1
|
Ogunbawo AR, Hidalgo J, Mulim HA, Carrara ER, Ventura HT, Souza NO, Lourenco D, Oliveira HR. Applying the algorithm for Proven and young in GWAS Reveals high polygenicity for key traits in Nellore cattle. Front Genet 2025; 16:1549284. [PMID: 40370699 PMCID: PMC12075139 DOI: 10.3389/fgene.2025.1549284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Identifying genomic regions associated with traits of interest and their biological processes provides valuable insights into the phenotypic variability of these traits. This study aimed to identify candidate genes and genomic regions associated with 16 traits currently evaluated by the Brazilian Association of Zebu Breeders (ABCZ). These traits include reproductive traits such as age at first calving (AFC), stayability (STAY), and scrotal circumference at 365 (SC365) and 450 days (SC450). Growth traits include birthweight (BW), expected progeny difference for weight at 120days of age (EPD120), as well as weight at 120 (W120), 210 (W210), 365 (W365), and 450 days of age (W450). Carcass traits include body conformation (BC), finishing score (FS), marbling (MARB), muscularity (MUSC), finishing precocity (FP), and ribeye area (REA). Methods A dataset containing 304,782 Nellore cattle genotyped with 437,650 SNPs (after quality control) was used for this study. The Algorithm for Proven and Young (APY), implemented in the PREGSF90 software, was used to compute theG A P Y - 1 matrix using 36,000 core animals (which explained 98% of the variance in the genomic matrix). Subsequently, the SNP solutions were estimated by back-solving the Genomic Estimated Breeding Values (GEBVs) predicted by ABCZ using the single-step GBLUP method. Genomic regions were identified using sliding windows of 175 consecutive SNPs, and the top 1% genomic windows, ranked based on their proportion of the additive genetic variance, were used to annotate positional candidate genes and genomic regions associated with each of the 16 traits. Results The top 1% windows for all traits explained between 2.779% (STAY) to 3.158% (FP) of the additive genetic variance, highlighting the polygenic nature of these traits. Functional analysis of the candidate genes and genomic regions provided valuable insights into the genetic architecture underlying these traits in Nellore cattle. For instance, our results revealed genes with important functions for each trait, such as SERPINA14 (plays a key role for the endometrial epithelium) identified for AFC, HSPG2 (associated with morphological development and tissue differentiation) identified for BW, among others. Conclusion We identified genomic regions and candidate genes, some of which have been previously reported in the literature, while others are novel discoveries that warrant further investigation. These findings contribute to gene prioritization efforts, facilitating the identification of functional candidate genes that can enhance genomic selection strategies for economically important traits in Nellore cattle.
Collapse
Affiliation(s)
- Adebisi R. Ogunbawo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jorge Hidalgo
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Eula R. Carrara
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | | | - Nadson O. Souza
- Brazilian Association of Zebu Breeders, Uberaba, Minas Gerais, Brazil
| | - Daniela Lourenco
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
2
|
Schneider SR, Spies JJ, Pretorius PJ, Rebello R, Cason ED. Seven loci associated with schizophrenia and bipolar I disorder in selected southern African population groups. Eur J Med Genet 2025; 74:105005. [PMID: 39999946 DOI: 10.1016/j.ejmg.2025.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Two major psychiatric disorders, schizophrenia and bipolar I disorder, are regarded as distinct disorder entities; however, they share intricate connections through characteristic overlap and underlying genetic aetiology, challenging the traditional dichotomy. This convergence emerged as an essential area of investigation in understanding the genetic determinants of schizophrenia and bipolar I disorder. Moreover, psychiatric genetic research has revealed demographic disparities, with South African population groups notably underrepresented. Therefore, this preliminary targeted candidate gene association study of 20 single nucleotide polymorphisms implicated in schizophrenia and bipolar I disorder aimed to investigate association and overlap. Candidate loci for schizophrenia and bipolar I disorder were selected through an exploratory Illumina® Infinium PsychArray-24 analysis combined with literature and database searches. Genotyping of the selected loci was performed with the Agena Bioscience MassARRAY® platform on 96 cases (58 schizophrenia and 38 bipolar I disorder patients) and 44 controls of Afrikaner, Sotho, and Tswana descent. Association analysis was performed by comparing and combining population and phenotype groups. Significant (p < 0.05) loci in the ADAMTSL1, CACNA1B, CACNA1C, CDH13, CTNNA2, RBFOX1, and TRIO genes were identified as possible susceptibility factors, and differences were observed with the association between population and phenotype groups. Through further pathway analysis, the calcium and cadherin-catenin pathways were identified as possible role players in the aetiology of schizophrenia and bipolar I disorder. The study represented an essential step towards understanding the genetic contribution towards schizophrenia and bipolar I disorder in distinct population groups and has the potential to contribute towards the knowledge base and inform future research efforts.
