1
|
Kulikovsky A, Yagmurov E, Grigoreva A, Popov A, Severinov K, Nair SK, Lippens G, Serebryakova M, Borukhov S, Dubiley S. Bacillus subtilis Utilizes Decarboxylated S-Adenosylmethionine for the Biosynthesis of Tandem Aminopropylated Microcin C, a Potent Inhibitor of Bacterial Aspartyl-tRNA Synthetase. J Am Chem Soc 2025; 147:11998-12011. [PMID: 40162528 DOI: 10.1021/jacs.4c18468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The biosynthetic pathways of natural products involve unusual biochemical reactions catalyzed by unique enzymes. Aminopropylation, although apparently simple, is an extremely rare modification outside polyamine biosynthesis. The canonical pathway used in the biosynthesis of peptide-adenylate antibiotic microcin C of E. coli (Eco-McC) entails alkylation by the S-adenosyl-methionine-derived 3-amino-3-carboxypropyl group of the adenylate moiety and subsequent decarboxylation to yield the bioactive aminopropylated compound. Here, we report the structure and biosynthesis of a new member of the microcin C family of antibiotics, Bsu-McC, produced by Bacillus subtilis MG27, which employs an alternative aminopropylation pathway. Like Eco-McC, Bsu-McC consists of a peptide moiety that facilitates prodrug import into susceptible bacteria and a warhead, a nonhydrolyzable modified isoasparaginyl-adenylate, which, when released into the cytoplasm, binds aspartyl-tRNA synthetase (AspRS) inhibiting translation. In contrast to the Eco-McC, whose warhead carries a single aminopropyl group attached to the phosphate moiety of isoasparaginyl-adenylate, the warhead of Bsu-McC is decorated with a tandem of two aminopropyl groups. Our in silico docking of the Bsu-McC warhead to the AspRS-tRNA complex suggests that two aminopropyl groups form extended interactions with the enzyme and tRNA, stabilizing the enzyme-inhibitor complex. We show that tandem aminopropylation results in a 32-fold increase in the biological activity of peptidyl-adenylate. We also show that B. subtilis adopted an alternative pathway for aminopropylation in which two homologous 3-aminopropyltransferases utilize decarboxylated S-adenosylmethionine as a substrate. Additionally, Bsu-McC biosynthesis alters the social behavior of the B. subtilis producer strain, resulting in a sharp decrease in their ability to form biofilms.
Collapse
Affiliation(s)
- Alexey Kulikovsky
- Institute of Gene Biology, Russian Academy of Science institution, Moscow 119334, Russia
| | - Eldar Yagmurov
- Institute of Gene Biology, Russian Academy of Science institution, Moscow 119334, Russia
| | - Anastasiia Grigoreva
- Institute of Gene Biology, Russian Academy of Science institution, Moscow 119334, Russia
| | - Aleksandr Popov
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Science institution, Moscow 119334, Russia
| | - Satish K Nair
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
- Center for Bio-physics and Quantitative Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Guy Lippens
- Toulouse Biotechnology Institute, Toulouse 31400, France
| | - Marina Serebryakova
- A.N. Belozersky Institute of Physicochemical Biology MSU, Moscow 119992, Russia
| | - Sergei Borukhov
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University School of Osteopathic Medicine institution, Stratford, New Jersey 08084-1501, United States
| | | |
Collapse
|
2
|
Nguyen N, Forstater JH, McIntosh JA. Decarboxylation in Natural Products Biosynthesis. JACS AU 2024; 4:2715-2745. [PMID: 39211618 PMCID: PMC11350588 DOI: 10.1021/jacsau.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Decarboxylation reactions are frequently found in the biosynthesis of primary and secondary metabolites. Decarboxylase enzymes responsible for these transformations operate via diverse mechanisms and act on a large variety of substrates, making them appealing in terms of biotechnological applications. This Perspective focuses on the occurrence of decarboxylation reactions in natural product biosynthesis and provides a perspective on their applications in biocatalysis for fine chemicals and pharmaceuticals.
Collapse
|
3
|
Yang F, Yang F, Huang J, Yu H, Qiao S. Microcin C7 as a Potential Antibacterial-Immunomodulatory Agent in the Postantibiotic Era: Overview of Its Bioactivity Aspects and Applications. Int J Mol Sci 2024; 25:7213. [PMID: 39000321 PMCID: PMC11241378 DOI: 10.3390/ijms25137213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In the postantibiotic era, the pathogenicity and resistance of pathogens have increased, leading to an increase in intestinal inflammatory disease. Bacterial infections remain the leading cause of animal mortality. With increasing resistance to antibiotics, there has been a significant decrease in resistance to both inflammation and disease in animals, thus decreasing production efficiency and increasing production costs. These side effects have serious consequences and have detracted from the development of China's pig industry. Microcin C7 (McC7) demonstrates potent antibacterial activity against a broad spectrum of pathogens, stable physicochemical properties, and low toxicity, reducing the likelihood of resistance development. Thus, McC7 has received increasing attention as a potential clinical antibacterial and immunomodulatory agent. McC7 has the potential to serve as a new generation of antibiotic substitutes; however, its commercial applications in the livestock and poultry industry have been limited. In this review, we summarize and discuss the biosynthesis, biochemical properties, structural characteristics, mechanism of action, and immune strategies of McC7. We also describe the ability of McC7 to improve intestinal health. Our aim in this study was to provide a theoretical basis for the application of McC7 as a new feed additive or new veterinary drug in the livestock and poultry breeding industry, thus providing a new strategy for alleviating resistance through feed and mitigating drug resistance. Furthermore, this review provides insight into the new functions and anti-infection mechanisms of bacteriocin peptides and proposes crucial ideas for the research, product development, and application of bacteriocin peptides in different fields, such as the food and medical industries.
