1
|
Shimizu S, Fukuda N, Chen L, Matsumoto T, Kaneda A, Endo M, Nishiyama A, Morioka I. Abnormal epigenetic memory of mesenchymal stem and progenitor cells caused by fetal malnutrition induces hypertension and renal injury in adulthood. Hypertens Res 2024; 47:2405-2415. [PMID: 38926588 DOI: 10.1038/s41440-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Fetal malnutrition has been reported to induce hypertension and renal injury in adulthood. We hypothesized that this hypertension and renal injury would be associated with abnormal epigenetic memory of stem and progenitor cells contributing to organization in offspring due to fetal malnutrition. We measured blood pressure (BP) for 60 weeks in offspring of pregnant rats fed a normal protein diet (Control), low-protein diet (LP), and LP plus taurine (LPT) in the fetal period. We used western blot analysis to evaluate the expression of αSMA and renin in CD44-positive renal mesenchymal stem cells (MSCs) during differentiation by TGF-β1. We measured kidney label-retaining cells (LRCs) at 11 weeks of age and formation of endothelial progenitor cells (EPCs) at 60 weeks of age from the offspring with fetal malnutrition. Epigenetics of the renal MSCs at 14 weeks were investigated by ATAC-sequence and RNA-sequence analyses. BP was significantly higher in LP than that in Control and LPT after 45-60 weeks of age. Numbers of LRCs and EPC colonies were significantly lower in LP than in Control. Renal MSCs from LP already showed expression of h-caldesmon, αSMA, LXRα, and renin before their differentiation. Epigenetic analyses identified PAR2, Chac1, and Tspan6 genes in the abnormal differentiation of renal MSCs. These findings suggested that epigenetic abnormalities of stem and progenitor cell memory cause hypertension and renal injury that appear in adulthood of offspring with fetal malnutrition.
Collapse
Affiliation(s)
- Shoichi Shimizu
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Noboru Fukuda
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan.
| | - Lan Chen
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Morito Endo
- Faculty of Human Health Science, Hachinohe Gakuin University, Hachinohe, Aomori, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University School of Medicine, Takamatsu, Kagawa, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Odnoshivkina UG, Petrov AM. Immune Oxysterol Downregulates the Atrial Inotropic Response to β-Adrenergic Receptor Stimulation: The Role of Liver X Receptors and Lipid Raft Stability. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Damasceno PKF, de Santana TA, Santos GC, Orge ID, Silva DN, Albuquerque JF, Golinelli G, Grisendi G, Pinelli M, Ribeiro Dos Santos R, Dominici M, Soares MBP. Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Front Cell Dev Biol 2020; 8:737. [PMID: 32974331 PMCID: PMC7471932 DOI: 10.3389/fcell.2020.00737] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been widely studied in the field of regenerative medicine for applications in the treatment of several disease settings. The therapeutic potential of MSCs has been evaluated in studies in vitro and in vivo, especially based on their anti-inflammatory and pro-regenerative action, through the secretion of soluble mediators. In many cases, however, insufficient engraftment and limited beneficial effects of MSCs indicate the need of approaches to enhance their survival, migration and therapeutic potential. Genetic engineering emerges as a means to induce the expression of different proteins and soluble factors with a wide range of applications, such as growth factors, cytokines, chemokines, transcription factors, enzymes and microRNAs. Distinct strategies have been applied to induce genetic modifications with the goal to enhance the potential of MCSs. This review aims to contribute to the update of the different genetically engineered tools employed for MSCs modification, as well as the factors investigated in different fields in which genetically engineered MSCs have been tested.
