1
|
Raghuraman S, Carter J, Walter M, Karthikeyan M, Chase K, Giglio ML, Giacobassi M, Teichert RW, Terlau H, Olivera BM. Conotoxin KM-RIIIJ reveals interplay between K v1-channels and persistent sodium currents in proprioceptive DRG neurons. Sci Rep 2024; 14:31001. [PMID: 39730808 DOI: 10.1038/s41598-024-82165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs. The functional expression and physiological role of heteromeric K-channels have remained largely unexplored due to the lack of tools to probe their functions. Conotoxins, from predatory cone snails, have high affinity and specificity for heteromeric combinations of K-channels and show great promise for defining their physiological roles. In this work, using conotoxin KM-RIIIJ as a pharmacological probe, we explore the expression and physiological functions of heteromeric Kv1.2 channels using constellation pharmacology platform. We report that heteromers of Kv1.2/1.1 are highly expressed in proprioceptive neurons found in the dorsal root ganglion (DRG). Inhibition of Kv1.2/1.1 heteromers leads to an influx of calcium ions, suggesting that these channels regulate neuronal excitability. We also present evidence that Kv1.2/1.1 heteromers counteract persistent sodium currents, and that inhibiting these channels leads to tonic firing of action potentials. Additionally, KM-RIIIJ impaired proprioception in mice, uncovering a previously unrecognized physiological function of heteromeric Kv1.2/1.1 channels in proprioceptive sensory neurons of the DRG.
Collapse
Affiliation(s)
| | - Jackson Carter
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Markel Walter
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Manju Karthikeyan
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Matías L Giglio
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Mario Giacobassi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Russell W Teichert
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Heinrich Terlau
- Institute of Physiology, Christian-Albrechts-University Kiel, 24118, Kiel, Germany
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Dupuy M, Postec A, Mullard M, Chantôme A, Hulin P, Brion R, Gueguinou M, Regnier L, Potier-Cartereau M, Brounais-Le Royer B, Baud'huin M, Georges S, Lamoureux F, Ory B, Rédini F, Vandier C, Verrecchia F. Transcriptional regulation of KCNA2 coding Kv1.2 by EWS::FLI1: involvement in controlling the YAP/Hippo signalling pathway and cell proliferation. Cell Commun Signal 2024; 22:602. [PMID: 39695664 DOI: 10.1186/s12964-024-01981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Ewing sarcoma (ES), the second main pediatric bone sarcoma, is characterised by a chromosomal translocation leading to the formation of fusion proteins like EWS::FLI1. While several studies have shown that potassium channels drive the development of many tumours, limited data exist on ES. This work therefore aimed to study the transcriptional regulation of KCNA2 and define the involvement of the Kv1.2 channel encoded by KCNA2 in a key function of ES development, cell proliferation. METHODS KCNA2 expression in patients and cell lines was measured via bioinformatic analysis (RNA-Seq). The presence of a functional Kv1.2 channel was shown using patch-clamp experiments. Molecular biology approaches were used after EWS::FLI1 silencing to study the transcriptional regulation of KCNA2. Proliferation and cell count assessment were performed using cell biology approaches. KCNA2 silencing (siRNA) and RNA-Seq were performed to identify the signalling pathways involved in the ability of KCNA2 to drive cell proliferation. The regulation of the Hippo signalling pathway by KCNA2 was studied by measuring Hippo/YAP target genes expression, while YAP protein expression was studied with Western-Blot and immunofluorescence approaches. RESULTS This research identified KCNA2 (encoding for a functional Kv1.2 channel) as highly expressed in ES biopsies and cell lines. The results indicated a correlation between KCNA2 expression and patient survival. The data also demonstrated that KCNA2/Kv1.2 is a direct target of EWS::FLI1, and identified the molecular mechanisms by which this chimeric protein regulates KCNA2 gene expression at the transcriptional level. Furthermore, the results indicated that KCNA2 expression and Kv1.2 activity regulate ES cell proliferation and that KCNA2 expression drives the Hippo/YAP signalling pathway. Using the specific Kv1.2 channel inhibitor (κ-Conotoxin), the results suggested that two complementary mechanisms are involved in this process, both dependently and independently of Kv1.2 functional channels at the plasma membrane. CONCLUSION This study is the first to describe the involvement of KCNA2 expression and Kv1.2 channel in cancer development. The study also unveiled the involvement of KCNA2 in the regulation of the Hippo/YAP signalling cascade. Thus, this work suggests that KCNA2/Kv1.2 could be a potential therapeutic target in ES.
Collapse
MESH Headings
- Humans
- Cell Proliferation/genetics
- Signal Transduction/genetics
- RNA-Binding Protein EWS/genetics
- RNA-Binding Protein EWS/metabolism
- Cell Line, Tumor
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Kv1.2 Potassium Channel/genetics
- Kv1.2 Potassium Channel/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Hippo Signaling Pathway
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Gene Expression Regulation, Neoplastic
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Transcription, Genetic
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- YAP-Signaling Proteins/genetics
- YAP-Signaling Proteins/metabolism
Collapse
Affiliation(s)
- Maryne Dupuy
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
| | - Anaïs Postec
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
| | - Mathilde Mullard
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
| | | | - Philippe Hulin
- CHU Nantes, CNRS, Inserm, Nantes Université, BioCore, US16, SFR Bonamy, 44000, Nantes, France
| | - Régis Brion
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
- CHU Nantes, Centre Hospitalier Universitaire de Nantes, 44000, Nantes, France
| | | | - Laura Regnier
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
| | | | | | - Marc Baud'huin
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
- CHU Nantes, Centre Hospitalier Universitaire de Nantes, 44000, Nantes, France
| | - Steven Georges
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
| | - François Lamoureux
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
| | - Benjamin Ory
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
| | - Françoise Rédini
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France
| | | | - Franck Verrecchia
- Inserm UMR 1307, CNRS UMR 6075, Nantes Université, Université d'Angers, CRCI2NA, 44000, Nantes, France.
| |
Collapse
|
3
|
Martínez-Hernández L, López-Vera E, Aguilar MB. Peptide Toxins from Marine Conus Snails with Activity on Potassium Channels and/or Currents. Toxins (Basel) 2024; 16:504. [PMID: 39728762 PMCID: PMC11728717 DOI: 10.3390/toxins16120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Toxins from Conus snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans. This review aims to gather as much information as possible about Conus toxins (conotoxins) with an effect on potassium channels and/or currents, with a perspective of exploring the possibility of finding or developing a possible drug candidate from these toxins. The research indicates that, among the more than 900 species described for this genus, in only 14 species of the >100 studied to date have such toxins been found (classified according to the most specific evidence for each case), as follows: 17 toxins with activity on two groups of potassium channels (Kv and KCa), 4 toxins with activity on potassium currents, and 5 toxins that are thought to inhibit potassium channels by symptomatology and/or a high sequence similarity.