Collapse
Affiliation(s)
- Fengjuan Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing 402460, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, China
- Beijing Biofeed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
4
|
Telhig S, Pham NP, Ben Said L, Rebuffat S, Ouellette M, Zirah S, Fliss I. Exploring the genetic basis of natural resistance to microcins. Microb Genom 2024; 10:001156. [PMID: 38407259 PMCID: PMC10926693 DOI: 10.1099/mgen.0.001156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/28/2023] [Indexed: 02/27/2024] Open
Abstract
Enterobacteriaceae produce an arsenal of antimicrobial compounds including microcins, ribosomally produced antimicrobial peptides showing diverse structures and mechanisms of action. Microcins target close relatives of the producing strain to promote its survival. Their narrow spectrum of antibacterial activity makes them a promising alternative to conventional antibiotics, as it should decrease the probability of resistance dissemination and collateral damage to the host's microbiota. To assess the therapeutic potential of microcins, there is a need to understand the mechanisms of resistance to these molecules. In this study, we performed genomic analyses of the resistance to four microcins [microcin C, a nucleotide peptide; microcin J25, a lasso peptide; microcin B17, a linear azol(in)e-containing peptide; and microcin E492, a siderophore peptide] on a collection of 54 Enterobacteriaceae from three species: Escherichia coli, Salmonella enterica and Klebsiella pneumoniae. A gene-targeted analysis revealed that about half of the microcin-resistant strains presented mutations of genes involved in the microcin mechanism of action, especially those involved in their uptake (fhuA, fepA, cirA and ompF). A genome-wide association study did not reveal any significant correlations, yet relevant genetic elements were associated with microcin resistance. These were involved in stress responses, biofilm formation, transport systems and acquisition of immunity genes. Additionally, microcin-resistant strains exhibited several mutations within genes involved in specific metabolic pathways, especially for S. enterica and K. pneumoniae.
Collapse
Affiliation(s)
- Soufiane Telhig
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Canada
- Laboratoire Molécules de Communication et Adaptation des Microorganismes, Muséum national d’Histoire naturelle, Centre national de la Recherche scientifique, Paris, France
| | - Nguyen Phuong Pham
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Laila Ben Said
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes, Muséum national d’Histoire naturelle, Centre national de la Recherche scientifique, Paris, France
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes, Muséum national d’Histoire naturelle, Centre national de la Recherche scientifique, Paris, France
| | - Ismaïl Fliss
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, Canada
| |
Collapse
|
5
|
Wu JH, Li DL, Tan XH, Chen XW, Liu YL, Munang'andu HM, Peng B. Functional Proteomics Analysis of Norfloxacin-Resistant Edwardsiella tarda. J Proteome Res 2023; 22:3489-3498. [PMID: 37856871 DOI: 10.1021/acs.jproteome.3c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Multidrug-resistant Edwardsiella tarda threatens both sustainable aquaculture and human health, but the control measure is still lacking. In this study, we adopted functional proteomics to investigate the molecular mechanism underlying norfloxacin (NOR) resistance in E. tarda. We found that E. tarda had a global proteomic shift upon acquisition of NOR resistance, featured with increased expression of siderophore biosynthesis and Fe3+-hydroxamate transport. Thus, either inhibition of siderophore biosynthesis with salicyl-AMS or treatment with another antibiotic, kitasamycin (Kit), which was uptake through Fe3+-hydroxamate transport, enhanced NOR killing of NOR-resistant E. tarda both in vivo and in vitro. Moreover, the combination of NOR, salicyl-AMS, and Kit had the highest efficacy in promoting the killing effects of NOR than any drug alone. Such synergistic effect not only confirmed in vitro and in vivo bacterial killing assays but also applicable to other clinic E. tarda isolates. Thus, our data suggest a proteomic-based approach to identify potential targets to enhance antibiotic killing and propose an alternative way to control infection of multidrug-resistant E. tarda.
Collapse
Affiliation(s)
- Jia-Han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - De-Li Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiao-Hua Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xuan-Wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Ying-Li Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
6
|
Wu L, Zhang Q, Deng Z, Yu Y. From solo to duet, intersections of natural product assembly with self-resistance. Nat Prod Rep 2022; 39:919-925. [PMID: 34989738 DOI: 10.1039/d1np00064k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2021Self-resistance mechanisms adopted by natural product producers have long been recognized and studied as a standalone system separated from the assembly machinery. However, as more examples of self-resistance have been characterized in detail, it has been revealed that self-resistance could associate with the assembly machinery to fulfill the task of biosynthesis. This review summarizes different self-resistance mechanisms showing a common feature: intersection with natural product assembly. Furthermore, their possible evolutionary origin and synthetic biology applications are discussed.
Collapse
Affiliation(s)
- Linrui Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Qian Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
7
|
Baumgartner JT, Habeeb Mohammad TS, Czub MP, Majorek KA, Arolli X, Variot C, Anonick M, Minor W, Ballicora MA, Becker DP, Kuhn ML. Gcn5-Related N-Acetyltransferases (GNATs) With a Catalytic Serine Residue Can Play Ping-Pong Too. Front Mol Biosci 2021; 8:646046. [PMID: 33912589 PMCID: PMC8072286 DOI: 10.3389/fmolb.2021.646046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Enzymes in the Gcn5-related N-acetyltransferase (GNAT) superfamily are widespread and critically involved in multiple cellular processes ranging from antibiotic resistance to histone modification. While acetyl transfer is the most widely catalyzed reaction, recent studies have revealed that these enzymes are also capable of performing succinylation, condensation, decarboxylation, and methylcarbamoylation reactions. The canonical chemical mechanism attributed to GNATs is a general acid/base mechanism; however, mounting evidence has cast doubt on the applicability of this mechanism to all GNATs. This study shows that the Pseudomonas aeruginosa PA3944 enzyme uses a nucleophilic serine residue and a hybrid ping-pong mechanism for catalysis instead of a general acid/base mechanism. To simplify this enzyme's kinetic characterization, we synthesized a polymyxin B substrate analog and performed molecular docking experiments. We performed site-directed mutagenesis of key active site residues (S148 and E102) and determined the structure of the E102A mutant. We found that the serine residue is essential for catalysis toward the synthetic substrate analog and polymyxin B, but the glutamate residue is more likely important for substrate recognition or stabilization. Our results challenge the current paradigm of GNAT mechanisms and show that this common enzyme scaffold utilizes different active site residues to accomplish a diversity of catalytic reactions.