Collapse
Affiliation(s)
- Patricia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | | | - Iasmim Diniz Orge
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil
| | | | - Giulia Golinelli
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Ricardo Ribeiro Dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI CIMATEC, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Chen L, Fukuda N, Shimizu S, Kobayashi H, Tanaka S, Nakamura Y, Matsumoto T, Abe M. Role of complement 3 in renin generation during the differentiation of mesenchymal stem cells to smooth muscle cells. Am J Physiol Cell Physiol 2020; 318:C981-C990. [PMID: 32208992 DOI: 10.1152/ajpcell.00461.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We showed that increased expression of complement 3 (C3) induces dedifferentiation of mesenchymal cells and epithelial mesenchymal transition, which activate the local renin-angiotensin system (RAS) that contributes to cardiovascular and renal remodeling in spontaneously hypertensive rats (SHRs). In the present study, to investigate contributions of C3 to the development of the pathogenesis of hypertension, we evaluated the formation of renin-producing cells and roles of C3 in renin generation during differentiation of primary bone marrow-mesenchymal stem cells (MSCs) from C57BL/6 mice, Wistar-Kyoto (WKY) rats, and SHRs to smooth muscle cells (SMCs) with transforming growth factor-β1. The expression of renin transiently increased with increases in transcription factor liver X receptor α (LXRα), and expression of C3 and Krüppel-like factor 5 (KLF5) increased during differentiation of MSCs from C57BL/6 mice, WKY rats, and SHRs to SMCs. Exogenous C3a stimulated renin and LXRα expression accompanied by nuclear translocation of LXRα. C3a receptor antagonist SB290157 suppressed renin and LXRα expression, with inhibition of nuclear translocation of LXRα during the differentiation of mouse MSCs to SMCs. The expression of C3 and KLF5 was significantly higher in the differentiated cells from SHRs compared with the cells from WKY rats during differentiation. Renin-producing cells were formed during differentiation of MSCs to SMCs, and renin generation was observed in undifferentiated SMCs, in which transient expression of renin in the differentiated cells with lower differentiation stage was stronger from SHRs than that from WKY rats. Expression and nuclear localization of LXRα in the differentiated cells from SHRs were stronger than that from WKY rats. C3 was important in forming and maintaining this undifferentiated state of SMCs from MSCs to generate renin with increases in transcription factor LXRα and KLF5. Increases in C3 expression maintain the undifferentiated state of SMCs from MSCs to generate renin that activates RAS and contributes to the pathogenesis of hypertension in SHRs.
Collapse
Affiliation(s)
- Lan Chen
- Division of Nephrology, Hypertension, and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Noboru Fukuda
- Division of Nephrology, Hypertension, and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan.,Research Center, Nihon University, Tokyo, Japan.,Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Shoichi Shimizu
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Kobayashi
- Division of Nephrology, Hypertension, and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Sho Tanaka
- Division of Nephrology, Hypertension, and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshihiro Nakamura
- Division of Nephrology, Hypertension, and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Masanori Abe
- Division of Nephrology, Hypertension, and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Matsushita K. Heart Failure and Adipose Mesenchymal Stem Cells. Trends Mol Med 2020; 26:369-379. [PMID: 32277931 DOI: 10.1016/j.molmed.2020.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising cell type for the treatment of heart failure (HF). In particular, MSCs in adipose tissue are being evaluated as an effective therapeutic tool. However, adipose MSCs are a major source of adipocyte generation and linked to obesity, which is an independent risk factor for HF. MSCs express all of the components of the renin-angiotensin system (RAS), which plays a pivotal role in the pathophysiology of HF. The local RAS also regulates MSC adipogenesis, indicating a connection between MSC-adipogenesis-obesity and HF. This review examines evidence of the complex relationship between HF and adipose MSCs and discusses how to explore this association for favorable therapeutic outcomes for HF.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Division of Cardiology, Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
Minocha E, Chaturvedi CP, Nityanand S. Renogenic characterization and in vitro differentiation of rat amniotic fluid stem cells into renal proximal tubular- and juxtaglomerular-like cells. In Vitro Cell Dev Biol Anim 2019; 55:138-147. [PMID: 30645697 DOI: 10.1007/s11626-018-00315-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
Abstract
The aim of the present study was to investigate the renogenic characteristics of amniotic fluid stem cells (AFSCs) and to evaluate their in vitro differentiation potential into renal proximal tubular-like cells and juxtaglomerular-like cells. We culture expanded AFSCs derived from rat amniotic fluid. The AFSCs grew as adherent spindle-shaped cells and expressed mesenchymal markers CD73, CD90, and CD105 as well as renal progenitor markers WT1, PAX2, SIX2, SALL1, and CITED1. AFSCs exhibited an in vitro differentiation potential into renal proximal tubular epithelial-like cells, as shown by the upregulation of expression of proximal tubular cell-specific genes like AQP1, CD13, PEPT1, GLUT5, OAT1, and OCT1. AFSCs could also be differentiated into juxtaglomerular-like cells as demonstrated by the expression of renin and α-SMA. The AFSCs also expressed pluripotency markers OCT4, NANOG, and SOX2 and could be induced into embryoid bodies with differentiation into all the three germ layers, highlighting the pluripotent nature of these cells. Our results show that amniotic fluid contains a population of primitive stem cells that express renal-progenitor markers and also possess the propensity to differentiate into two renal lineage cell types and, thus, may have a therapeutic potential in renal regenerative medicine.