Collapse
Affiliation(s)
- Luis Martínez-Hernández
- Posgrado en Ciencias Biológicas, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico
| |
Collapse
|
4
|
Xie C, Kessi M, Yin F, Peng J. Roles of KCNA2 in Neurological Diseases: from Physiology to Pathology. Mol Neurobiol 2024; 61:8491-8517. [PMID: 38517617 DOI: 10.1007/s12035-024-04120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Potassium voltage-gated channel subfamily a member 2 (Kv1.2, encoded by KCNA2) is highly expressed in the central and peripheral nervous systems. Based on the patch clamp studies, gain-of function (GOF), loss-of-function (LOF), and a mixed type (GOF/LOF) variants can cause different conditions/disorders. KCNA2-related neurological diseases include epilepsy, intellectual disability (ID), attention deficit/hyperactive disorder (ADHD), autism spectrum disorder (ASD), pain as well as autoimmune and movement disorders. Currently, the molecular mechanisms for the reported variants in causing diverse disorders are unknown. Consequently, this review brings up to date the related information regarding the structure and function of Kv1.2 channel, expression patterns, neuronal localizations, and tetramerization as well as important cell and animal models. In addition, it provides updates on human genetic variants, genotype-phenotype correlations especially highlighting the deep insight into clinical prognosis of KCNA2-related developmental and epileptic encephalopathy, mechanisms, and the potential treatment targets for all KCNA2-related neurological disorders.
Collapse
Affiliation(s)
- Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Xiangya Road 87, Hunan, Changsha, 410008, China.
- Hunan Intellectual and Development Disabilities Research Center, Hunan, Changsha, 410008, China.
| |
Collapse
|
5
|
Rojas-Palomino J, Gómez-Restrepo A, Salinas-Restrepo C, Segura C, Giraldo MA, Calderón JC. Electrophysiological evaluation of the effect of peptide toxins on voltage-gated ion channels: a scoping review on theoretical and methodological aspects with focus on the Central and South American experience. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230048. [PMID: 39263598 PMCID: PMC11389830 DOI: 10.1590/1678-9199-jvatitd-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/02/2024] [Indexed: 09/13/2024] Open
Abstract
The effect of peptide toxins on voltage-gated ion channels can be reliably assessed using electrophysiological assays, such as the patch-clamp technique. However, much of the toxinological research done in Central and South America aims at purifying and characterizing biochemical properties of the toxins of vegetal or animal origin, lacking electrophysiological approaches. This may happen due to technical and infrastructure limitations or because researchers are unfamiliar with the techniques and cellular models that can be used to gain information about the effect of a molecule on ion channels. Given the potential interest of many research groups in the highly biodiverse region of Central and South America, we reviewed the most relevant conceptual and methodological developments required to implement the evaluation of the effect of peptide toxins on mammalian voltage-gated ion channels using patch-clamp. For that, we searched MEDLINE/PubMed and SciELO databases with different combinations of these descriptors: "electrophysiology", "patch-clamp techniques", "Ca2+ channels", "K+ channels", "cnidarian venoms", "cone snail venoms", "scorpion venoms", "spider venoms", "snake venoms", "cardiac myocytes", "dorsal root ganglia", and summarized the literature as a scoping review. First, we present the basics and recent advances in mammalian voltage-gated ion channel's structure and function and update the most important animal sources of channel-modulating toxins (e.g. cnidarian and cone snails, scorpions, spiders, and snakes), highlighting the properties of toxins electrophysiologically characterized in Central and South America. Finally, we describe the local experience in implementing the patch-clamp technique using two models of excitable cells, as well as the participation in characterizing new modulators of ion channels derived from the venom of a local spider, a toxins' source less studied with electrophysiological techniques. Fostering the implementation of electrophysiological methods in more laboratories in the region will strengthen our capabilities in many fields, such as toxinology, toxicology, pharmacology, natural products, biophysics, biomedicine, and bioengineering.
Collapse
Affiliation(s)
| | - Alejandro Gómez-Restrepo
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of
Medicine, University of Antioquia, Medellín, Colombia
| | - Cristian Salinas-Restrepo
- Toxinology, Therapeutic and Food Alternatives Research Group,
Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín,
Colombia
| | - César Segura
- Malaria Group, Faculty of Medicine, University of Antioquia,
Medellín, Colombia
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia,
Medellín, Colombia
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group -PHYSIS, Faculty of
Medicine, University of Antioquia, Medellín, Colombia
| |
Collapse
|
6
|
Turcio R, Di Matteo F, Capolupo I, Ciaglia T, Musella S, Di Chio C, Stagno C, Campiglia P, Bertamino A, Ostacolo C. Voltage-Gated K + Channel Modulation by Marine Toxins: Pharmacological Innovations and Therapeutic Opportunities. Mar Drugs 2024; 22:350. [PMID: 39195466 DOI: 10.3390/md22080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show a range of potencies and selectivity and may have some therapeutic properties. Due to their potential as medications to treat a range of (human) diseases, including pain, autoimmune disorders, and neurological diseases, marine molecules have been the focus of several studies over the last ten years. The aim of this review is on the various facets of marine (or marine-derived) molecules, ranging from structural characterization and discovery to pharmacology, culminating in the development of some "novel" candidate chemotherapeutic drugs that target potassium channels.