Collapse
Affiliation(s)
- Jackson T. Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | | | - Mateusz P. Czub
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Virginia, Charlottesville, VA, United States
| | - Karolina A. Majorek
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Virginia, Charlottesville, VA, United States
| | - Xhulio Arolli
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Cillian Variot
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Madison Anonick
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- Center for Structural Genomics of Infectious Diseases (CSGID), University of Virginia, Charlottesville, VA, United States
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
8
|
Travin DY, Severinov K, Dubiley S. Natural Trojan horse inhibitors of aminoacyl-tRNA synthetases. RSC Chem Biol 2021; 2:468-485. [PMID: 34382000 PMCID: PMC8323819 DOI: 10.1039/d0cb00208a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
For most antimicrobial compounds with intracellular targets, getting inside the cell is the major obstacle limiting their activity. To pass this barrier some antibiotics mimic the compounds of specific interest for the microbe (siderophores, peptides, carbohydrates, etc.) and hijack the transport systems involved in their active uptake followed by the release of a toxic warhead inside the cell. In this review, we summarize the information about the structures, biosynthesis, and transport of natural inhibitors of aminoacyl-tRNA synthetases (albomycin, microcin C-related compounds, and agrocin 84) that rely on such "Trojan horse" strategy to enter the cell. In addition, we provide new data on the composition and distribution of biosynthetic gene clusters reminiscent of those coding for known Trojan horse aminoacyl-tRNA synthetases inhibitors. The products of these clusters are likely new antimicrobials that warrant further investigation.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
- Waksman Institute for Microbiology, Rutgers, Piscataway New Jersey USA
| | - Svetlana Dubiley
- Center of Life Sciences, Skolkovo Institute of Science and Technology Moscow Russia
- Institute of Gene Biology, Russian Academy of Sciences Moscow Russia
| |
Collapse
|
9
|
Pang L, Weeks SD, Van Aerschot A. Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery. Int J Mol Sci 2021; 22:1750. [PMID: 33578647 PMCID: PMC7916415 DOI: 10.3390/ijms22041750] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.
Collapse
Affiliation(s)
- Luping Pang
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
- KU Leuven, Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49–box 822, 3000 Leuven, Belgium
| | | | - Arthur Van Aerschot
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49–box 1041, 3000 Leuven, Belgium;
| |
Collapse
|
10
|
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front Microbiol 2020; 11:586433. [PMID: 33240239 PMCID: PMC7680869 DOI: 10.3389/fmicb.2020.586433] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.
Collapse
Affiliation(s)
- Soufiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
11
|
Small-Molecule Acetylation by GCN5-Related N-Acetyltransferases in Bacteria. Microbiol Mol Biol Rev 2020; 84:84/2/e00090-19. [PMID: 32295819 DOI: 10.1128/mmbr.00090-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acetylation is a conserved modification used to regulate a variety of cellular pathways, such as gene expression, protein synthesis, detoxification, and virulence. Acetyltransferase enzymes transfer an acetyl moiety, usually from acetyl coenzyme A (AcCoA), onto a target substrate, thereby modulating activity or stability. Members of the GCN5- N -acetyltransferase (GNAT) protein superfamily are found in all domains of life and are characterized by a core structural domain architecture. These enzymes can modify primary amines of small molecules or of lysyl residues of proteins. From the initial discovery of antibiotic acetylation, GNATs have been shown to modify a myriad of small-molecule substrates, including tRNAs, polyamines, cell wall components, and other toxins. This review focuses on the literature on small-molecule substrates of GNATs in bacteria, including structural examples, to understand ligand binding and catalysis. Understanding the plethora and versatility of substrates helps frame the role of acetylation within the larger context of bacterial cellular physiology.
Collapse
|
12
|
Abstract
The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive.IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.
Collapse
|
13
|
Baquero F, Lanza VF, Baquero MR, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 2019; 10:2261. [PMID: 31649628 PMCID: PMC6795089 DOI: 10.3389/fmicb.2019.02261] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-inhibitory molecules involved in competitive, and amensalistic interactions between Enterobacteriaceae in the intestine. These interactions take place in a highly complex chemical landscape, the intestinal eco-active chemosphere, composed of chemical substances that positively or negatively influence bacterial growth, including those originated from nutrient uptake, and those produced by the action of the human or animal host and the intestinal microbiome. The contribution of bacteria results from their effect on the host generated molecules, on food and digested food, and organic substances from microbial origin, including from bacterial degradation. Here, we comprehensively review the main chemical substances present in the human intestinal chemosphere, particularly of those having inhibitory effects on microorganisms. With this background, and focusing on Enterobacteriaceae, the most relevant human pathogens from the intestinal microbiota, the microcin’s history and classification, mechanisms of action, and mechanisms involved in microcin’s immunity (in microcin producers) and resistance (non-producers) are reviewed. Products from the chemosphere likely modulate the ecological effects of microcin activity. Several cross-resistance mechanisms are shared by microcins, colicins, bacteriophages, and some conventional antibiotics, which are expected to produce cross-effects. Double-microcin-producing strains (such as microcins MccM and MccH47) have been successfully used for decades in the control of pathogenic gut organisms. Microcins are associated with successful gut colonization, facilitating translocation and invasion, leading to bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter (mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae indicate key ecological functions, a notion supported by their dominance in the intestinal microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally modified peptide microcins.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Maria-Rosario Baquero
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Daniel A Bravo-Vázquez
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| |
Collapse
|
14
|
O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. Crit Rev Microbiol 2019; 45:255-277. [PMID: 30985219 DOI: 10.1080/1040841x.2019.1590307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intense competition between microbes in the environment has directed the evolution of antibiotic production in bacteria. Humans have harnessed these natural molecules for medicinal purposes, magnifying them from environmental concentrations to industrial scale. This increased exposure to antibiotics has amplified antibiotic resistance across bacteria, spurring a global antimicrobial crisis and a search for antibiotics with new modes of action. Genetic insights into these antibiotic-producing microbes reveal that they have evolved several resistance strategies to avoid self-toxicity, including product modification, substrate transport and binding, and target duplication or modification. Of these mechanisms, target duplication or modification will be highlighted in this review, as it uniquely links an antibiotic to its mode of action. We will further discuss and propose a strategy to mine microbial genomes for these genes and their associated biosynthetic gene clusters to discover novel antibiotics using target directed genome mining.