Collapse
Affiliation(s)
- Ekta Minocha
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India
| | - Soniya Nityanand
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow, UP, 226014, India.
| |
Collapse
|
7
|
Matsushita K, Dzau VJ. Mesenchymal stem cells in obesity: insights for translational applications. J Transl Med 2017; 97:1158-1166. [PMID: 28414326 DOI: 10.1038/labinvest.2017.42] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
Obesity is now a major public health problem worldwide. Lifestyle modification to reduce the characteristic excess body adiposity is important in the treatment of obesity, but effective therapeutic intervention is still needed to control what has become an obesity epidemic. Unfortunately, many anti-obesity drugs have been withdrawn from market due to adverse side effects. Bariatric surgery therefore remains the most effective therapy for severe cases, although such surgery is invasive and researchers continue to seek new control strategies for obesity. Mesenchymal stem cells (MSCs) are a major source of adipocyte generation, and studies have been conducted into the potential roles of MSCs in treating obesity. However, despite significant progress in stem cell research and its potential applications for obesity, adipogenesis is a highly complex process and the molecular mechanisms governing MSC adipogenesis remain ill defined. In particular, successful clinical application of MSCs will require extensive identification and characterization of the transcriptional regulators controlling MSC adipogenesis. Since obesity is associated with the incidence of multiple important comorbidities, an in-depth understanding of the relationship between MSC adipogenesis and the comorbidities of obesity is also necessary to evaluate the potential of effective and safe MSC-based therapies for obesity. In addition, brown adipogenesis is an attractive topic from the viewpoint of therapeutic innovation and future research into MSC-based brown adipogenesis could lead to a novel breakthrough. Ongoing stem cell studies and emerging research fields such as epigenetics are expected to elucidate the complicated mechanisms at play in MSC adipogenesis and develop novel MSC-based therapeutic options for obesity. This review discusses the current understanding of MSCs in adipogenesis and their potential clinical applications for obesity.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Division of Cardiology, Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
8
|
Kaverina NV, Eng DG, Largent AD, Daehn I, Chang A, Gross KW, Pippin JW, Hohenstein P, Shankland SJ. WT1 Is Necessary for the Proliferation and Migration of Cells of Renin Lineage Following Kidney Podocyte Depletion. Stem Cell Reports 2017; 9:1152-1166. [PMID: 28966119 PMCID: PMC5639431 DOI: 10.1016/j.stemcr.2017.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
Wilms' tumor suppressor 1 (WT1) plays an important role in cell proliferation and mesenchymal-epithelial balance in normal development and disease. Here, we show that following podocyte depletion in three experimental models, and in patients with focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, WT1 increased significantly in cells of renin lineage (CoRL). In an animal model of FSGS in RenWt1fl/fl reporter mice with inducible deletion of WT1 in CoRL, CoRL proliferation and migration to the glomerulus was reduced, and glomerular disease was worse compared with wild-type mice. To become podocytes, CoRL undergo mesenchymal-to-epithelial transformation (MET), typified by reduced staining for mesenchymal markers (MYH11, SM22, αSMA) and de novo expression of epithelial markers (E-cadherin and cytokeratin18). Evidence for changes in MET markers was barely detected in RenWt1fl/fl mice. Our results show that following podocyte depletion, WT1 plays essential roles in CoRL proliferation and migration toward an adult podocyte fate.