Collapse
Affiliation(s)
- Rita Turcio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | | | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Martínez-Hernández L, López-Vera E, Aguilar MB, Rodriguez-Ruiz XC, Ortíz-Arellano MA. κO-SrVIA Conopeptide, a Novel Inhibitor Peptide for Two Members of the Human EAG Potassium Channel Family. Int J Mol Sci 2023; 24:11513. [PMID: 37511269 PMCID: PMC10380377 DOI: 10.3390/ijms241411513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The first conotoxin affecting the voltage-gated potassium channels of the EAG family was identified and characterized from the venom of the vermivorous species Conus spurius from the Gulf of Mexico. This conopeptide, initially named Cs68 and later designated κO-SrVIA, is extremely hydrophobic and comprises 31 amino acid residues, including six Cysteines in the framework VI/VII, and a free C-terminus. It inhibits the currents mediated by two human EAG subtypes, Kv10.1 (IC50 = 1.88 ± 1.08 µM) and Kv11.1 (IC50 = 2.44 ± 1.06 µM), and also the human subtype Kv1.6 (IC50 = 3.6 ± 1.04 µM). Despite its clear effects on potassium channels, it shares a high sequence identity with δ-like-AtVIA and δ-TsVIA. Also, κO-SrVIA is the third conopeptide from the venom of C. spurius with effects on potassium channels, and the seventh conotoxin that blocks Kv1.6 channels.
Collapse
Affiliation(s)
- Luis Martínez-Hernández
- Posgrado en Ciencias Biológicas, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Estuardo López-Vera
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Manuel B. Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico;
| | - Ximena C. Rodriguez-Ruiz
- Laboratorio de Toxinología Marina, Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Mónica A. Ortíz-Arellano
- Laboratorio de Malacología, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán 82000, Mexico;
| |
Collapse
|
8
|
Gigolaev AM, Pinheiro-Junior EL, Peigneur S, Tytgat J, Vassilevski AA. KV1.2-Selective Peptide with High Affinity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302206031x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Pathophysiological Responses to Conotoxin Modulation of Voltage-Gated Ion Currents. Mar Drugs 2022; 20:md20050282. [PMID: 35621933 PMCID: PMC9143252 DOI: 10.3390/md20050282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Voltage-gated ion channels are plasma membrane proteins that generate electrical signals following a change in the membrane voltage. Since they are involved in several physiological processes, their dysfunction may be responsible for a series of diseases and pain states particularly related to neuronal and muscular systems. It is well established for decades that bioactive peptides isolated from venoms of marine mollusks belonging to the Conus genus, collectively known as conotoxins, can target different types and isoforms of these channels exerting therapeutic effects and pain relief. For this reason, conotoxins are widely used for either therapeutic purposes or studies on ion channel mechanisms of action disclosure. In addition their positive property, however, conotoxins may generate pathological states through similar ion channel modulation. In this narrative review, we provide pieces of evidence on the pathophysiological impacts that different members of conotoxin families exert by targeting the three most important voltage-gated channels, such as sodium, calcium, and potassium, involved in cellular processes.
Collapse
|
10
|
Yang M, Li Y, Liu L, Zhou M. A novel proline-rich M-superfamily conotoxin that can simultaneously affect sodium, potassium and calcium currents. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200164. [PMID: 34234819 PMCID: PMC8230863 DOI: 10.1590/1678-9199-jvatitd-2020-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background Conotoxins have become a research hotspot in the neuropharmacology field for their high activity and specificity in targeting ion channels and neurotransmitter receptors. There have been reports of a conotoxin acting on two ion channels, but rare reports of a conotoxin acting on three ion channels. Methods Vr3a, a proline-rich M-superfamily conotoxin from a worm-hunting Conus varius, was obtained by solid-phase synthesis and identified by mass spectrometry. The effects of synthesized Vr3a on sodium, potassium and calcium currents were tested on rat DRG cells by patch clamp experiments. The further effects of Vr3a on human Cav1.2 and Cav2.2 currents were tested on HEK293 cells. Results About 10 μM Vr3a has no effects on the peak sodium currents, but can induce a ~10 mV shift in a polarizing direction in the current-voltage relationship. In addition, 10 μM Vr3a can increase 19.61 ± 5.12% of the peak potassium currents and do not induce a shift in the current-voltage relationship. An amount of 10 μM Vr3a can inhibit 31.26% ± 4.53% of the peak calcium currents and do not induce a shift in the current-voltage relationship. The IC50 value of Vr3a on calcium channel currents in rat DRG neurons is 19.28 ± 4.32 μM. Moreover, 10 μM Vr3a can inhibit 15.32% ± 5.41% of the human Cav1.2 currents and 12.86% ± 4.93% of the human Cav2.2 currents. Conclusions Vr3a can simultaneously affect sodium, potassium and calcium currents. This novel triple-target conotoxin Vr3a expands understanding of conotoxin functions.
Collapse
Affiliation(s)
- Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yubin Li
- Department of Oncology, State Local Joint Engineering Laboratory for Anticancer Drugs, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Longfei Liu
- Department of Urology, National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Maojun Zhou
- Department of Oncology, State Local Joint Engineering Laboratory for Anticancer Drugs, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Tabakmakher VM, Kuzmenkov AI, Gigolaev AM, Pinheiro-Junior EL, Peigneur S, Efremov RG, Tytgat J, Vassilevski AA. Artificial Peptide Ligand of Potassium
Channel KV1.1 with High Selectivity. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Refining Genotypes and Phenotypes in KCNA2-Related Neurological Disorders. Int J Mol Sci 2021; 22:ijms22062824. [PMID: 33802230 PMCID: PMC7999221 DOI: 10.3390/ijms22062824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2, have been identified as the cause for an evolving spectrum of neurological disorders. Affected individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported. By analyzing phenotypic, functional, and genetic data from published reports and novel cases, we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-function. We describe seven additional individuals harboring three known and the novel KCNA2 variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the importance of the proline(405)–valine(406)–proline(407) (PVP) motif in transmembrane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum, genotype–phenotype correlation, variability, and predicted functional impact of KCNA2 variants.
Collapse
|
13
|
Bjørn-Yoshimoto WE, Ramiro IBL, Yandell M, McIntosh JM, Olivera BM, Ellgaard L, Safavi-Hemami H. Curses or Cures: A Review of the Numerous Benefits Versus the Biosecurity Concerns of Conotoxin Research. Biomedicines 2020; 8:E235. [PMID: 32708023 PMCID: PMC7460000 DOI: 10.3390/biomedicines8080235] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023] Open
Abstract
Conotoxins form a diverse group of peptide toxins found in the venom of predatory marine cone snails. Decades of conotoxin research have provided numerous measurable scientific and societal benefits. These include their use as a drug, diagnostic agent, drug leads, and research tools in neuroscience, pharmacology, biochemistry, structural biology, and molecular evolution. Human envenomations by cone snails are rare but can be fatal. Death by envenomation is likely caused by a small set of toxins that induce muscle paralysis of the diaphragm, resulting in respiratory arrest. The potency of these toxins led to concerns regarding the potential development and use of conotoxins as biological weapons. To address this, various regulatory measures have been introduced that limit the use and access of conotoxins within the research community. Some of these regulations apply to all of the ≈200,000 conotoxins predicted to exist in nature of which less than 0.05% are estimated to have any significant toxicity in humans. In this review we provide an overview of the many benefits of conotoxin research, and contrast these to the perceived biosecurity concerns of conotoxins and research thereof.