Collapse
Affiliation(s)
- Sue-Rica Schneider
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Johannes Jacobus Spies
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Paul Janus Pretorius
- Department of Psychiatry, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Renate Rebello
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Errol Duncan Cason
- Department of Animal Science, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
3
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. Development 2024; 151:dev202733. [PMID: 39190555 PMCID: PMC11385328 DOI: 10.1242/dev.202733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating expression of key effector molecules, such as neurotransmitter biosynthesis proteins and ion channels. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA nerve cord motor neurons in Caenorhabditis elegans, is required for neurotransmitter receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the motor neuron-secreted synapse organizer madd-4 (punctin/ADAMTSL), display severe GABA receptor type A (GABAAR) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g. unc-25/GAD, unc-47/VGAT). Hence, UNC-30 controls GABAA receptor clustering in postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two crucial processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 as both an activator and a repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene variants.
Collapse
Affiliation(s)
- Edgar Correa
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Morgane Mialon
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Mélissa Cizeron
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Jean-Louis Bessereau
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Berangere Pinan-Lucarre
- Melis, Universite Claude Bernard Lyon 1, CNRS UMR5284, INSERM U1314, Institut NeuroMyoGene - Faculte de Medecine et de Pharmacie, 69008 Lyon, France
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cell and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
- University of Chicago Neuroscience Institute, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Huang Z, Hu X, Wei Y, Lai Y, Qi J, Pang J, Huang K, Li H, Cai P. ADAMTSL2 is a potential prognostic biomarker and immunotherapeutic target for colorectal cancer: Bioinformatic analysis and experimental verification. PLoS One 2024; 19:e0303909. [PMID: 38814950 PMCID: PMC11139340 DOI: 10.1371/journal.pone.0303909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
The ADAMTS Like 2 (ADAMTSL2) mutation has been identified to be associated with different human genetic diseases. The role of ADAMTSL2 is unclear in colorectal cancer (CRC). The study investigated the expression of ADAMTSL2 in both pan cancer and CRC, using data from The Cancer Genome Atlas (TCGA) database to assess its diagnostic value. The study examined the correlation between ADAMTSL2 expression levels and clinical characteristics, as well as prognosis in CRC. The study explored potential regulatory networks involving ADAMTSL2, including its association with immune infiltration, immune checkpoint genes, tumor mutational burden (TMB) / microsatellite instability (MSI), tumor stemness index (mRNAsi), and drug sensitivity in CRC. ADAMTSL2 expression was validated using GSE71187 and quantitative real-time PCR (qRT-PCR). ADAMTSL2 was aberrantly expressed in pan cancer and CRC. An increased level of ADAMTSL2 expression in patients with CRC was significantly associated with the pathologic N stage (p < 0.001), pathologic stage (p < 0.001), age (p < 0.001), histological type (p < 0.001), and neoplasm type (p = 0.001). The high expression of ADAMTSL2 in patients with CRC was found to be significantly associated with a poorer overall survival (OS) (HR: 1.67; 95% CI: 1.18-2.38; p = 0.004), progression-free survival (PFS) (HR: 1.55; 95% CI: 1.14-2.11; p = 0.005) and disease-specific survival (DSS) (HR: 1.83; 95% CI: 1.16-2.89; p = 0.010). The expression of ADAMTSL2 in patients with CRC (p = 0.009) was identified as an independent prognostic determinant. ADAMTSL2 was associated with extracellular matrix receptor (ECM-receptor) interaction, transforming growth factor β (TGF-β) signaling pathway, and more. ADAMTSL2 expression was correlated with immune infiltration, immune checkpoint genes, TMB / MSI and mRNAsi in CRC. ADAMTSL2 expression was significantly and negatively correlated with 1-BET-762, Trametinib, and WZ3105 in CRC. ADAMTSL2 was significantly upregulated in CRC cell lines. The high expression of ADAMTSL2 is significantly correlated with lower OS and immune infiltration of CRC. ADAMTSL2 may be a potential prognostic biomarker and immunotherapeutic target for CRC patients.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu Hu
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yiqiu Wei
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yousheng Lai
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiaming Qi
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jinglin Pang
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kang Huang
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huagui Li
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pengzhu Cai
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
6
|
Taye N, Redhead C, Hubmacher D. Secreted ADAMTS-like proteins as regulators of connective tissue function. Am J Physiol Cell Physiol 2024; 326:C756-C767. [PMID: 38284126 DOI: 10.1152/ajpcell.00680.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The extracellular matrix (ECM) determines functional properties of connective tissues through structural components, such as collagens, elastic fibers, or proteoglycans. The ECM also instructs cell behavior through regulatory proteins, including proteases, growth factors, and matricellular proteins, which can be soluble or tethered to ECM scaffolds. The secreted a disintegrin and metalloproteinase with thrombospondin type 1 repeats/motifs-like (ADAMTSL) proteins constitute a family of regulatory ECM proteins that are related to ADAMTS proteases but lack their protease domains. In mammals, the ADAMTSL protein family comprises seven members, ADAMTSL1-6 and papilin. ADAMTSL orthologs are also present in the worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster. Like other matricellular proteins, ADAMTSL expression is characterized by tight spatiotemporal regulation during embryonic development and early postnatal growth and by cell type- and tissue-specific functional pleiotropy. Although largely quiescent during adult tissue homeostasis, reexpression of ADAMTSL proteins is frequently observed in the context of physiological and pathological tissue remodeling and during regeneration and repair after injury. The diverse functions of ADAMTSL proteins are further evident from disorders caused by mutations in individual ADAMTSL proteins, which can affect multiple organ systems. In addition, genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) in ADAMTSL genes to complex traits, such as lung function, asthma, height, body mass, fibrosis, or schizophrenia. In this review, we summarize the current knowledge about individual members of the ADAMTSL protein family and highlight recent mechanistic studies that began to elucidate their diverse functions.