Collapse
Affiliation(s)
- Natalya V Kaverina
- Division of Nephrology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA
| | - Diana G Eng
- Division of Nephrology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA
| | - Andrea D Largent
- Division of Nephrology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA
| | - Ilse Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA
| | - Anthony Chang
- Department of Pathology, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, USA
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA
| | - Peter Hohenstein
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Stuart J Shankland
- Division of Nephrology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
9
|
Lachmann P, Selbmann J, Hickmann L, Hohenstein B, Hugo C, Todorov VT. The PPAR-gamma-binding sequence Pal3 is necessary for basal but dispensable for high-fat diet regulated human renin expression in the kidney. Pflugers Arch 2017; 469:1349-1357. [PMID: 28534088 DOI: 10.1007/s00424-017-1994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
We reported earlier that PPAR-gamma regulates renin transcription through a human-specific atypical binding sequence termed hRen-Pal3. Here we developed a mouse model to investigate the functional relevance of the hRen-Pal3 sequence in vivo since it might be responsible for the increased renin production in obesity and thus for the development of accompanying arterial hypertension. We used bacterial artificial chromosome construct and co-placement strategy to generate two transgenic mouse lines expressing the human renin gene from identical genomic locus without affecting the intrinsic mouse renin expression. One line carried a wild-type hRen-Pal3 in the transgene (Pal3wt strain) and the other a mutated non-functional Pal3 (Pal3mut strain). Human renin expression was correctly targeted to the renin-producing juxtaglomerular (JG) cells of kidney in both lines. However, Pal3mut mice had lower basal human renin expression. Since human renin does not recognize mouse angiotensinogen as substrate, the blood pressure was not different between the strains. Stimulation of renin production with the angiotensin-converting enzyme inhibitor enalapril equipotentially stimulated the human renin expression in Pal3wt and Pal3mut mice. High-fat diet for 10 weeks which is known to activate PPAR-gamma failed to increase human renin mRNA in kidneys of either strain. These findings showed that the human renin PPAR-gamma-binding sequence hRen-Pal3 is essential for basal renin expression but dispensable for the cell-specific and high-fat diet regulated renin expression in the kidney.
Collapse
Affiliation(s)
- Peter Lachmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jenny Selbmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Bernd Hohenstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
10
|
Martini AG, Danser AHJ. Juxtaglomerular Cell Phenotypic Plasticity. High Blood Press Cardiovasc Prev 2017; 24:231-242. [PMID: 28527017 PMCID: PMC5574949 DOI: 10.1007/s40292-017-0212-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022] Open
Abstract
Renin is the first and rate-limiting step of the renin-angiotensin system. The exclusive source of renin in the circulation are the juxtaglomerular cells of the kidney, which line the afferent arterioles at the entrance of the glomeruli. Normally, renin production by these cells suffices to maintain homeostasis. However, under chronic stimulation of renin release, for instance during a low-salt diet or antihypertensive therapy, cells that previously expressed renin during congenital life re-convert to a renin-producing cell phenotype, a phenomenon which is known as “recruitment”. How exactly such differentiation occurs remains to be clarified. This review critically discusses the phenotypic plasticity of renin cells, connecting them not only to the classical concept of blood pressure regulation, but also to more complex contexts such as development and growth processes, cell repair mechanisms and tissue regeneration.
Collapse
Affiliation(s)
- Alexandre Góes Martini
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Room EE1418b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Room EE1418b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Stefanska A, Kenyon C, Christian HC, Buckley C, Shaw I, Mullins JJ, Péault B. Human kidney pericytes produce renin. Kidney Int 2016; 90:1251-1261. [PMID: 27678158 PMCID: PMC5126097 DOI: 10.1016/j.kint.2016.07.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Pericytes, perivascular cells embedded in the microvascular wall, are crucial for vascular homeostasis. These cells also play diverse roles in tissue development and regeneration as multi-lineage progenitors, immunomodulatory cells and as sources of trophic factors. Here, we establish that pericytes are renin producing cells in the human kidney. Renin was localized by immunohistochemistry in CD146 and NG2 expressing pericytes, surrounding juxtaglomerular and afferent arterioles. Similar to pericytes from other organs, CD146+CD34–CD45–CD56– renal fetal pericytes, sorted by flow cytometry, exhibited tri-lineage mesodermal differentiation potential in vitro. Additionally, renin expression was triggered in cultured kidney pericytes by cyclic AMP as confirmed by immuno-electron microscopy, and secretion of enzymatically functional renin, capable of generating angiotensin I. Pericytes derived from second trimester human placenta also expressed renin in an inducible fashion although the renin activity was much lower than in renal pericytes. Thus, our results confirm and extend the recently discovered developmental plasticity of microvascular pericytes, and may open new perspectives to the therapeutic regulation of the renin-angiotensin system.