Collapse
Affiliation(s)
- Walden E. Bjørn-Yoshimoto
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
| | - Iris Bea L. Ramiro
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA;
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen N, Denmark;
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; (W.E.B.-Y.); (I.B.L.R.)
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.M.M.); (B.M.O.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
14
|
Finol-Urdaneta RK, Belovanovic A, Micic-Vicovac M, Kinsella GK, McArthur JR, Al-Sabi A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar Drugs 2020; 18:E173. [PMID: 32245015 PMCID: PMC7143316 DOI: 10.3390/md18030173] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Toxins from marine animals provide molecular tools for the study of many ion channels, including mammalian voltage-gated potassium channels of the Kv1 family. Selectivity profiling and molecular investigation of these toxins have contributed to the development of novel drug leads with therapeutic potential for the treatment of ion channel-related diseases or channelopathies. Here, we review specific peptide and small-molecule marine toxins modulating Kv1 channels and thus cover recent findings of bioactives found in the venoms of marine Gastropod (cone snails), Cnidarian (sea anemones), and small compounds from cyanobacteria. Furthermore, we discuss pivotal advancements at exploiting the interaction of κM-conotoxin RIIIJ and heteromeric Kv1.1/1.2 channels as prevalent neuronal Kv complex. RIIIJ's exquisite Kv1 subtype selectivity underpins a novel and facile functional classification of large-diameter dorsal root ganglion neurons. The vast potential of marine toxins warrants further collaborative efforts and high-throughput approaches aimed at the discovery and profiling of Kv1-targeted bioactives, which will greatly accelerate the development of a thorough molecular toolbox and much-needed therapeutics.
Collapse
Affiliation(s)
- Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW 2522, Australia
| | - Aleksandra Belovanovic
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Milica Micic-Vicovac
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Gemma K. Kinsella
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 ADY7 Dublin, Ireland;
| | - Jeffrey R. McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| |
Collapse
|
15
|
Giacobassi MJ, Leavitt LS, Raghuraman S, Alluri R, Chase K, Finol-Urdaneta RK, Terlau H, Teichert RW, Olivera BM. An integrative approach to the facile functional classification of dorsal root ganglion neuronal subclasses. Proc Natl Acad Sci U S A 2020; 117:5494-5501. [PMID: 32079727 PMCID: PMC7071849 DOI: 10.1073/pnas.1911382117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatosensory neurons have historically been classified by a variety of approaches, including structural, anatomical, and genetic markers; electrophysiological properties; pharmacological sensitivities; and more recently, transcriptional profile differentiation. These methodologies, used separately, have yielded inconsistent classification schemes. Here, we describe phenotypic differences in response to pharmacological agents as measured by changes in cytosolic calcium concentration for the rapid classification of neurons in vitro; further analysis with genetic markers, whole-cell recordings, and single-cell transcriptomics validated these findings in a functional context. Using this general approach, which we refer to as tripartite constellation analysis (TCA), we focused on large-diameter dorsal-root ganglion (L-DRG) neurons with myelinated axons. Divergent responses to the K-channel antagonist, κM-conopeptide RIIIJ (RIIIJ), reliably identified six discrete functional cell classes. In two neuronal subclasses (L1 and L2), block with RIIIJ led to an increase in [Ca] i Simultaneous electrophysiology and calcium imaging showed that the RIIIJ-elicited increase in [Ca] i corresponded to different patterns of action potentials (APs), a train of APs in L1 neurons, and sporadic firing in L2 neurons. Genetically labeled mice established that L1 neurons are proprioceptors. The single-cell transcriptomes of L1 and L2 neurons showed that L2 neurons are Aδ-low-threshold mechanoreceptors. RIIIJ effects were replicated by application of the Kv1.1 selective antagonist, Dendrotoxin-K, in several L-DRG subclasses (L1, L2, L3, and L5), suggesting the presence of functional Kv1.1/Kv1.2 heteromeric channels. Using this approach on other neuronal subclasses should ultimately accelerate the comprehensive classification and characterization of individual somatosensory neuronal subclasses within a mixed population.
Collapse
Affiliation(s)
- Mario J Giacobassi
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | - Lee S Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | | | - Rishi Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Heinrich Terlau
- Institute of Physiology, Christian Albrechts University Kiel, Kiel 24118, Germany
| | - Russell W Teichert
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 841120;
| |
Collapse
|
16
|
Morales Duque H, Campos Dias S, Franco OL. Structural and Functional Analyses of Cone Snail Toxins. Mar Drugs 2019; 17:md17060370. [PMID: 31234371 PMCID: PMC6628382 DOI: 10.3390/md17060370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Cone snails are marine gastropod mollusks with one of the most powerful venoms in nature. The toxins, named conotoxins, must act quickly on the cone snails´ prey due to the fact that snails are extremely slow, reducing their hunting capability. Therefore, the characteristics of conotoxins have become the object of investigation, and as a result medicines have been developed or are in the trialing process. Conotoxins interact with transmembrane proteins, showing specificity and potency. They target ion channels and ionotropic receptors with greater regularity, and when interaction occurs, there is immediate physiological decompensation. In this review we aimed to evaluate the structural features of conotoxins and the relationship with their target types.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF 70.790-160, Brazil.