Collapse
Affiliation(s)
- Nandaraj Taye
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Charlene Redhead
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Dirk Hubmacher
- Orthopedic Research Laboratories, Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
7
|
Correa E, Mialon M, Cizeron M, Bessereau JL, Pinan-Lucarre B, Kratsios P. UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580278. [PMID: 38405977 PMCID: PMC10888783 DOI: 10.1101/2024.02.14.580278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Terminal selectors are transcription factors that control neuronal identity by regulating the expression of key effector molecules, such as neurotransmitter (NT) biosynthesis proteins, ion channels and neuropeptides. Whether and how terminal selectors control neuronal connectivity is poorly understood. Here, we report that UNC-30 (PITX2/3), the terminal selector of GABA motor neuron identity in C. elegans , is required for NT receptor clustering, a hallmark of postsynaptic differentiation. Animals lacking unc-30 or madd-4B, the short isoform of the MN-secreted synapse organizer madd-4 ( Punctin/ADAMTSL ), display severe GABA receptor type A (GABA A R) clustering defects in postsynaptic muscle cells. Mechanistically, UNC-30 acts directly to induce and maintain transcription of madd-4B and GABA biosynthesis genes (e.g., unc-25/GAD , unc-47/VGAT ). Hence, UNC-30 controls GABA A R clustering on postsynaptic muscle cells and GABA biosynthesis in presynaptic cells, transcriptionally coordinating two critical processes for GABA neurotransmission. Further, we uncover multiple target genes and a dual role for UNC-30 both as an activator and repressor of gene transcription. Our findings on UNC-30 function may contribute to our molecular understanding of human conditions, such as Axenfeld-Rieger syndrome, caused by PITX2 and PITX3 gene mutations.
Collapse
|
8
|
Rypdal KB, Apte SS, Lunde IG. Emerging roles for the ADAMTS-like family of matricellular proteins in cardiovascular disease through regulation of the extracellular microenvironment. Mol Biol Rep 2024; 51:280. [PMID: 38324186 PMCID: PMC10850197 DOI: 10.1007/s11033-024-09255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Dysregulation of the extracellular matrix (ECM) occurs widely across cardiovascular pathologies. Recent work has revealed important roles for the «a disintegrin-like and metalloprotease domain with thrombospondin-type 1 motifs like" (ADAMTSL) family of secreted glycoproteins in cardiovascular tissues during development and disease. Key insights in this regard have come from naturally occurring gene mutations in humans and animals that result in severe diseases with cardiovascular manifestations or aortopathies. Expression of ADAMTSL genes is greatly increased in the myocardium during heart failure. Genetically modified mice recapitulate phenotypes of patients with ADAMTSL mutations and demonstrate important functions in the ECM. The novel functions thus disclosed are intriguing because, while these proteins are neither structural, nor proteases like the related ADAMTS proteases, they appear to act as regulatory, i.e., matricellular proteins. Evidence from genetic variants, genetically engineered mouse mutants, and in vitro investigations have revealed regulatory functions of ADAMTSLs related to fibrillin microfibrils and growth factor signaling. Interestingly, the ability to regulate transforming growth factor (TGF)β signaling may be a shared characteristic of some ADAMTSLs. TGFβ signaling is important in cardiovascular development, health and disease and a central driver of ECM remodeling and cardiac fibrosis. New strategies to target dysregulated TGFβ signaling are warranted in aortopathies and cardiac fibrosis. With their emerging roles in cardiovascular tissues, the ADAMTSL proteins may provide causative genes, diagnostic biomarkers and novel treatment targets in cardiovascular disease. Here, we discuss the relevance of ADAMTSLs to cardiovascular medicine.
Collapse
Affiliation(s)
- Karoline Bjarnesdatter Rypdal
- KG Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway.