Collapse
Affiliation(s)
- Ania Stefanska
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Christopher Kenyon
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Charlotte Buckley
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Isaac Shaw
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - John J Mullins
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Bruno Péault
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK; MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK; Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.
| |
Collapse
|
12
|
Matsushita K, Wu Y, Pratt RE, Dzau VJ. Deletion of angiotensin II type 2 receptor accelerates adipogenesis in murine mesenchymal stem cells via Wnt10b/beta-catenin signaling. J Transl Med 2016; 96:909-17. [PMID: 27295344 PMCID: PMC4965305 DOI: 10.1038/labinvest.2016.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/15/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
Recent evidence suggests that the renin-angiotensin system (RAS) has a vital role in adipocyte biology and the pathophysiology of metabolic syndrome. Obesity is the main culprit of metabolic syndrome; and mesenchymal stem cells (MSCs) have been forwarded as a major source of adipocyte generation. Previously, we reported that MSCs have a local RAS and that pharmacological blockade of angiotensin II type 2 receptor (AT2R) promotes adipogenesis in human MSCs. However, the definitive roles of AT2R and how AT2R functions in adipogenesis remains unknown. To this end, we employed AT2R-null murine MSCs to characterize how AT2R affects the differentiation of MSCs into adipocytes. Murine MSCs were isolated from AT2R-null mice and wild-type littermates, grown to confluency, and then differentiated into adipocytes. Adipogenesis was quantitated by assessing the lipid droplet accumulation. Using the lipophilic fluorescent dye, the AT2R-null cells showed significantly increased total fluorescence (261.6±49.6% vs littermate) on day 7. Oil red O staining followed by extraction of the absorbed dye and measurement of the absorbance on day 14 also exhibited significantly increased lipid droplet accumulation in the AT2R-null cells (202.7±14.1% vs littermate). We also examined the expression of adipogenic marker genes by quantitative RT-PCR. The AT2R-null group exhibited significantly increased expression of PPAR-gamma, fatty acid synthase, and adiponectin (vs littermate). We further examined the role of Wnt10b/beta-catenin signaling, which reportedly has an important inhibitory role in adipogenesis. The AT2R-null group exhibited significantly decreased Wnt10b expression accompanied by decreased beta-catenin (vs littermate). Our results thus revealed that the AT2R inhibits adipogenic differentiation in murine MSCs. Moreover, this inhibitory effect is associated with Wnt10b/beta-catenin signaling. These results provide important insights into the pathophysiology of obesity and obesity-related consequences such as metabolic syndrome, hinting at possible future therapies.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Division of Cardiology, Department of Medicine, Duke University Medical Center, GSRB II Bldg., Durham, NC 27710, USA, Division of Cardiology, Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Yaojiong Wu
- Division of Cardiology, Department of Medicine, Duke University Medical Center, GSRB II Bldg., Durham, NC 27710, USA
| | - Richard E Pratt
- Division of Cardiology, Department of Medicine, Duke University Medical Center, GSRB II Bldg., Durham, NC 27710, USA
| | - Victor J Dzau
- Division of Cardiology, Department of Medicine, Duke University Medical Center, GSRB II Bldg., Durham, NC 27710, USA, National Academy of Medicine, 500 Fifth St NW, Washington, DC 20001, USA
| |
Collapse
|
13
|
Mesenchymal Stem Cells and Metabolic Syndrome: Current Understanding and Potential Clinical Implications. Stem Cells Int 2016; 2016:2892840. [PMID: 27313625 PMCID: PMC4903149 DOI: 10.1155/2016/2892840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/06/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is an obesity-based, complicated clinical condition that has become a global epidemic problem with a high associated risk for cardiovascular disease and mortality. Dyslipidemia, hypertension, and diabetes or glucose dysmetabolism are the major factors constituting metabolic syndrome, and these factors are interrelated and share underlying pathophysiological mechanisms. Severe obesity predisposes individuals to metabolic syndrome, and recent data suggest that mesenchymal stem cells (MSCs) contribute significantly to adipocyte generation by increasing the number of adipocytes. Accordingly, an increasing number of studies have examined the potential roles of MSCs in managing obesity and metabolic syndrome. However, despite the growing bank of experimental and clinical data, the efficacy and the safety of MSCs in the clinical setting are still to be optimized. It is thus hoped that ongoing and future studies can elucidate the roles of MSCs in metabolic syndrome and lead to MSC-based therapeutic options for affected patients. This review discusses current understanding of the relationship between MSCs and metabolic syndrome and its potential implications for patient management.