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande-MS 79.117-900, Brazil.
| |
Collapse
|
17
|
Conotoxin κM-RIIIJ, a tool targeting asymmetric heteromeric K v1 channels. Proc Natl Acad Sci U S A 2018; 116:1059-1064. [PMID: 30593566 DOI: 10.1073/pnas.1813161116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The vast complexity of native heteromeric K+ channels is largely unexplored. Defining the composition and subunit arrangement of individual subunits in native heteromeric K+ channels and establishing their physiological roles is experimentally challenging. Here we systematically explored this "zone of ignorance" in molecular neuroscience. Venom components, such as peptide toxins, appear to have evolved to modulate physiologically relevant targets by discriminating among closely related native ion channel complexes. We provide proof-of-principle for this assertion by demonstrating that κM-conotoxin RIIIJ (κM-RIIIJ) from Conus radiatus precisely targets "asymmetric" Kv channels composed of three Kv1.2 subunits and one Kv1.1 or Kv1.6 subunit with 100-fold higher apparent affinity compared with homomeric Kv1.2 channels. Our study shows that dorsal root ganglion (DRG) neurons contain at least two major functional Kv1.2 channel complexes: a heteromer, for which κM-RIIIJ has high affinity, and a putative Kv1.2 homomer, toward which κM-RIIIJ is less potent. This conclusion was reached by (i) covalent linkage of members of the mammalian Shaker-related Kv1 family to Kv1.2 and systematic assessment of the potency of κM-RIIIJ block of heteromeric K+ channel-mediated currents in heterologous expression systems; (ii) molecular dynamics simulations of asymmetric Kv1 channels providing insights into the molecular basis of κM-RIIIJ selectivity and potency toward its targets; and (iii) evaluation of calcium responses of a defined population of DRG neurons to κM-RIIIJ. Our study demonstrates that bioactive molecules present in venoms provide essential pharmacological tools that systematically target specific heteromeric Kv channel complexes that operate in native tissues.
Collapse
|
18
|
Fu Y, Li C, Dong S, Wu Y, Zhangsun D, Luo S. Discovery Methodology of Novel Conotoxins from Conus Species. Mar Drugs 2018; 16:md16110417. [PMID: 30380764 PMCID: PMC6266589 DOI: 10.3390/md16110417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cone snail venoms provide an ideal resource for neuropharmacological tools and drug candidates discovery, which have become a research hotspot in neuroscience and new drug development. More than 1,000,000 natural peptides are produced by cone snails, but less than 0.1% of the estimated conotoxins has been characterized to date. Hence, the discovery of novel conotoxins from the huge conotoxin resources with high-throughput and sensitive methods becomes a crucial key for the conotoxin-based drug development. In this review, we introduce the discovery methodology of new conotoxins from various Conus species. It focuses on obtaining full N- to C-terminal sequences, regardless of disulfide bond connectivity through crude venom purification, conotoxin precusor gene cloning, venom duct transcriptomics, venom proteomics and multi-omic methods. The protocols, advantages, disadvantages, and developments of different approaches during the last decade are summarized and the promising prospects are discussed as well.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Cheng Li
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou 570228, China.
| | - Sulan Luo
- Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China.
| |
Collapse
|
19
|
Sunanda P, Krishnarjuna B, Peigneur S, Mitchell ML, Estrada R, Villegas‐Moreno J, Pennington MW, Tytgat J, Norton RS. Identification, chemical synthesis, structure, and function of a new K
V
1 channel blocking peptide from
Oulactis
sp. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Punnepalli Sunanda
- Medicinal ChemistryMonash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville, VIC 3052 Australia
| | - Bankala Krishnarjuna
- Medicinal ChemistryMonash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville, VIC 3052 Australia
| | - Steve Peigneur
- Department of Toxicology and PharmacologyUniversity of Leuven, O&N 2, Herestraat 49, P.O. Box 922Leuven, 3000 Belgium
| | - Michela L. Mitchell
- Medicinal ChemistryMonash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville, VIC 3052 Australia
| | | | - Jessica Villegas‐Moreno
- Medicinal ChemistryMonash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville, VIC 3052 Australia
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de MorelosCuernavaca México
| | | | - Jan Tytgat
- Department of Toxicology and PharmacologyUniversity of Leuven, O&N 2, Herestraat 49, P.O. Box 922Leuven, 3000 Belgium
| | - Raymond S. Norton
- Medicinal ChemistryMonash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville, VIC 3052 Australia
| |
Collapse
|
20
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
21
|
Zhang G, Edmundson M, Telezhkin V, Gu Y, Wei X, Kemp PJ, Song B. The Role of Kv1.2 Channel in Electrotaxis Cell Migration. J Cell Physiol 2015; 231:1375-84. [PMID: 26580832 PMCID: PMC4832312 DOI: 10.1002/jcp.25259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 12/16/2022]
Abstract
Voltage-gated potassium Kv1.2 channels play pivotal role in maintaining of resting membrane potential and, consequently, regulation of cellular excitability of neurons. Endogenously generated electric field (EF) have been proven as an important regulator for cell migration and tissue repair. The mechanisms of ion channel involvement in EF-induced cell responses are extensively studied but largely are poorly understood. In this study we generated three COS-7 clones with different expression levels of Kv1.2 channel, and confirmed their functional variations with patch clamp analysis. Time-lapse imaging analysis showed that EF-induced cell migration response was Kv1.2 channel expression level depended. Inhibition of Kv1.2 channels with charybdotoxin (ChTX) constrained the sensitivity of COS-7 cells to EF stimulation more than their motility. Immunocytochemistry and pull-down analyses demonstrated association of Kv1.2 channels with actin-binding protein cortactin and its re-localization to the cathode-facing membrane at EF stimulation, which confirms the mechanism of EF-induced directional migration. This study displays that Kv1.2 channels represent an important physiological link in EF-induced cell migration. The described mechanism suggests a potential application of EF which may improve therapeutic performance in curing injuries of neuronal and/or cardiac tissue repair, post operational therapy, and various degenerative syndromes.