Collapse
Affiliation(s)
- Ellis C O'Neill
- a Department of Plant Sciences, University of Oxford , Oxford , Oxfordshire , UK
| | - Michelle Schorn
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Charles B Larson
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Natalie Millán-Aguiñaga
- c Universidad Autónoma de Baja California, Facultad de Ciencias Marinas , Ensenada , Baja California , México
| |
Collapse
|
15
|
Nautiyal M, De Graef S, Pang L, Gadakh B, Strelkov SV, Weeks SD, Van Aerschot A. Comparative analysis of pyrimidine substituted aminoacyl-sulfamoyl nucleosides as potential inhibitors targeting class I aminoacyl-tRNA synthetases. Eur J Med Chem 2019; 173:154-166. [PMID: 30995568 DOI: 10.1016/j.ejmech.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyse the ATP-dependent coupling of an amino acid to its cognate tRNA. Being vital for protein translation aaRSs are considered a promising target for the development of novel antimicrobial agents. 5'-O-(N-aminoacyl)-sulfamoyl adenosine (aaSA) is a non-hydrolysable analogue of the aaRS reaction intermediate that has been shown to be a potent inhibitor of this enzyme family but is prone to chemical instability and enzymatic modification. In an attempt to improve the molecular properties of this scaffold we synthesized a series of base substituted aaSA analogues comprising cytosine, uracil and N3-methyluracil targeting leucyl-, tyrosyl- and isoleucyl-tRNA synthetases. In in vitro assays seven out of the nine inhibitors demonstrated Kiapp values in the low nanomolar range. To complement the biochemical studies, X-ray crystallographic structures of Neisseria gonorrhoeae leucyl-tRNA synthetase and Escherichia coli tyrosyl-tRNA synthetase in complex with the newly synthesized compounds were determined. These highlighted a subtle interplay between the base moiety and the target enzyme in defining relative inhibitory activity. Encouraged by this data we investigated if the pyrimidine congeners could escape a natural resistance mechanism, involving acetylation of the amine of the aminoacyl group by the bacterial N-acetyltransferases RimL and YhhY. With RimL the pyrimidine congeners were less susceptible to inactivation compared to the equivalent aaSA, whereas with YhhY the converse was true. Combined the various insights resulting from this study will pave the way for the further rational design of aaRS inhibitors.
Collapse
Affiliation(s)
- Manesh Nautiyal
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium
| | - Steff De Graef
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Luping Pang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium; Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Bharat Gadakh
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Stephen D Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium.
| |
Collapse
|
16
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Dong SH, Kulikovsky A, Zukher I, Estrada P, Dubiley S, Severinov K, Nair SK. Biosynthesis of the RiPP trojan horse nucleotide antibiotic microcin C is directed by the N-formyl of the peptide precursor. Chem Sci 2018; 10:2391-2395. [PMID: 30881667 PMCID: PMC6385645 DOI: 10.1039/c8sc03173h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023] Open
Abstract
The N-formyl moiety of the peptide precursor directs the biosynthesis of the RiPP trojan horse nucleotide antibiotic McC.
Microcin C7 (McC) is a peptide antibiotic modified by a linkage of the terminal isoAsn amide to AMP via a phosphoramidate bond. Post-translational modification on this ribosomally produced heptapeptide precursor is carried out by MccB, which consumes two equivalents of ATP to generate the N–P linkage. We demonstrate that MccB only efficiently processes the precursor heptapeptide that retains the N-formylated initiator Met (fMet). Binding studies and kinetic measurements evidence the role of the N-formyl moiety. Structural data show that the N-formyl peptide binding results in an ordering of residues in the MccB “crossover loop”, which dictates specificity in homologous ubiquitin activating enzymes. The N-formyl peptide exhibits substrate inhibition, and cannot be displaced from MccB by the desformyl counterpart. Such substrate inhibition may be a strategy to avert unwanted McC buildup and avert toxicity in the cytoplasm of producing organisms.
Collapse
Affiliation(s)
- Shi-Hui Dong
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Illinois , USA . .,Carl Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Illinois , USA
| | - Alexey Kulikovsky
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Illinois , USA . .,Institute of Gene Biology , Russian Academy of Science , 34/5 Vavilo str. , 11934 Moscow , Russia.,Center for Life Sciences , Skolkov Institute of Science and Technology , 3 Nobel str. , 143026 Moscow , Russia
| | - Inna Zukher
- Institute of Gene Biology , Russian Academy of Science , 34/5 Vavilo str. , 11934 Moscow , Russia
| | - Paola Estrada
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Illinois , USA .
| | - Svetlana Dubiley
- Institute of Gene Biology , Russian Academy of Science , 34/5 Vavilo str. , 11934 Moscow , Russia.,Center for Life Sciences , Skolkov Institute of Science and Technology , 3 Nobel str. , 143026 Moscow , Russia
| | - Konstantin Severinov
- Institute of Gene Biology , Russian Academy of Science , 34/5 Vavilo str. , 11934 Moscow , Russia.,Center for Life Sciences , Skolkov Institute of Science and Technology , 3 Nobel str. , 143026 Moscow , Russia.,Waksman Institute for Microbiology , 190 Frelinghuysen Road , Piscataway , New Jersey , USA .
| | - Satish K Nair
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Illinois , USA . .,Carl Woese Institute for Genomic Biology , University of Illinois at Urbana-Champaign , Illinois , USA.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Illinois , USA
| |
Collapse
|
18
|
Tsibulskaya D, Mokina O, Kulikovsky A, Piskunova J, Severinov K, Serebryakova M, Dubiley S. The Product of Yersinia pseudotuberculosis mcc Operon Is a Peptide-Cytidine Antibiotic Activated Inside Producing Cells by the TldD/E Protease. J Am Chem Soc 2017; 139:16178-16187. [PMID: 29045133 DOI: 10.1021/jacs.7b07118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcin C is a heptapeptide-adenylate antibiotic produced by some strains of Escherichia coli. Its peptide part is responsible for facilitated transport inside sensitive cells where it is proteolyzed with release of a toxic warhead-a nonhydrolyzable aspartamidyl-adenylate, which inhibits aspartyl-tRNA synthetase. Recently, a microcin C homologue from Bacillus amyloliquefaciens containing a longer peptide part modified with carboxymethyl-cytosine instead of adenosine was described, but no biological activity of this compound was revealed. Here, we characterize modified peptide-cytidylate from Yersinia pseudotuberculosis. As reported for B. amyloliquefaciens homologue, the initially synthesized compound contains a long peptide that is biologically inactive. This compound is subjected to endoproteolytic processing inside producing cells by the evolutionary conserved TldD/E protease. As a result, an 11-amino acid long peptide with C-terminal modified cytosine residue is produced. This compound is exported outside the producing cell and is bioactive, inhibiting sensitive cells in the same way as E. coli microcin C. Proteolytic processing inside producing cells is a novel strategy of peptide-nucleotide antibiotics biosynthesis that may help control production levels and avoid toxicity to the producer.