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Ida G Lunde
- KG Jebsen Center for Cardiac Biomarkers, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Li Y, Yang M, Yuan L, Li T, Zhong X, Guo Y. Associations between a polygenic risk score and the risk of gestational diabetes mellitus in a Chinese population: a case-control study. Endocr J 2023; 70:1159-1168. [PMID: 37779084 DOI: 10.1507/endocrj.ej23-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Our objective was to construct a polygenic risk score (PRS) and assess its utility and effectiveness in predicting the risk of gestational diabetes mellitus (GDM) in a Chinese population. We performed a case-control study involving 638 patients with GDM and 1,062 healthy controls. Genotyping was conducted utilizing a genome-wide association study (GWAS), and a PRS was constructed. We identified 12 susceptibility loci that exhibited significant associations with the risk of GDM at a p-value threshold of ≤5.0 × 10-8, of which four loci were newly discovered. A higher PRS was associated with an increased risk of GDM (OR: 1.44; 95% CI: 1.03, 2.01 for the highest quartile compared to the lowest quartile). The PRS demonstrated a clear linear relationship with the fasting plasma glucose (FPG), 1-hour postprandial glucose (1hPG), and 2-hour postprandial glucose (2hPG) levels. The maximally adjusted β coefficients and their corresponding 95% CIs were 0.181 (0.041, 0.320) for FPG, 0.225 (0.103, 0.346) for 1hPG, and 0.172 (0.036, 0.307) for 2hPG. Among the genetic variants examined, TCF7L2 rs7903146 displayed the strongest association with GDM risk (logOR = 0.18, p = 2.37 × 10-19), followed by ADAMTSL1 rs10963767 (logOR = 0.14, p = 3.58 × 10-15). The areas under the curve (AUCs) was significantly increased from 0.703 (0.678, 0.728) in the traditional risk factor model to 0.765 (0.741, 0.788) by including PRS. These findings indicate that pregnant women with a higher PRS could potentially derive considerable advantages from the implementation of a feasible PRS-based GDM screening program aimed at delivering precision prevention strategies within Chinese populations.
Collapse
Affiliation(s)
- Ying Li
- Department of Graduate School, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Mengjiao Yang
- Department of Laboratory, The First People's Hospital of Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Lu Yuan
- Department of Endocrinology, The First People's Hospital of Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Ting Li
- Department of Endocrinology, The First People's Hospital of Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Xinli Zhong
- Department of Gynaecology and Obstetrics, The First People's Hospital of Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Yanying Guo
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| |
Collapse
|
10
|
Gao W, Wang Z, Li W, Li Y, Liu M. Biomarkers and biologics related with psoriasis and psoriatic arthritis. Int Immunopharmacol 2023; 122:110646. [PMID: 37454633 DOI: 10.1016/j.intimp.2023.110646] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Over the past half century, psoriasis is considered as an immune-mediated inflammatory skin disease with the combined hallmarks of autoimmunity and autoinflammation, according to growing volumes of clinical and experimental findings. There is currently no cure for psoriasis, current treatment strategies focus on symptom control, disease minimization, and patient's quality of life enhancement. To meet these challenges, it keeps imperative to discover potential biomarkers, so that not only can they be used for the prediction and monitoring of psoriasis disease in clinic, but also can provide novel therapeutic targets or treatment strategies for psoriasis sufferers. This review systematically demonstrates the research progress of psoriasis-related biomarkers and elaborates their related mechanisms in the pathological development of psoriasis and psoriatic arthritis. In addition, we summarize the development of biologic therapies for psoriasis and psoriatic arthritis in order to drive the broader discussion of psoriasis as an autoimmune-mediated inflammatory skin disease.
Collapse
Affiliation(s)
- Weize Gao
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhan Wang
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenshuai Li
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yongxin Li
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingjun Liu
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
11
|
Cramer TML, Pinan-Lucarre B, Cavaccini A, Damilou A, Tsai YC, Bhat MA, Panzanelli P, Rama N, Mehlen P, Benke D, Karayannis T, Bessereau JL, Tyagarajan SK. Adamtsl3 mediates DCC signaling to selectively promote GABAergic synapse function. Cell Rep 2023; 42:112947. [PMID: 37572323 DOI: 10.1016/j.celrep.2023.112947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023] Open
Abstract
The molecular code that controls synapse formation and maintenance in vivo has remained quite sparse. Here, we identify that the secreted protein Adamtsl3 functions as critical hippocampal synapse organizer acting through the transmembrane receptor DCC (deleted in colorectal cancer). Traditionally, DCC function has been associated with glutamatergic synaptogenesis and plasticity in response to Netrin-1 signaling. We demonstrate that early post-natal deletion of Adamtsl3 in neurons impairs DCC protein expression, causing reduced density of both glutamatergic and GABAergic synapses. Adult deletion of Adamtsl3 in either GABAergic or glutamatergic neurons does not interfere with DCC-Netrin-1 function at glutamatergic synapses but controls DCC signaling at GABAergic synapses. The Adamtsl3-DCC signaling unit is further essential for activity-dependent adaptations at GABAergic synapses, involving DCC phosphorylation and Src kinase activation. These findings might be particularly relevant for schizophrenia because genetic variants in Adamtsl3 and DCC have been independently linked with schizophrenia in patients.