Collapse
Affiliation(s)
- Gaofeng Zhang
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mathew Edmundson
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Vsevolod Telezhkin
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Yu Gu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Xiaoqing Wei
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Paul J Kemp
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Bing Song
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
22
|
Phosphoinositide Modulation of Heteromeric Kv1 Channels Adjusts Output of Spiral Ganglion Neurons from Hearing Mice. J Neurosci 2015; 35:11221-32. [PMID: 26269632 DOI: 10.1523/jneurosci.0496-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Spiral ganglion neurons (SGNs) relay acoustic code from cochlear hair cells to the brainstem, and their stimulation enables electrical hearing via cochlear implants. Rapid adaptation, a mechanism that preserves temporal precision, and a prominent feature of auditory neurons, is regulated via dendrotoxin-sensitive low-threshold voltage-activated (LVA) K(+) channels. Here, we investigated the molecular physiology of LVA currents in SGNs cultured from mice following the onset of hearing (postnatal days 12-21). Kv1.1- and Kv1.2-specific toxins blocked the LVA currents in a comparable manner, suggesting that both subunits contribute to functional heteromeric channels. Confocal immunofluorescence in fixed cochlear sections localized both Kv1.1 and Kv1.2 subunits to specific neuronal microdomains, including the somatic membrane, juxtaparanodes, and the first heminode, which forms the spike initiation site of the auditory nerve. The spatial distribution of Kv1 immunofluorescence appeared mutually exclusive to that of Kv3.1b subunits, which mediate high-threshold voltage-activated currents. As Kv1.2-containing channels are positively modulated by membrane phosphoinositides, we investigated the influence of phosphatidylinositol-4,5-bisphosphate (PIP2) availability on SGN electrophysiology. Reducing PIP2 production using wortmannin, or sequestration of PIP2 using a palmitoylated peptide (PIP2-PP), slowed adaptation rate in SGN populations. PIP2-PP specifically inhibited the LVA current in SGNs, an effect reduced by intracellular dialysis of a nonhydrolysable analog of PIP2. PIP2-PP also inhibited heterologously expressed Kv1.1/Kv1.2 channels, recapitulating its effect in SGNs. Collectively, the data identify Kv1.1/Kv1.2 heteromeric channels as key regulators of action potential initiation and propagation in the auditory nerve, and suggest that modulation of these channels by endogenous phosphoinositides provides local control of membrane excitability. SIGNIFICANCE STATEMENT Rapid spike adaptation is an important feature of auditory neurons that preserves temporal precision. In spiral ganglion neurons, the primary afferents in the cochlea, adaptation is regulated by heteromeric ion channels composed of Kv1.1 and Kv1.2 subunits. These subunits colocalize to common functional microdomains, such as juxtaparanodes and the somatic membrane. Activity of the heteromeric channels is controlled by cellular availability of PIP2, a membrane phospholipid. This mechanism provides an intrinsic regulation of output from the auditory nerve, which could be targeted for therapeutic adjustment of hearing sensitivity.
Collapse
|
23
|
Conotoxin gene superfamilies. Mar Drugs 2014; 12:6058-101. [PMID: 25522317 PMCID: PMC4278219 DOI: 10.3390/md12126058] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing.
Collapse
|
24
|
Imperial JS, Cabang AB, Song J, Raghuraman S, Gajewiak J, Watkins M, Showers-Corneli P, Fedosov A, Concepcion GP, Terlau H, Teichert RW, Olivera BM. A family of excitatory peptide toxins from venomous crassispirine snails: using Constellation Pharmacology to assess bioactivity. Toxicon 2014; 89:45-54. [PMID: 24997406 DOI: 10.1016/j.toxicon.2014.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022]
Abstract
The toxinology of the crassispirine snails, a major group of venomous marine gastropods within the superfamily Conoidea, is largely unknown. Here we define the first venom peptide superfamily, the P-like crassipeptides, and show that the organization of their gene sequences is similar to conotoxin precursors. We provide evidence that one peptide family within the P-like crassipeptide superfamily includes potassium-channel (K-channel) blockers, the κP-crassipeptides. Three of these peptides were chemically synthesized (cce9a, cce9b and iqi9a). Using conventional electrophysiology, cce9b was shown to be an antagonist of both a human Kv1.1 channel isoform (Shaker subfamily of voltage-gated K channels) and a Drosophila K-channel isoform. We assessed the bioactivity of these peptides in native mammalian dorsal root ganglion neurons in culture. We demonstrate that two of these crassipeptides, cce9a and cce9b, elicited an excitatory phenotype in a subset of small-diameter capsaicin-sensitive mouse DRG neurons that were also affected by κJ-conotoxin PlXIVA (pl14a), a blocker of Kv1.6 channels. Given the vast complexity of heteromeric K-channel isoforms, this study demonstrates that the crassispirine venoms are a potentially rich source for discovering novel peptides that can help to identify and characterize the diversity of K-channel subtypes expressed in native neurons and other cell types.
Collapse
Affiliation(s)
- Julita S Imperial
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| | - April B Cabang
- Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Jie Song
- Institute of Physiology, University of Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Shrinivasan Raghuraman
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Joanna Gajewiak
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Maren Watkins
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Patrice Showers-Corneli
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Alexander Fedosov
- A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, 119071 Russia
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Heinrich Terlau
- Institute of Physiology, University of Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Russell W Teichert
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Baldomero M Olivera
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Nguyen B, Caer JPL, Mourier G, Thai R, Lamthanh H, Servent D, Benoit E, Molgó J. Characterization of a novel Conus bandanus conopeptide belonging to the M-superfamily containing bromotryptophan. Mar Drugs 2014; 12:3449-65. [PMID: 24905483 PMCID: PMC4071585 DOI: 10.3390/md12063449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/07/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023] Open
Abstract
A novel conotoxin (conopeptide) was biochemically characterized from the crude venom of the molluscivorous marine snail, Conus bandanus (Hwass in Bruguière, 1792), collected in the south-central coast of Vietnam. The peptide was identified by screening bromotryptophan from chromatographic fractions of the crude venom. Tandem mass spectrometry techniques were used to detect and localize different post-translational modifications (PTMs) present in the BnIIID conopeptide. The sequence was confirmed by Edman’s degradation and mass spectrometry revealing that the purified BnIIID conopeptide had 15 amino acid residues, with six cysteines at positions 1, 2, 7, 11, 13, and 14, and three PTMs: bromotryptophan, γ-carboxy glutamate, and amidated aspartic acid, at positions “4”, “5”, and “15”, respectively. The BnIIID peptide was synthesized for comparison with the native peptide. Homology comparison with conopeptides having the III-cysteine framework (–CCx1x2x3x4Cx1x2x3Cx1CC–) revealed that BnIIID belongs to the M-1 family of conotoxins. This is the first report of a member of the M-superfamily containing bromotryptophan as PTM.