Collapse
Affiliation(s)
- Darya Tsibulskaya
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Olga Mokina
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Alexey Kulikovsky
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia.,Department of Biochemistry, University of Illinois at Urbana-Champaign , 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Julia Piskunova
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Konstantin Severinov
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia.,Waksman Institute for Microbiology , 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, United States
| | - Marina Serebryakova
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia
| | - Svetlana Dubiley
- Institute of Gene Biology , Russian Academy of Science, 34/5 Vavilov str., 119334 Moscow, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| |
Collapse
|
19
|
Piskunova J, Maisonneuve E, Germain E, Gerdes K, Severinov K. Peptide-nucleotide antibiotic Microcin C is a potent inducer of stringent response and persistence in both sensitive and producing cells. Mol Microbiol 2017; 104:463-471. [PMID: 28164379 DOI: 10.1111/mmi.13640] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2017] [Indexed: 01/09/2023]
Abstract
Microcin C (McC) is a peptide-nucleotide antibiotic that inhibits aspartyl-tRNA synthetase. Here, we show that McC is a strong inducer of persistence in Escherichia coli. Persistence induced by McC is mediated by (p)ppGpp and requires chromosomally encoded toxin-antitoxin modules. McC-producing cells have increased persistence levels due to a combined effect of McC imported from the cultured medium and intracellularly synthesized antibiotic. McC-producing cells also induce persistence in sensitive cells during co-cultivation, underscoring complex interactions in bacterial communities where an antagonistic compound produced by one community member can benefit other members by increasing their ability to withstand antibiotics.
Collapse
Affiliation(s)
- Julia Piskunova
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Etienne Maisonneuve
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Elsa Germain
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Kenn Gerdes
- Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Waksman Institute for Microbiology, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
20
|
Serebryakova M, Tsibulskaya D, Mokina O, Kulikovsky A, Nautiyal M, Van Aerschot A, Severinov K, Dubiley S. A Trojan-Horse Peptide-Carboxymethyl-Cytidine Antibiotic from Bacillus amyloliquefaciens. J Am Chem Soc 2016; 138:15690-15698. [PMID: 27934031 PMCID: PMC5152938 DOI: 10.1021/jacs.6b09853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Microcin
C and related antibiotics are Trojan-horse peptide-adenylates.
The peptide part is responsible for facilitated transport inside the
sensitive cell, where it gets processed to release a toxic warhead—a
nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase.
Adenylation of peptide precursors is carried out by MccB THIF-type
NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like
compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented
ability to attach a terminal cytidine monophosphate to cognate precursor
peptide in cellular and cell free systems. The cytosine moiety undergoes
an additional modification—carboxymethylation—that is
carried out by the C-terminal domain of MccB and the MccS enzyme that
produces carboxy-SAM, which serves as a donor of the carboxymethyl
group. We show that microcin C-like compounds carrying terminal cytosines
are biologically active and target aspartyl-tRNA synthetase, and that
the carboxymethyl group prevents resistance that can occur due to
modification of the warhead. The results expand the repertoire of
known enzymatic modifications of peptides that can be used to obtain
new biological activities while avoiding or limiting bacterial resistance.
Collapse
Affiliation(s)
- Marina Serebryakova
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia
| | - Darya Tsibulskaya
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia
| | - Olga Mokina
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Alexey Kulikovsky
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| | - Manesh Nautiyal
- KU Leuven , O&N Rega, Medicinal Chemistry, Herestraat 49 10, B-3000 Leuven, Belgium
| | - Arthur Van Aerschot
- KU Leuven , O&N Rega, Medicinal Chemistry, Herestraat 49 10, B-3000 Leuven, Belgium
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia.,Waksman Institute for Microbiology , 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, United States
| | - Svetlana Dubiley
- Institute of Gene Biology, Russian Academy of Science , 34/5 Vavilov str., 119334 Moscow, Russia.,Skolkovo Institute of Science and Technology , 3 Nobel str., 143026 Moscow, Russia
| |
Collapse
|
21
|
Serpi M, Ferrari V, Pertusati F. Nucleoside Derived Antibiotics to Fight Microbial Drug Resistance: New Utilities for an Established Class of Drugs? J Med Chem 2016; 59:10343-10382. [PMID: 27607900 DOI: 10.1021/acs.jmedchem.6b00325] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel antibiotics are urgently needed to combat the rise of infections due to drug-resistant microorganisms. Numerous natural nucleosides and their synthetically modified analogues have been reported to have moderate to good antibiotic activity against different bacterial and fungal strains. Nucleoside-based compounds target several crucial processes of bacterial and fungal cells such as nucleoside metabolism and cell wall, nucleic acid, and protein biosynthesis. Nucleoside analogues have also been shown to target many other bacterial and fungal cellular processes although these are not well characterized and may therefore represent opportunities to discover new drugs with unique mechanisms of action. In this Perspective, we demonstrate that nucleoside analogues, cornerstones of anticancer and antiviral treatments, also have great potential to be repurposed as antibiotics so that an old drug can learn new tricks.