Collapse
Affiliation(s)
- Teresa M L Cramer
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - Anna Cavaccini
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Angeliki Damilou
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yuan-Chen Tsai
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Musadiq A Bhat
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Dietmar Benke
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Theofanis Karayannis
- University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jean-Louis Bessereau
- University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| | - Shiva K Tyagarajan
- University of Zurich, Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
12
|
Maitra M, Mitsuhashi H, Rahimian R, Chawla A, Yang J, Fiori LM, Davoli MA, Perlman K, Aouabed Z, Mash DC, Suderman M, Mechawar N, Turecki G, Nagy C. Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes. Nat Commun 2023; 14:2912. [PMID: 37217515 PMCID: PMC10203145 DOI: 10.1038/s41467-023-38530-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.
Collapse
Affiliation(s)
- Malosree Maitra
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Anjali Chawla
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Deborah C Mash
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Institute, Verdun, QC, Canada.
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
- Douglas Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Nauffal V, Di Achille P, Klarqvist MDR, Cunningham JW, Hill MC, Pirruccello JP, Weng LC, Morrill VN, Choi SH, Khurshid S, Friedman SF, Nekoui M, Roselli C, Ng K, Philippakis AA, Batra P, Ellinor PT, Lubitz SA. Genetics of myocardial interstitial fibrosis in the human heart and association with disease. Nat Genet 2023; 55:777-786. [PMID: 37081215 PMCID: PMC11107861 DOI: 10.1038/s41588-023-01371-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Myocardial interstitial fibrosis is associated with cardiovascular disease and adverse prognosis. Here, to investigate the biological pathways that underlie fibrosis in the human heart, we developed a machine learning model to measure native myocardial T1 time, a marker of myocardial fibrosis, in 41,505 UK Biobank participants who underwent cardiac magnetic resonance imaging. Greater T1 time was associated with diabetes mellitus, renal disease, aortic stenosis, cardiomyopathy, heart failure, atrial fibrillation, conduction disease and rheumatoid arthritis. Genome-wide association analysis identified 11 independent loci associated with T1 time. The identified loci implicated genes involved in glucose transport (SLC2A12), iron homeostasis (HFE, TMPRSS6), tissue repair (ADAMTSL1, VEGFC), oxidative stress (SOD2), cardiac hypertrophy (MYH7B) and calcium signaling (CAMK2D). Using a transforming growth factor β1-mediated cardiac fibroblast activation assay, we found that 9 of the 11 loci consisted of genes that exhibited temporal changes in expression or open chromatin conformation supporting their biological relevance to myofibroblast cell state acquisition. By harnessing machine learning to perform large-scale quantification of myocardial interstitial fibrosis using cardiac imaging, we validate associations between cardiac fibrosis and disease, and identify new biologically relevant pathways underlying fibrosis.
Collapse
Affiliation(s)
- Victor Nauffal
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Paolo Di Achille
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan W Cunningham
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Valerie N Morrill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shaan Khurshid
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel F Friedman
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kenney Ng
- Center for Computational Health, IBM Research, Cambridge, MA, USA
| | - Anthony A Philippakis
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Zhou L, Sheng B, Zhang T, Liu W, Guo K, Yu H, Bai L, Hu J. madd-4 plays a critical role in light against Bursaphelenchus xylophilus. Sci Rep 2022; 12:14796. [PMID: 36042283 PMCID: PMC9427778 DOI: 10.1038/s41598-022-19263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Bursaphelenchus xylophilus is a notorious invasive species, causing extensive losses to pine ecosystems globally. Previous studies had shown that the development of B. xylophilus was seriously suppressed by light. However, the mechanism involved in the inhibition is unknown. Here, it is the first report that Bxy-madd-4 is a light-regulated gene, plays a potential role in B. xylophilus in responding to the blue light. Transcriptome sequencing revealed that the expression level of Bxy-madd-4 declined by 86.39% under blue light. The reverse transcription quantitative real-time PCR results were in accord with the transcriptome sequencing, confirming the expression level of Bxy-madd-4 was suppressed by blue light. Bxy-madd-4 promoter::mCherry reporter constructed in Caenorhabditis elegans were utilized to mimic the spatiotemporal expression patterns of Bxy-madd-4. Bxy-madd-4A promoter activity had a strong continuity throughout all development stages in C. elegans. Further RNA interference indicated that only 36.8% of the Bxy-madd-4 dsRNA treated embryos were hatched. Moreover, 71.6% of the hatched nematodes were abnormal, such as particles on the body surface and concave tissues. Our findings contribute towards a better understanding of the mechanism of light against the destructive invasive nematode, providing a promising hint for control of the destructive invasive nematode.