Collapse
Affiliation(s)
- Bao Nguyen
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jean-Pierre Le Caer
- Research Unit # 2301, Natural Product Chemistry Institute, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Gilles Mourier
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Robert Thai
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Hung Lamthanh
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Denis Servent
- Molecular Engineering of Proteins, Institute of Biology and Technology Saclay, Atomic Energy Commission, Gif sur Yvette Cedex 91191, France.
| | - Evelyne Benoit
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| | - Jordi Molgó
- Neurobiology and Development Laboratory, Research Unit # 3294, Institute of Neurobiology Alfred Fessard # 2118, National Center for Scientific Research, Gif sur Yvette Cedex 91198, France.
| |
Collapse
|
26
|
Using constellation pharmacology to define comprehensively a somatosensory neuronal subclass. Proc Natl Acad Sci U S A 2014; 111:2319-24. [PMID: 24469798 DOI: 10.1073/pnas.1324019111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Change is intrinsic to nervous systems; change is required for learning and conditioning and occurs with disease progression, normal development, and aging. To better understand mammalian nervous systems and effectively treat nervous-system disorders, it is essential to track changes in relevant individual neurons. A critical challenge is to identify and characterize the specific cell types involved and the molecular-level changes that occur in each. Using an experimental strategy called constellation pharmacology, we demonstrate that we can define a specific somatosensory neuronal subclass, cold thermosensors, across different species and track changes in these neurons as a function of development. Cold thermosensors are uniformly responsive to menthol and innocuous cool temperature (17 °C), indicating that they express TRPM8 channels. A subset of cold thermosensors expressed α7 nicotinic acetylcholine receptors (nAChRs) but not other nAChR subtypes. Differences in temperature threshold of cold thermosensors correlated with functional expression of voltage-gated K channels Kv1.1/1.2: Relatively higher expression of KV1.1/1.2 channels resulted in a higher threshold response to cold temperature. Other signaling components varied during development and between species. In cold thermosensors of neonatal mice and rats, ATP receptors were functionally expressed, but the expression disappeared with development. This developmental change occurred earlier in low-threshold than high-threshold cold thermosensors. Most rat cold thermosensors expressed TRPA1 channels, whereas mouse cold thermosensors did not. The broad implications of this study are that it is now feasible to track changes in receptor and ion-channel expression in individual neuronal subclasses as a function of development, learning, disease, or aging.
Collapse
|
27
|
High accuracy mass spectrometry comparison of Conus bandanus and Conus marmoreus venoms from the South Central Coast of Vietnam. Toxicon 2013; 75:148-59. [DOI: 10.1016/j.toxicon.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/10/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022]
|
28
|
Lavergne V, Dutertre S, Jin AH, Lewis RJ, Taft RJ, Alewood PF. Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genomics 2013; 14:708. [PMID: 24131469 PMCID: PMC3853152 DOI: 10.1186/1471-2164-14-708] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/11/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Conopeptides, often generically referred to as conotoxins, are small neurotoxins found in the venom of predatory marine cone snails. These molecules are highly stable and are able to efficiently and selectively interact with a wide variety of heterologous receptors and channels, making them valuable pharmacological probes and potential drug leads. Recent advances in next-generation RNA sequencing and high-throughput proteomics have led to the generation of large data sets that require purpose-built and dedicated bioinformatics tools for efficient data mining. RESULTS Here we describe ConoSorter, an algorithm that categorizes cDNA or protein sequences into conopeptide superfamilies and classes based on their signal, pro- and mature region sequence composition. ConoSorter also catalogues key sequence characteristics (including relative sequence frequency, length, number of cysteines, N-terminal hydrophobicity, sequence similarity score) and automatically searches the ConoServer database for known precursor sequences, facilitating identification of known and novel conopeptides. When applied to ConoServer and UniProtKB/Swiss-Prot databases, ConoSorter is able to recognize 100% of known conotoxin superfamilies and classes with a minimum species specificity of 99%. As a proof of concept, we performed a reanalysis of Conus marmoreus venom duct transcriptome and (i) correctly classified all sequences previously annotated, (ii) identified 158 novel precursor conopeptide transcripts, 106 of which were confirmed by protein mass spectrometry, and (iii) identified another 13 novel conotoxin gene superfamilies. CONCLUSIONS Taken together, these findings indicate that ConoSorter is not only capable of robust classification of known conopeptides from large RNA data sets, but can also facilitate de novo identification of conopeptides which may have pharmaceutical importance.
Collapse
Affiliation(s)
| | | | | | | | - Ryan J Taft
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.
| | | |
Collapse
|
29
|
Wang W, Kim HJ, Lv P, Tempel B, Yamoah EN. Association of the Kv1 family of K+ channels and their functional blueprint in the properties of auditory neurons as revealed by genetic and functional analyses. J Neurophysiol 2013; 110:1751-64. [PMID: 23864368 PMCID: PMC3798938 DOI: 10.1152/jn.00290.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/12/2013] [Indexed: 11/22/2022] Open
Abstract
Developmental plasticity in spiral ganglion neurons (SGNs) ensues from profound alterations in the functional properties of the developing hair cell (HC). For example, prehearing HCs are spontaneously active. However, at the posthearing stage, HC membrane properties transition to graded receptor potentials. The dendrotoxin (DTX)-sensitive Kv1 channel subunits (Kv1.1, 1.2, and 1.6) shape the firing properties and membrane potential of SGNs, and the expression of the channel undergoes developmental changes. Because of the stochastic nature of Kv subunit heteromultimerization, it has been difficult to determine physiologically relevant subunit-specific interactions and their functions in the underlying mechanisms of Kv1 channel plasticity in SGNs. Using Kcna2 null mutant mice, we demonstrate a surprising paradox in changes in the membrane properties of SGNs. The resting membrane potential of Kcna2(-/-) SGNs was significantly hyperpolarized compared with that of age-matched wild-type (WT) SGNs. Analyses of outward currents in the mutant SGNs suggest an apparent approximately twofold increase in outward K(+) currents. We show that in vivo and in vitro heteromultimerization of Kv1.2 and Kv1.4 α-subunits underlies the striking and unexpected alterations in the properties of SGNs. The results suggest that heteromeric interactions of Kv1.2 and Kv1.4 dominate the defining features of Kv1 channels in SGNs.
Collapse
Affiliation(s)
- Wenying Wang
- Program in Communication Science, Center for Neuroscience, University of California, Davis, School of Medicine, Davis, California
| | | | | | | | | |
Collapse
|
30
|
Conotoxins that confer therapeutic possibilities. Mar Drugs 2012; 10:1244-1265. [PMID: 22822370 PMCID: PMC3397437 DOI: 10.3390/md10061244] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 12/19/2022] Open
Abstract
Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt®; Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ω-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred.
Collapse
|
31
|
Abstract
Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies.