Collapse
Affiliation(s)
- Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| | - Valentina Ferrari
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| |
Collapse
|
22
|
Salah Ud-Din AIM, Tikhomirova A, Roujeinikova A. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT). Int J Mol Sci 2016; 17:E1018. [PMID: 27367672 PMCID: PMC4964394 DOI: 10.3390/ijms17071018] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Alexandra Tikhomirova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
23
|
The Pseudomonas aeruginosa PA14 ABC Transporter NppA1A2BCD Is Required for Uptake of Peptidyl Nucleoside Antibiotics. J Bacteriol 2015; 197:2217-2228. [PMID: 25917903 DOI: 10.1128/jb.00234-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Analysis of the genome sequence of Pseudomonas aeruginosa PA14 revealed the presence of an operon encoding an ABC-type transporter (NppA1A2BCD) showing homology to the Yej transporter of Escherichia coli. The Yej transporter is involved in the uptake of the peptide-nucleotide antibiotic microcin C, a translation inhibitor that targets the enzyme aspartyl-tRNA synthetase. Furthermore, it was recently shown that the Opp transporter from P. aeruginosa PAO1, which is identical to Npp, is required for uptake of the uridyl peptide antibiotic pacidamycin, which targets the enzyme translocase I (MraY), which is involved in peptidoglycan synthesis. We used several approaches to further explore the substrate specificity of the Npp transporter. Assays of growth in defined minimal medium containing peptides of various lengths and amino acid compositions as sole nitrogen sources, as well as Biolog Phenotype MicroArrays, showed that the Npp transporter is not required for di-, tri-, and oligopeptide uptake. Overexpression of the npp operon increased susceptibility not just to pacidamycin but also to nickel chloride and the peptidyl nucleoside antibiotic blasticidin S. Furthermore, heterologous expression of the npp operon in a yej-deficient mutant of E. coli resulted in increased susceptibility to albomycin, a naturally occurring sideromycin with a peptidyl nucleoside antibiotic. Additionally, heterologous expression showed that microcin C is recognized by the P. aeruginosa Npp system. Overall, these results suggest that the NppA1A2BCD transporter is involved in the uptake of peptidyl nucleoside antibiotics by P. aeruginosa PA14. IMPORTANCE One of the world's most serious health problems is the rise of antibiotic-resistant bacteria. There is a desperate need to find novel antibiotic therapeutics that either act on new biological targets or are able to bypass known resistance mechanisms. Bacterial ABC transporters play an important role in nutrient uptake from the environment. These uptake systems could also be exploited by a Trojan horse strategy to facilitate the transport of antibiotics into bacterial cells. Several natural antibiotics mimic substrates of peptide uptake routes. In this study, we analyzed an ABC transporter involved in the uptake of nucleoside peptidyl antibiotics. Our data might help to design drug conjugates that may hijack this uptake system to gain access to cells.
Collapse
|
24
|
Ud-Din AI, Liu YC, Roujeinikova A. Crystal structure of Helicobacter pylori pseudaminic acid biosynthesis N-acetyltransferase PseH: implications for substrate specificity and catalysis. PLoS One 2015; 10:e0115634. [PMID: 25781966 PMCID: PMC4363471 DOI: 10.1371/journal.pone.0115634] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/25/2014] [Indexed: 01/15/2023] Open
Abstract
Helicobacter pylori infection is the common cause of gastroduodenal diseases linked to a higher risk of the development of gastric cancer. Persistent infection requires functional flagella that are heavily glycosylated with 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (pseudaminic acid). Pseudaminic acid biosynthesis protein H (PseH) catalyzes the third step in its biosynthetic pathway, producing UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. It belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. The crystal structure of the PseH complex with cofactor acetyl-CoA has been determined at 2.3 Å resolution. This is the first crystal structure of the GNAT superfamily member with specificity to UDP-4-amino-4,6-dideoxy-β-L-AltNAc. PseH is a homodimer in the crystal, each subunit of which has a central twisted β-sheet flanked by five α-helices and is structurally homologous to those of other GNAT superfamily enzymes. Interestingly, PseH is more similar to the GNAT enzymes that utilize amino acid sulfamoyl adenosine or protein as a substrate than a different GNAT-superfamily bacterial nucleotide-sugar N-acetyltransferase of the known structure, WecD. Analysis of the complex of PseH with acetyl-CoA revealed the location of the cofactor-binding site between the splayed strands β4 and β5. The structure of PseH, together with the conservation of the active-site general acid among GNAT superfamily transferases, are consistent with a common catalytic mechanism for this enzyme that involves direct acetyl transfer from AcCoA without an acetylated enzyme intermediate. Based on structural homology with microcin C7 acetyltransferase MccE and WecD, the Michaelis complex can be modeled. The model suggests that the nucleotide- and 4-amino-4,6-dideoxy-β-L-AltNAc-binding pockets form extensive interactions with the substrate and are thus the most significant determinants of substrate specificity. A hydrophobic pocket accommodating the 6'-methyl group of the altrose dictates preference to the methyl over the hydroxyl group and thus to contributes to substrate specificity of PseH.
Collapse
Affiliation(s)
- Abu I Ud-Din
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yu C. Liu
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
25
|
Zukher I, Novikova M, Tikhonov A, Nesterchuk MV, Osterman IA, Djordjevic M, Sergiev PV, Sharma CM, Severinov K. Ribosome-controlled transcription termination is essential for the production of antibiotic microcin C. Nucleic Acids Res 2014; 42:11891-902. [PMID: 25274735 PMCID: PMC4231749 DOI: 10.1093/nar/gku880] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microcin C (McC) is a peptide–nucleotide antibiotic produced by Escherichia coli cells harboring a plasmid-borne operon mccABCDE. The heptapeptide MccA is converted into McC by adenylation catalyzed by the MccB enzyme. Since MccA is a substrate for MccB, a mechanism that regulates the MccA/MccB ratio likely exists. Here, we show that transcription from a promoter located upstream of mccA directs the synthesis of two transcripts: a short highly abundant transcript containing the mccA ORF and a longer minor transcript containing mccA and downstream ORFs. The short transcript is generated when RNA polymerase terminates transcription at an intrinsic terminator located in the intergenic region between the mccA and mccB genes. The function of this terminator is strongly attenuated by upstream mcc sequences. Attenuation is relieved and transcription termination is induced when ribosome binds to the mccA ORF. Ribosome binding also makes the mccA RNA exceptionally stable. Together, these two effects—ribosome-induced transcription termination and stabilization of the message—account for very high abundance of the mccA transcript that is essential for McC production. The general scheme appears to be evolutionary conserved as ribosome-induced transcription termination also occurs in a homologous operon from Helicobacter pylori.