Collapse
|
14
|
|
15
|
LI DONG, HAN YAN, ZHUANG YONG, FU JINQIU, LIU HUAN, SHI QING, JU XIULI. Overexpression of COX-2 but not indoleamine 2,3-dioxygenase-1 enhances the immunosuppressive ability of human umbilical cord-derived mesenchymal stem cells. Int J Mol Med 2015; 35:1309-16. [DOI: 10.3892/ijmm.2015.2137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/05/2015] [Indexed: 11/06/2022] Open
|
16
|
Zhuang Y, Li D, Fu J, Shi Q, Lu Y, Ju X. Comparison of biological properties of umbilical cord-derived mesenchymal stem cells from early and late passages: immunomodulatory ability is enhanced in aged cells. Mol Med Rep 2014; 11:166-74. [PMID: 25339265 PMCID: PMC4237101 DOI: 10.3892/mmr.2014.2755] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/29/2014] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a potential source of adult stem cells for cell-based therapeutics due to their substantial multilineage differentiation capacity and secretory functions. No information is presently available regarding the maintenance of immunosuppressive properties of this cell type with repeated passages. It was therefore the aim of the present study to analyze the biological properties, particularly the immunoregulatory effect, of MSCs from late passages. The differences between young and old MSCs in morphology, cell surface antigen phenotype, proliferation, gene expression and immunomodulatory ability were investigated. The results of the current study demonstrated that with the passage of cells, senescent MSCs displayed a characteristically enlarged and flattened morphology, different gene expression profiles and stronger immunosuppressive activities. Increased interleukin-6 production may be a possible underlying mechanism for this enhanced immunomodulatory ability of MSCs. These findings suggest that aged MSCs may provide a treatment option for patients with graft versus host disease and other diseases associated with dysregulation of the immune system.
Collapse
Affiliation(s)
- Yong Zhuang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinqiu Fu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuanyuan Lu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
17
|
Li J, Li D, Ju X, Shi Q, Wang D, Wei F. Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction. Neural Regen Res 2014; 7:2663-72. [PMID: 25337112 PMCID: PMC4200734 DOI: 10.3969/j.issn.1673-5374.2012.34.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/16/2012] [Indexed: 01/14/2023] Open
Abstract
The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tuj1, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Xiuli Ju
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Dakun Wang
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Fengcai Wei
- Department of Stomatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
18
|
Rodgers KE, diZerega GS. Contribution of the Local RAS to Hematopoietic Function: A Novel Therapeutic Target. Front Endocrinol (Lausanne) 2013; 4:157. [PMID: 24167502 PMCID: PMC3805949 DOI: 10.3389/fendo.2013.00157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/09/2013] [Indexed: 11/13/2022] Open
Abstract
The renin-angiotensin system (RAS) has long been a known endocrine system that is involved in regulation of blood pressure and fluid balance. Over the last two decades, evidence has accrued that shows that there are local RAS that can affect cellular activity, tissue injury, and tissue regeneration. There are locally active ligand peptides, mediators, receptors, and signaling pathways of the RAS in the bone marrow (BM). This system is fundamentally involved and controls the essential steps of primitive and definitive blood-cell production. Hematopoiesis, erythropoiesis, myelopoiesis, thrombopoiesis, formation of monocytic and lymphocytic lineages, as well as stromal elements are regulated by the local BM RAS. The expression of a local BM RAS has been shown in very early, primitive embryonic hematopoiesis. Angiotensin-converting enzyme (ACE-1, CD143) is expressed on the surface of hemangioblasts and isolation of the CD143 positive cells allows for recovery of all hemangioblast activity, the first endothelial and hematopoietic cells, forming the marrow cavity in the embryo. CD143 expression also marks long-term blood-forming CD34+ BM cells. Expression of receptors of the RAS is modified in the BM with cellular maturation and by injury. Ligation of the receptors of the RAS has been shown to modify the status of the BM resulting in accelerated hematopoiesis after injury. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive and definitive hematopoiesis as well as modification of BM recovery by administration of exogenous ligands of the RAS. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of BM recovery after injury as well as neoplastic disorders.