Collapse
Affiliation(s)
- Lifeng Zhou
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Bicheng Sheng
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tianyuan Zhang
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kai Guo
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Hongshi Yu
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Liqun Bai
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
15
|
Zhang X, Yang W, Chen K, Zheng T, Guo Z, Peng Y, Yang Z. The potential prognostic values of the ADAMTS-like protein family: an integrative pan-cancer analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1562. [PMID: 34790768 PMCID: PMC8576672 DOI: 10.21037/atm-21-4946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Background A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs (ADAMTS)-like proteins, including ADAMTSL1-6 and papilin, which are part of the mammalian ADAMTS superfamily, appear to be relevant to extracellular matrix function and the regulation of ADAMTS protease activity. Their roles in tumor initiation and progression and regulating the tumor microenvironment (TME) are now recognized. Methods In the present study, a comprehensive investigation of the pan-cancer effects of ADAMTSLs and their associations with patient survival, drug responses, and the TME was performed by integrating The Cancer Genome Atlas (TCGA) data and annotated data resources. Results The expression of ADAMTSL family members was found to be dysregulated in many cancer types. More importantly, their expression was frequently associated with patients’ overall survival (OS), drug responses, and the TME. ADAMTSL1, ADAMTSL4, and ADAMTSL5 were primarily associated with aggressive phenotypes, while PAPLN was more frequently associated with a favorable prognosis. In a non-small cell lung cancer (NSCLC) cohort, Thrombospondin Type 1 Domain Containing 4 (THSD4) (ADAMTSL6) and Papilin (PAPLN) were associated with immune checkpoint inhibitor (ICI) sensitivity in samples from the Gene Expression Omnibus repository (GSE135222). Twenty and 30 proteins related to THSD4 and PAPLN, respectively, were identified through a proteomic analysis of 18 Chinese lung adenocarcinoma patients. Conclusions Our findings extend understandings of the role of the ADAMTSL family in cancers and are a valuable resource on their clinical utility. This article provides insight into the clinical importance of next-generation sequencing technology to identify novel biomarkers for prognosis and investigate therapeutic strategy for clinical benefit.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wendi Yang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kehong Chen
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Taihao Zheng
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengjun Guo
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Peng
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Respiratory Medicine, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Zhenzhou Yang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
The extracellular matrix glycoprotein ADAMTSL2 is increased in heart failure and inhibits TGFβ signalling in cardiac fibroblasts. Sci Rep 2021; 11:19757. [PMID: 34611183 PMCID: PMC8492753 DOI: 10.1038/s41598-021-99032-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Fibrosis accompanies most heart diseases and is associated with adverse patient outcomes. Transforming growth factor (TGF)β drives extracellular matrix remodelling and fibrosis in the failing heart. Some members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs-like) family of secreted glycoproteins bind to matrix microfibrils, and although their function in the heart remains largely unknown, they are suggested to regulate TGFβ activity. The aims of this study were to determine ADAMTSL2 levels in failing hearts, and to elucidate the role of ADAMTSL2 in fibrosis using cultured human cardiac fibroblasts (CFBs). Cardiac ADAMTSL2 mRNA was robustly increased in human and experimental heart failure, and mainly expressed by fibroblasts. Over-expression and treatment with extracellular ADAMTSL2 in human CFBs led to reduced TGFβ production and signalling. Increased ADAMTSL2 attenuated myofibroblast differentiation, with reduced expression of the signature molecules α-smooth muscle actin and osteopontin. Finally, ADAMTSL2 mitigated the pro-fibrotic CFB phenotypes, proliferation, migration and contractility. In conclusion, the extracellular matrix-localized glycoprotein ADAMTSL2 was upregulated in fibrotic and failing hearts of patients and mice. We identified ADAMTSL2 as a negative regulator of TGFβ in human cardiac fibroblasts, inhibiting myofibroblast differentiation and pro-fibrotic properties.