Collapse
Affiliation(s)
- Inna Zukher
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia Waksman Institute for Microbiology and Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Maria Novikova
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Anton Tikhonov
- Institute of Molecular Genetics of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ilya A Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Petr V Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Cynthia M Sharma
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
| | - Konstantin Severinov
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia Waksman Institute for Microbiology and Department of Molecular Biology and Biochemistry, Rutgers, the State University of New Jersey, Piscataway, NJ, USA St. Petersburg State Polytechnical University, St. Petersburg, Russia Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
26
|
Kulikovsky A, Serebryakova M, Bantysh O, Metlitskaya A, Borukhov S, Severinov K, Dubiley S. The molecular mechanism of aminopropylation of peptide-nucleotide antibiotic microcin C. J Am Chem Soc 2014; 136:11168-75. [PMID: 25026542 DOI: 10.1021/ja505982c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translation inhibitor microcin C (McC) is a heptapeptide with an aspartate α-carboxyl group linked to AMP via phosphoramidate bond. Modification of the McC phosphate by an aminopropyl moiety increases the biological activity by ~10-fold. Here, we determine the pathway of the aminopropylation reaction of McC. We show that the MccD enzyme uses S-adenosyl methionine to transfer 3-amino-3-carboxypropyl group onto a phosphate of an McC maturation intermediate consisting of adenylated heptapeptide. The carboxyl group is removed by the MccE enzyme, yielding mature McC. MccD is an inefficient enzyme that requires for its action the product of Escherichia coli mtn gene, a 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase, which hydrolyses 5'-methylthioadenosine, the product of MccD-catalyzed reaction, thus stimulating the amino-3-carboxypropylation reaction. Both MccD and MccE are capable of modifying McC-like compounds with divergent peptide moieties, opening way for preparation of more potent peptidyl-adenylates.
Collapse
Affiliation(s)
- Alexey Kulikovsky
- Institute of Gene Biology and ∥Institute of Molecular Genetics, Russian Academy of Sciences , Moscow 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
27
|
The RimL transacetylase provides resistance to translation inhibitor microcin C. J Bacteriol 2014; 196:3377-85. [PMID: 25002546 DOI: 10.1128/jb.01584-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide-nucleotide antibiotic microcin C (McC) is produced by some Escherichia coli strains. Inside a sensitive cell, McC is processed, releasing a nonhydrolyzable analog of aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. The product of mccE, a gene from the plasmid-borne McC biosynthetic cluster, acetylates processed McC, converting it into a nontoxic compound. MccE is homologous to chromosomally encoded acetyltransferases RimI, RimJ, and RimL, which acetylate, correspondingly, the N termini of ribosomal proteins S18, S5, and L12. Here, we show that E. coli RimL, but not other Rim acetyltransferases, provides a basal level of resistance to McC and various toxic nonhydrolyzable aminoacyl adenylates. RimL acts by acetylating processed McC, which along with ribosomal protein L12 should be considered a natural RimL substrate. When overproduced, RimL also makes cells resistant to albomycin, an antibiotic that upon intracellular processing gives rise to a seryl-thioribosyl pyrimidine that targets seryl-tRNA synthetase. We further show that E. coli YhhY, a protein related to Rim acetyltransferases but without a known function, is also able to detoxify several nonhydrolyzable aminoacyl adenylates but not processed McC. We propose that RimL and YhhY protect bacteria from various toxic aminoacyl nucleotides, either exogenous or those generated inside the cell during normal metabolism.
Collapse
|
28
|
Enzymatic synthesis of bioinformatically predicted microcin C-like compounds encoded by diverse bacteria. mBio 2014; 5:e01059-14. [PMID: 24803518 PMCID: PMC4010828 DOI: 10.1128/mbio.01059-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT The Trojan horse Escherichia coli antibiotic microcin C (McC) consists of a heptapeptide attached to adenosine through a phosphoramidate linkage. McC is synthesized by the MccB enzyme, which terminally adenylates the ribosomally synthesized heptapeptide precursor MccA. The peptide part is responsible for McC uptake; it is degraded inside the cell to release a toxic nonhydrolyzable aspartyl-adenylate. Bionformatic analysis reveals that diverse bacterial genomes encoding mccB homologues also contain adjacent short open reading frames that may encode MccA-like adenylation substrates. Using chemically synthesized predicted peptide substrates and recombinant cognate MccB protein homologs, adenylated products were obtained in vitro for predicted MccA peptide-MccB enzyme pairs from Helicobacter pylori, Streptococcus thermophilus, Lactococcus johnsonii, Bartonella washoensis, Yersinia pseudotuberculosis, and Synechococcus sp. Some adenylated products were shown to inhibit the growth of E. coli by targeting aspartyl-tRNA synthetase, the target of McC. IMPORTANCE Our results prove that McC-like adenylated peptides are widespread and are encoded by both Gram-negative and Gram-positive bacteria and by cyanobacteria, opening ways for analyses of physiological functions of these compounds and for creation of microcin C-like antibiotics targeting various bacteria.
Collapse
|
29
|
Vondenhoff GH, Pugach K, Gadakh B, Carlier L, Rozenski J, Froeyen M, Severinov K, Van Aerschot A. N-alkylated aminoacyl sulfamoyladenosines as potential inhibitors of aminoacylation reactions and microcin C analogues containing D-amino acids. PLoS One 2013; 8:e79234. [PMID: 24223911 PMCID: PMC3817062 DOI: 10.1371/journal.pone.0079234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
Microcin C analogues were recently envisaged as important compounds for the development of novel antibiotics. Two issues that may pose problems to these potential antibiotics are possible acquisition of resistance through acetylation and in vivo instability of the peptide chain. N-methylated aminoacyl sulfamoyladenosines were synthesized to investigate their potential as aminoacyl tRNA synthetase inhibitors and to establish whether these N-alkylated analogues would escape the natural inactivation mechanism via acetylation of the alpha amine. It was shown however, that these compounds are not able to effectively inhibit their respective aminoacyl tRNA synthetase. In addition, we showed that (D)-aspartyl-sulfamoyladenosine (i.e. with a (D)-configuration for the aspartyl moiety), is a potent inhibitor of aspartyl tRNA synthetase. However, we also showed that the inhibitory effect of (D)- aspartyl-sulfamoyladenosine is relatively short-lasting. Microcin C analogues with (D)-amino acids throughout from positions two to six proved inactive. They were shown to be resistant against metabolism by the different peptidases and therefore not able to release the active moiety. This observation could not be reversed by incorporation of (L)-amino acids at position six, showing that none of the available peptidases exhibit endopeptidase activity.