Collapse
Affiliation(s)
- Kathleen E. Rodgers
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
- *Correspondence: Kathleen E. Rodgers, Department of Clinical Pharmacy and Pharmacoeconomics Policy, School of Pharmacy University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA e-mail:
| | - Gere S. diZerega
- US Biotest, Inc., San Luis Obispo, CA, USA
- Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|
19
|
Zhou X, Fukuda N, Matsuda H, Endo M, Wang X, Saito K, Ueno T, Matsumoto T, Matsumoto K, Soma M, Kobayashi N, Nishiyama A. Complement 3 activates the renal renin-angiotensin system by induction of epithelial-to-mesenchymal transition of the nephrotubulus in mice. Am J Physiol Renal Physiol 2013; 305:F957-67. [PMID: 23926185 DOI: 10.1152/ajprenal.00344.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have demonstrated that mesenchymal cells from spontaneously hypertensive rats genetically express complement 3 (C3). Mature tubular epithelial cells can undergo epithelial-to-mesenchymal transition (EMT) that is linked to the pathogenesis of renal fibrosis and injury. In this study, we investigated the contribution of C3 in EMT and in the renal renin-angiotensin (RA) systems associated with hypertension. C3a induced EMT in mouse TCMK-1 epithelial cells, which displayed increased expression of renin and Krüppel-like factor 5 (KLF5) and nuclear localization of liver X receptor α (LXRα). C3 and renin were strongly stained in the degenerated nephrotubulus and colocalized with LXRα and prorenin receptor in unilateral ureteral obstruction (UUO) kidneys from wild-type mice. In C3-deficient mice, hydronephrus and EMT were suppressed, with no expression of renin and C3. After UUO, systolic blood pressure was increased in wild-type but not C3-deficient mice. In wild-type mice, intrarenal angiotensin II (ANG II) levels were markedly higher in UUO kidneys than normal kidneys and decreased with aliskiren. There were no increases in intrarenal ANG II levels after UUO in C3-deficient mice. Thus C3 induces EMT and dedifferentiation of epithelial cells, which produce renin through induction of LXRα. These data indicate for the first time that C3 may be a primary factor to activate the renal RA systems to induce hypertension.
Collapse
Affiliation(s)
- Xueli Zhou
- Div. of Nephrology, Hypertension, and Endocrinology, Dept. of Medicine, Nihon Univ. School of Medicine, Tokyo 173-8610, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang H, Gomez JA, Klein S, Zhang Z, Seidler B, Yang Y, Schmeckpeper J, Zhang L, Muramoto GG, Chute J, Pratt RE, Saur D, Mirotsou M, Dzau VJ. Adult renal mesenchymal stem cell-like cells contribute to juxtaglomerular cell recruitment. J Am Soc Nephrol 2013; 24:1263-73. [PMID: 23744888 DOI: 10.1681/asn.2012060596] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) regulates BP and salt-volume homeostasis. Juxtaglomerular (JG) cells synthesize and release renin, which is the first and rate-limiting step in the RAAS. Intense pathologic stresses cause a dramatic increase in the number of renin-producing cells in the kidney, termed JG cell recruitment, but how this occurs is not fully understood. Here, we isolated renal CD44(+) mesenchymal stem cell (MSC)-like cells and found that they differentiated into JG-like renin-expressing cells both in vitro and in vivo. Sodium depletion and captopril led to activation and differentiation of these cells into renin-expressing cells in the adult kidney. In summary, CD44(+) MSC-like cells exist in the adult kidney and can differentiate into JG-like renin-producing cells under conditions that promote JG cell recruitment.
Collapse
Affiliation(s)
- Hao Wang
- Mandel Center for Hypertension and Atherosclerosis Research and the Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stefańska A, Stefańska AM, Péault B, Péault B, Mullins JJ, Mullins JJ. Renal pericytes: multifunctional cells of the kidneys. Pflugers Arch 2013; 465:767-73. [PMID: 23588377 DOI: 10.1007/s00424-013-1263-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 12/11/2022]
Abstract
Pericytes have become a hot topic in renal biology. They play a critical physiological role in vessel development, maintenance and remodelling through active communication with their vascular partners-endothelial cells-and modulation of extracellular matrix proteins. Multiple functions for renal pericytes have been described; specialised perivascular populations participate in glomerular filtration, regulate medullary blood flow and contribute to kidney fibrosis by differentiation into collagen-generating myofibroblasts. Interestingly, the origin of renin-producing cells of the juxtaglomerular region is attributed to the perivascular cell lineage; we have observed the coincidence of renin and pericyte marker expression during human kidney development. Finally, pericytes have been shown to share features with mesenchymal stem cells, which places them as potential renal progenitor cell candidates. Since renal diseases are often associated with microvascular complications, renal pericytes may emerge as new targets for the treatment of kidney disease.
