Physiol 2012; 302:H2341-51. [PMID: 22447938 DOI: 10.1152/ajpheart.01126.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Angiotensin II contributes to myocardial tissue remodeling and interstitial fibrosis through NADPH oxidase-mediated generation of oxidative stress in the progression of heart failure. Recent data have suggested that nebivolol, a third-generation β-blocker, improves diastolic dysfunction by targeting nitric oxide (NO) and metabolic pathways that decrease interstitial fibrosis. We sought to determine if targeting NO would improve diastolic function in a model of tissue renin-angiotensin system overactivation. We used the transgenic (TG) (mRen2)27 rat, which overexpresses the murine renin transgene and manifests insulin resistance and left ventricular dysfunction. We treated 6- to 7-wk-old TG (mRen2)27 rats and age-matched Sprague-Dawley control rats with nebivolol (10 mg·kg(-1)·day(-1)) or placebo via osmotic minipumps for a period of 21 days. Compared with Sprague-Dawley control rats, TG (mRen2)27 rats displayed a prolonged diastolic relaxation time and reduced initial filling rate associated with increased interstitial fibrosis and left ventricular hypertrophy. These findings were temporally related to increased NADPH oxidase activity and subunits p47(phox) and Rac1 and increased total ROS and peroxynitrite formation in parallel with reductions in the antioxidant heme oxygenase as well as the phosphorylation/activation of endothelial NO synthase and PKB/Akt. Treatment with nebivolol restored diastolic function and interstitial fibrosis through increases in the phosphorylation of 5'-AMP-activated protein kinase, Akt, and endothelial NO synthase and reductions in oxidant stress. These results support that targeting NO with nebivolol treatment improves diastolic dysfunction through reducing myocardial oxidative stress by enhancing 5'-AMP-activated protein kinase and Akt activation of NO biosynthesis.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Radiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy. J Mol Cell Cardiol 2012; 52:1074-82. [PMID: 22285962 DOI: 10.1016/j.yjmcc.2012.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/03/2012] [Accepted: 01/07/2012] [Indexed: 11/20/2022]
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death. Loss of a gene called Survival Motor Neuron 1 (SMN1) and, as a result, reduced levels of the Survival Motor Neuron (SMN) protein leads to SMA development. SMA is characterized by the loss of functional motor neurons in the spinal cord. However, accumulating evidence suggests the contribution of other organs to the composite SMA phenotype and disease progression. A growing number of congenital heart defects have been identified in severe SMA patients. Consistent with the clinical cases, we have recently identified developmental and functional heart defects in two SMA mouse models, occurring at embryonic stage in a severe SMA model and shortly after birth in a less severe model (SMN∆7). Our goal was to examine the late stage cardiac abnormalities in untreated SMN∆7 mice and to determine whether gene replacement therapy restores cardiac structure/function in rescued SMN∆7 model. To reveal the extent of the cardiac structural/functional repair in the rescued mice, we analyzed the heart of untreated and treated SMN∆7 model using self-complementary Adeno-associated virus (serotype 9) expressing the full-length SMN cDNA. We examined the characteristics of the heart failure such as remodeling, fibrosis, oxidative stress, and vascular integrity in both groups. Our results clearly indicate that fibrosis, oxidative stress activation, vascular remodeling, and a significant decrease in the number of capillaries exist in the SMA heart. The cardiac structural defects were improved drastically in the rescued animals, however, the level of impairment was still significant compared to the age-matched wildtype littermates. Furthermore, functional analysis by in vivo cardiac magnetic resonance imaging (MRI) revealed that the heart of the treated SMA mice still exhibits functional defects. In conclusion, cardiac abnormalities are only partially rescued in post-birth treated SMA animals and these abnormalities may contribute to the premature death of vector-treated SMA animals with seemingly rescued motor function but an average life span of less than 70 days as reported in several studies.
Collapse
|
44
|
Cardiovascular Magnetic Resonance of Myocardial Structure, Function, and Perfusion in Mouse and Rat Models. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012. [DOI: 10.1007/s12410-012-9122-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Zhang H, Morgan B, Potter BJ, Ma L, Dellsperger KC, Ungvari Z, Zhang C. Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am J Physiol Heart Circ Physiol 2010; 299:H985-94. [PMID: 20675566 DOI: 10.1152/ajpheart.00489.2010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resveratrol is a natural phytophenol that exhibits cardioprotective effects. This study was designed to elucidate the mechanisms by which resveratrol protects against diabetes-induced cardiac dysfunction. Normal control (m-Lepr(db)) mice and type 2 diabetic (Lepr(db)) mice were treated with resveratrol orally for 4 wk. In vivo MRI showed that resveratrol improved cardiac function by increasing the left ventricular diastolic peak filling rate in Lepr(db) mice. This protective role is partially explained by resveratrol's effects in improving nitric oxide (NO) production and inhibiting oxidative/nitrative stress in cardiac tissue. Resveratrol increased NO production by enhancing endothelial NO synthase (eNOS) expression and reduced O(2)(·-) production by inhibiting NAD(P)H oxidase activity and gp91(phox) mRNA and protein expression. The increased nitrotyrosine (N-Tyr) protein expression in Lepr(db) mice was prevented by the inducible NO synthase (iNOS) inhibitor 1400W. Resveratrol reduced both N-Tyr and iNOS expression in Lepr(db) mice. Furthermore, TNF-α mRNA and protein expression, as well as NF-κB activation, were reduced in resveratrol-treated Lepr(db) mice. Both Lepr(db) mice null for TNF-α (db(TNF-)/db(TNF-) mice) and Lepr(db) mice treated with the NF-κB inhibitor MG-132 showed decreased NAD(P)H oxidase activity and iNOS expression as well as elevated eNOS expression, whereas m-Lepr(db) mice treated with TNF-α showed the opposite effects. Thus, resveratrol protects against cardiac dysfunction by inhibiting oxidative/nitrative stress and improving NO availability. This improvement is due to the role of resveratrol in inhibiting TNF-α-induced NF-κB activation, therefore subsequently inhibiting the expression and activation of NAD(P)H oxidase and iNOS as well as increasing eNOS expression in type 2 diabetes.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Internal Medicine, Medical Pharmacology and Physiology, and Nutrition and Exercise Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|