Collapse
|
17
|
Yang Z, Liu D, Guan R, Li X, Wang Y, Sheng B. Potential genes and pathways associated with heterotopic ossification derived from analyses of gene expression profiles. J Orthop Surg Res 2021; 16:499. [PMID: 34389038 PMCID: PMC8364104 DOI: 10.1186/s13018-021-02658-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background Heterotopic ossification (HO) represents pathological lesions that refer to the development of heterotopic bone in extraskeletal tissues around joints. This study investigates the genetic characteristics of bone marrow mesenchymal stem cells (BMSCs) from HO tissues and explores the potential pathways involved in this ailment. Methods Gene expression profiles (GSE94683) were obtained from the Gene Expression Omnibus (GEO), including 9 normal specimens and 7 HO specimens, and differentially expressed genes (DEGs) were identified. Then, protein–protein interaction (PPI) networks and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed for further analysis. Results In total, 275 DEGs were differentially expressed, of which 153 were upregulated and 122 were downregulated. In the biological process (BP) category, the majority of DEGs, including EFNB3, UNC5C, TMEFF2, PTH2, KIT, FGF13, and WISP3, were intensively enriched in aspects of cell signal transmission, including axon guidance, negative regulation of cell migration, peptidyl-tyrosine phosphorylation, and cell-cell signaling. Moreover, KEGG analysis indicated that the majority of DEGs, including EFNB3, UNC5C, FGF13, MAPK10, DDIT3, KIT, COL4A4, and DKK2, were primarily involved in the mitogen-activated protein kinase (MAPK) signaling pathway, Ras signaling pathway, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathway, and Wnt signaling pathway. Ten hub genes were identified, including CX3CL1, CXCL1, ADAMTS3, ADAMTS16, ADAMTSL2, ADAMTSL3, ADAMTSL5, PENK, GPR18, and CALB2. Conclusions This study presented novel insight into the pathogenesis of HO. Ten hub genes and most of the DEGs intensively involved in enrichment analyses may be new candidate targets for the prevention and treatment of HO in the future.
Collapse
Affiliation(s)
- Zhanyu Yang
- Department of Orthopaedics and Traumatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, Hunan, 410000, People's Republic of China.,Hunan Emergency Center, No. 90 Pingchuan Road, Changsha, Hunan, 410000, People's Republic of China
| | - Delong Liu
- Department of Orthopaedics and Traumatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, Hunan, 410000, People's Republic of China.,Hunan Emergency Center, No. 90 Pingchuan Road, Changsha, Hunan, 410000, People's Republic of China
| | - Rui Guan
- Department of Orthopaedics and Traumatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, Hunan, 410000, People's Republic of China
| | - Xin Li
- Department of Orthopaedics and Traumatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, Hunan, 410000, People's Republic of China
| | - Yiwei Wang
- Department of Orthopaedics and Traumatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, Hunan, 410000, People's Republic of China
| | - Bin Sheng
- Department of Orthopaedics and Traumatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, Hunan, 410000, People's Republic of China. .,Hunan Emergency Center, No. 90 Pingchuan Road, Changsha, Hunan, 410000, People's Republic of China.
| |
Collapse
|
18
|
Chen C, Fu H, He P, Yang P, Tu H. Extracellular Matrix Muscle Arm Development Defective Protein Cooperates with the One Immunoglobulin Domain Protein To Suppress Precocious Synaptic Remodeling. ACS Chem Neurosci 2021; 12:2045-2056. [PMID: 34019371 DOI: 10.1021/acschemneuro.1c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Synaptic remodeling plays important roles in health and neural disorders. Although previous studies revealed that several transcriptional programs control synaptic remodeling in the nematode Caenorhabditis elegans, the molecular mechanisms of the dorsal D-type (DD) synaptic remodeling are poorly understood. Here we show that extracellular matrix molecule muscle arm development defective protein-4 (MADD-4) cooperates with the one immunoglobulin domain protein-1 (OIG-1) to defer precocious DD synaptic remodeling. Specifically, loss of MADD-4 exhibited the precocious DD synaptic remodeling. The long isoform MADD-4L is dynamically expressed while the short isoform MADD-4B is persistently expressed in DD neurons of L1 stage. In the unc-30 mutant lacking the Pitx-type homeodomain transcription factor UNC-30, the expression levels of both MADD-4B and -L isoforms were dramatically downregulated in DD neurons of the L1 stage. Our further data showed that MADD-4B and -L isoforms physically interact with OIG-1 and madd-4 acts in the oig-1 genetic pathway to modulate the DD synaptic remodeling. Our findings demonstrated that the extracellular matrix plays a novel role in synaptic plasticity.