Collapse
Affiliation(s)
- Ania Stefańska
- University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Queens Medical Research Institute, 47 Little France Avenue, Edinburgh, EH16 4TJ, Scotland, UK
| | | | | | | | | | | |
Collapse
|
22
|
Glenn ST, Jones CA, Gross KW, Pan L. Control of renin [corrected] gene expression. Pflugers Arch 2012; 465:13-21. [PMID: 22576577 DOI: 10.1007/s00424-012-1110-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development, and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (-197 to -50 bp) and an enhancer (-2,866 to -2,625 bp) upstream of the Ren-1(c) gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription.
Collapse
Affiliation(s)
- Sean T Glenn
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263-0001, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Modulation of the RAS (renin–angiotensin system), in particular of the function of the hormones AngII (angiotensin II) and Ang-(1–7) [angiotensin-(1–7)], is an important target for pharmacotherapy in the cardiovascular system. In the classical view, such modulation affects cardiovascular cells to decrease hypertrophy, fibrosis and endothelial dysfunction, and improves diuresis. In this view, excessive stimulation of AT1 receptors (AngII type 1 receptors) fulfils a detrimental role, as it promotes cardiovascular pathogenesis, and this is opposed by stimulation of the AT2 receptor (angiotensin II type 2 receptor) and the Ang-(1–7) receptor encoded by the Mas proto-oncogene. In recent years, this view has been broadened with the observation that the RAS regulates bone marrow stromal cells and stem cells, thus involving haematopoiesis and tissue regeneration by progenitor cells. This change of paradigm has enlarged the field of perspectives for therapeutic application of existing as well as newly developed medicines that alter angiotensin signalling, which now stretches beyond cardiovascular therapy. In the present article, we review the role of AngII and Ang-(1–7) and their respective receptors in haematopoietic and mesenchymal stem cells, and discuss possible pharmacotherapeutical implications.
Collapse
|
24
|
Abstract
The renin-angiotensin system (RAS) exercises fundamental control over sodium and water handling in the kidney. Accordingly, dysregulation of the RAS leads to blood pressure elevation with ensuing renal and cardiovascular damage. Recent studies have revealed that the RAS hormonal cascade is more complex than initially posited with multiple enzymes, effector molecules, and receptors that coordinately regulate the effects of the RAS on the kidney and vasculature. Moreover, recently identified tissue-specific RAS components have pleomorphic effects independent of the circulating RAS that influence critical homeostatic mechanisms including the immune response and fetal development. Further characterization of the diverse interactions between the RAS and other signaling pathways within specific tissues should lead to novel treatments for renal and cardiovascular disease.
Collapse
|
25
|
Kitazawa T, Sato T, Nishiyama K, Asai R, Arima Y, Uchijima Y, Kurihara Y, Kurihara H. Identification and developmental analysis of endothelin receptor type-A expressing cells in the mouse kidney. Gene Expr Patterns 2011; 11:371-7. [PMID: 21565284 DOI: 10.1016/j.gep.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
The endothelin (Edn) system plays pleiotropic roles in renal function and various disease processes through two distinct G protein-coupled receptors, Edn receptors type-A (Ednra) and type-B (Ednrb). However, difficulties in the accurate identification of receptor-expressing cells in situ have made it difficult to dissect their diverse action in renal (patho)physiology. We have recently established mouse lines in which lacZ and EGFP are 'knocked-in' to the Ednra locus to faithfully mark Ednra-expressing cells. Here we analyzed these mice for their expression in the kidney to characterize Ednra-expressing cells. Ednra expression was first observed in undifferentiated mesenchymal cells around the ureteric bud at E12.5. Thereafter, Ednra expression was widely observed in vascular smooth muscle cells, JG cells and mesenchymal cells in the interstitium. After growth, the expression became confined to vascular smooth muscle cells, pericytes and renin-producing JG cells. By contrast, most cells in the nephron and vascular endothelial cells did not express Ednra. These results indicate that Ednra expression may be linked with non-epithelial fate determination and differentiation of metanephric mesenchyme. Ednra-lacZ/EGFP knock-in mice may serve as a useful tool in studies on renal function and pathophysiology of various renal diseases.
Collapse
Affiliation(s)
- Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|