Collapse
Affiliation(s)
- Richard J Lewis
- Institute for Molecular Bioscience, University of Queensland, Q4072, Australia.
| | | | | | | |
Collapse
|
32
|
Finol-Urdaneta RK, Remedi MS, Raasch W, Becker S, Clark RB, Strüver N, Pavlov E, Nichols CG, French RJ, Terlau H. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol Med 2012; 4:424-34. [PMID: 22438204 PMCID: PMC3403299 DOI: 10.1002/emmm.201200218] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 01/26/2023] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) relies on repetitive, electrical spiking activity of the beta cell membrane. Cyclic activation of voltage-gated potassium channels (Kv) generates an outward, ‘delayed rectifier’ potassium current, which drives the repolarizing phase of each spike and modulates insulin release. Although several Kv channels are expressed in pancreatic islets, their individual contributions to GSIS remain incompletely understood. We take advantage of a naturally occurring cone-snail peptide toxin, Conkunitzin-S1 (Conk-S1), which selectively blocks Kv1.7 channels to provide an intrinsically limited, finely graded control of total beta cell delayed rectifier current and hence of GSIS. Conk-S1 increases GSIS in isolated rat islets, likely by reducing Kv1.7-mediated delayed rectifier currents in beta cells, which yields increases in action potential firing and cytoplasmic free calcium. In rats, Conk-S1 increases glucose-dependent insulin secretion without decreasing basal glucose. Thus, we conclude that Kv1.7 contributes to the membrane-repolarizing current of beta cells during GSIS and that block of this specific component of beta cell Kv current offers a potential strategy for enhancing GSIS with minimal risk of hypoglycaemia during metabolic disorders such as Type 2 diabetes.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Department of Physiology and Pharmacology, and HBI, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Functional profiling of neurons through cellular neuropharmacology. Proc Natl Acad Sci U S A 2012; 109:1388-95. [PMID: 22307590 DOI: 10.1073/pnas.1118833109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a functional profiling strategy to identify and characterize subtypes of neurons present in a peripheral ganglion, which should be extendable to neurons in the CNS. In this study, dissociated dorsal-root ganglion neurons from mice were exposed to various pharmacological agents (challenge compounds), while at the same time the individual responses of >100 neurons were simultaneously monitored by calcium imaging. Each challenge compound elicited responses in only a subset of dorsal-root ganglion neurons. Two general types of challenge compounds were used: agonists of receptors (ionotropic and metabotropic) that alter cytoplasmic calcium concentration (receptor-agonist challenges) and compounds that affect voltage-gated ion channels (membrane-potential challenges). Notably, among the latter are K-channel antagonists, which elicited unexpectedly diverse types of calcium responses in different cells (i.e., phenotypes). We used various challenge compounds to identify several putative neuronal subtypes on the basis of their shared and/or divergent functional, phenotypic profiles. Our results indicate that multiple receptor-agonist and membrane-potential challenges may be applied to a neuronal population to identify, characterize, and discriminate among neuronal subtypes. This experimental approach can uncover constellations of plasma membrane macromolecules that are functionally coupled to confer a specific phenotypic profile on each neuronal subtype. This experimental platform has the potential to bridge a gap between systems and molecular neuroscience with a cellular-focused neuropharmacology, ultimately leading to the identification and functional characterization of all neuronal subtypes at a given locus in the nervous system.
Collapse
|
34
|
Subunit-dependent axonal trafficking of distinct alpha heteromeric potassium channel complexes. J Neurosci 2011; 31:13224-35. [PMID: 21917805 DOI: 10.1523/jneurosci.0976-11.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated potassium (Kv) channels are critical for neuronal excitability and are targeted to specific subcellular compartments to carry out their unique functions. While it is widely believed that Kv channels exist as heteromeric complexes in neurons, direct tests of the hypothesis that specific heteromeric channel populations display divergent spatial and temporal dynamics are limited. Using a bimolecular fluorescence complementation approach, we monitored the assembly and localization of cell surface channel complexes in living cells. While PSD95-mediated clustering was subunit independent, selective visualization of heteromeric Kv complexes in rat hippocampal neurons revealed subunit-dependent localization that was not predicted by analyzing individual subunits. Assembly of Kv1.1 with Kv1.4 prevented axonal localization but not surface expression, while inclusion of Kv1.2 imparted clustering at presynaptic sites and decreased channel mobility within the axon. This mechanism by which specific Kv channel subunits can act in a dominant manner to impose unique trafficking properties to heteromeric complexes extended to Shab-related family of Kv channels. When coexpressed, Kv2.1 and Kv2.2 heteromultimers did not aggregate in somatodendritic clusters observed with expression of Kv2.1 alone. These studies demonstrate selective axonal trafficking and surface localization of distinct Kv channels based on their subunit composition.
Collapse
|
35
|
Jimenez EC, Olivera BM. Divergent M- and O-superfamily peptides from venom of fish-hunting Conus parius. Peptides 2010; 31:1678-83. [PMID: 20570703 PMCID: PMC2922443 DOI: 10.1016/j.peptides.2010.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/27/2010] [Accepted: 05/29/2010] [Indexed: 11/22/2022]
Abstract
Six novel peptides from the piscivorous cone snail, Conus parius were purified by reverse-phase HPLC fractionation of crude venom. With the use of matrix-assisted laser desorption ionization mass spectrometry and standard Edman sequencing methods, the peptides were characterized. Two peptides were identified as members of the m-2 and m-4 branches of the M-superfamily and were designated as pr3a and pr3b, while four peptides were identified as members of the O-superfamily and were designated as pr6a, pr6b, pr6c and pr6d. Peptide pr3a differs from the majority of the M-superfamily peptides in the presence of two prolines, which are not modified to 4-trans-hydroxyproline. In peptide pr3b, five amino acids out of the 16 non-cysteine residues are identical with those of mu-GIIIA and mu-PIIIA, suggesting that pr3b may be a divergent mu-conotoxin. Peptide pr6a is notable because of its extreme hydrophobicity. Peptide pr6c has three prolines that are unhydroxylated. Peptides pr6b and pr6d differ from the previously characterized O-superfamily peptides in the presence of an extended N-terminus consisting of six amino acids. Peptides pr3a, pr3b, pr6a and pr6b were demonstrated to be biologically active when injected intraperitoneally in fish. The identification and characterization of these peptides in venom of a fish-hunting species establish the divergence of gene products and their patterns of post-translational modification within superfamilies in a single Conus species.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City 2600, Philippines.
| | | |
Collapse
|