Collapse
Affiliation(s)
- Gaston H. Vondenhoff
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Ksenia Pugach
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Bharat Gadakh
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Laurence Carlier
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
| | - Konstantin Severinov
- Department of Molecular Biology and Biochemistry Waksman Institute, Rutgers, the State University, Piscataway, New Jersey, United States of America
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Arthur Van Aerschot
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Leuven, Belgium
- * E-mail:
| |
Collapse
|
30
|
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem (Cham) 2013; 344:293-329. [PMID: 23666077 DOI: 10.1007/128_2013_425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.
Collapse
Affiliation(s)
- Varun Dewan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
31
|
Severinov K, Nair SK. Microcin C: biosynthesis and mechanisms of bacterial resistance. Future Microbiol 2012; 7:281-9. [PMID: 22324995 DOI: 10.2217/fmb.11.148] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonhydrolyzable aminoacyl-adenylates that inhibit protein synthesis provide a promising route towards the development of novel antibiotics whose mechanism of action limits the appearance of bacterial drug resistance. The 'Trojan horse' antibiotic microcin C (McC) consists of a nonhydrolyzable aspartyl-adenylate that is efficiently imported into bacterial cells owing to a covalently attached peptide carrier. Once inside the cell, the carrier is removed by proteolytic processing to release a potent aspartyl tRNA synthetase inhibitor. The focus of this article is on the mechanism of biosynthesis of McC. We also examine the strategies utilized by McC-producing strains to overcome toxicity due to unwanted, premature processing of the drug. This article will discuss how McC biosynthesis can be systematically manipulated for the development of derivatives that will target the entire battery of aminoacyl tRNA synthetases in various bacteria.
Collapse
Affiliation(s)
- Konstantin Severinov
- Department of Molecular Biology & Biochemistry, Rutgers University Piscataway, NJ 08854, USA.
| | | |
Collapse
|
32
|
Agarwal V, Nair SK. Aminoacyl tRNA synthetases as targets for antibiotic development. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20032e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Vondenhoff GHM, Van Aerschot A. Microcin C: biosynthesis, mode of action, and potential as a lead in antibiotics development. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:465-74. [PMID: 21888539 DOI: 10.1080/15257770.2011.583972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The natural compound Microcin C (McC) is a Trojan horse inhibitor of aspartyl tRNA synthetases endowed with strong antibacterial properties, in which a heptapeptide moiety is responsible for active transport of the inhibitory metabolite part into the bacterial cell. The intracellularly formed aspartyl AMP analogue carries a chemically more stable phosphoramidate linkage, in comparison to the labile aspartyl-adenylate, and in addition is esterified with a 3-aminopropyl moiety. Therefore, this compound can target aspartyl-tRNA synthetase. The biochemical production and secretion of McC, and the possibilities to develop new classes of antibiotics using the McC Trojan horse concept in combination with sulfamoylated adenosine analogues will be discussed briefly.
Collapse
Affiliation(s)
- Gaston H M Vondenhoff
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
34
|
Agarwal V, Metlitskaya A, Severinov K, Nair SK. Structural basis for microcin C7 inactivation by the MccE acetyltransferase. J Biol Chem 2011; 286:21295-303. [PMID: 21507941 DOI: 10.1074/jbc.m111.226282] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibiotic microcin C7 (McC) acts as a bacteriocide by inhibiting aspartyl-tRNA synthetase and stalling the protein translation machinery. McC is synthesized as a heptapeptide-nucleotide conjugate, which is processed by cellular peptidases within target strains to yield the biologically active compound. As unwanted processing of intact McC can result in self-toxicity, producing strains utilize multiple mechanisms for autoimmunity against processed McC. We have shown previously that the mccE gene within the biosynthetic cluster can inactivate processed McC by acetylating the antibiotic. Here, we present the characterization of this acetylation mechanism through biochemical and structural biological studies of the MccE acetyltransferase domain (MccE(AcTase)). We have also determined five crystal structures of the MccE-acetyl-CoA complex with bound substrates, inhibitor, and reaction product. The structural data reveal an unexpected mode of substrate recognition through π-stacking interactions similar to those found in cap-binding proteins and nucleotidyltransferases. These studies provide a rationale for the observation that MccE(AcTase) can detoxify a range of aminoacylnucleotides, including those that are structurally distinct from microcin C7.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
35
|
Tikhonov A, Kazakov T, Semenova E, Serebryakova M, Vondenhoff G, Van Aerschot A, Reader JS, Govorun VM, Severinov K. The mechanism of microcin C resistance provided by the MccF peptidase. J Biol Chem 2010; 285:37944-52. [PMID: 20876530 DOI: 10.1074/jbc.m110.179135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heptapeptide-nucleotide microcin C (McC) is a potent inhibitor of enteric bacteria growth. Inside a sensitive cell, McC is processed by aminopeptidases, which release a nonhydrolyzable aspartyl-adenylate, a strong inhibitor of aspartyl-tRNA synthetase. The mccABCDE operon is sufficient for McC production and resistance of the producing cell to McC. An additional gene, mccF, which is adjacent to but not part of the mccABCDE operon, also provides resistance to exogenous McC. MccF is similar to Escherichia coli LdcA, an L,D-carboxypeptidase whose substrate is monomeric murotetrapeptide L-Ala-D-Glu-meso-A(2)pm-D-Ala or its UDP-activated murein precursor. The mechanism by which MccF provides McC resistance remained unknown. Here, we show that MccF detoxifies both intact and processed McC by cleaving an amide bond between the C-terminal aspartate and the nucleotide moiety. MccF also cleaves the same bond in nonhydrolyzable aminoacyl sulfamoyl adenosines containing aspartyl, glutamyl, and, to a lesser extent, seryl aminoacyl moieties but is ineffective against other aminoacyl adenylates.
Collapse
Affiliation(s)
- Anton Tikhonov
- Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|