Collapse
Affiliation(s)
- Chunhong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Neuroscience, College of Biology, Hunan University, 410082 Changsha, Hunan, China
| | - Huiyuan Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Neuroscience, College of Biology, Hunan University, 410082 Changsha, Hunan, China
| | - Ping He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Neuroscience, College of Biology, Hunan University, 410082 Changsha, Hunan, China
| | - Peng Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Neuroscience, College of Biology, Hunan University, 410082 Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Institute of Neuroscience, College of Biology, Hunan University, 410082 Changsha, Hunan, China
| |
Collapse
|
19
|
Huang W, Li G, Wang Z, Zhou L, Yin X, Yang T, Wang P, Teng X, Feng Y, Yu H. A Ten-N 6-Methyladenosine (m 6A)-Modified Gene Signature Based on a Risk Score System Predicts Patient Prognosis in Rectum Adenocarcinoma. Front Oncol 2021; 10:567931. [PMID: 33680913 PMCID: PMC7925823 DOI: 10.3389/fonc.2020.567931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The study aims to analyze the expression of N6-methyladenosine (m6A)-modified genes in rectum adenocarcinoma (READ) and identify reliable prognostic biomarkers to predict the prognosis of READ. MATERIALS AND METHODS RNA sequence data of READ and corresponding clinical survival data were obtained from The Cancer Genome Atlas (TCGA) database. N6-methyladenosine (m6A)-modified genes in READ were downloaded from the "m6Avar" database. Differentially expressed m6A-modified genes in READ stratified by different clinicopathological characteristics were identified using the "limma" package in R. Protein-protein interaction (PPI) network and co-expression analysis of differentially expressed genes (DEGs) were performed using "STRING" and Cytoscape, respectively. Principal component analysis (PCA) was done using R. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to functionally annotate the differentially expressed genes in different subgroups. Univariate Cox regression analyses were conducted to identify the powerful independent prognostic factors in READ associated with overall survival (OS). A robust likelihood-based survival model was built using the "rbsurv" package to screen for survival-associated signature genes. The Support Vector Machine (SVM) was used to predict the prognosis of READ through the risk score of survival-associated signature genes. Correlation analysis were carried out using GraphPad prism 8. RESULTS We screened 974 differentially expressed m6A-modified genes among four types of READ samples. Two READ subgroups (group 1 and group 2) were identified by K means clustering according to the expression of DEGs. The two subgroups were significantly different in overall survival and pathological stages. Next, 118 differentially expressed genes between the two subgroups were screened and the expression of 112 genes was found to be related to the prognosis of READ. Next, a panel of 10 survival-associated signature genes including adamtsl1, csmd2, fam13c, fam184a, klhl4, olfml2b, pdzd4, sec14l5, setbp1, tmem132b was constructed. The signature performed very well for prognosis prediction, time-dependent receiver-operating characteristic (ROC) analysis displaying an area under the curve (AUC) of 0.863, 0.8721, and 0.8752 for 3-year survival rate, prognostic status, and pathological stage prediction, respectively. Correlation analysis showed that the expression levels of the 10 m6A-modified genes were positively correlated with that of m6A demethylase FTO and ALKBH5. CONCLUSION This study identified potential m6A-modified genes that may be involved in the pathophysiology of READ and constructed a novel gene expression panel for READ risk stratification and prognosis prediction.
Collapse
Affiliation(s)
- Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Gen Li
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zihang Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Lin Zhou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Pei Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yajuan Feng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Chen S, Li M, Xin W, Liu S, Zheng L, Li Y, Li M, Zhan M, Yang X. Intracranial aneurysm's association with genetic variants, transcription abnormality, and methylation changes in ADAMTS genes. PeerJ 2020; 8:e8596. [PMID: 32095376 PMCID: PMC7025701 DOI: 10.7717/peerj.8596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The development of intracranial aneurysm (IA) has been linked to genetic factors. The current study examines the potential role of genes encoding disintegrin and metalloproteinase using thrombospondin motifs (ADAMTS) in IA development. Material and Methods High-throughput whole-genome and whole-exome sequencing were used when screening for deleterious single-nucleotide variants (SNVs) in ADAMTS genes using samples from 20 Han Chinese patients: 19 with familial IA and one patient with sporadic IA. The variant frequencies in these subjects were compared to those in control individuals found in the Genome Aggregation Database. Transcriptome sequencing and methylation sequencing data were retrieved from the Gene Expression Omnibus (GEO) database to identify differentially expressed ADAMTS genes and their methylation sites. We predicted the network of interactions among proteins encoded by the overlapping set of ADAMTS genes showing deleterious variants and both differential expression and abnormal methylation in IA. Possible candidate proteins linked to IA were validated using Western blot analysis. The associations between IA and SNVs rs11750568 in ADAMTS2, as well as rs2301612 and rs2285489 in ADAMTS13, were verified using the Sequenom MassArray system on a separate sample set of 595 Han Chinese patients with sporadic IA and 600 control individuals. Results A total of 16 deleterious variants in 13 ADAMTS genes were identified in our patients, and seven of these genes overlapped with the genes found to be differentially expressed and differentially methylated in the GEO database. Protein–protein interaction analysis predicted that ADAMTSL1 was at the center of the seven genes. ADAMTSL1 protein was lower expressed in IA tissue than in the control cerebral artery. Frequencies of the IA-related SNVs rs11750568 in ADAMTS2 and rs2301612 and rs2285489 in ADAMTS13 were not significantly different between sporadic IA patients and controls. Conclusion IA is associated with genetic variants, differential expression, and abnormal methylation in ADAMTS genes, ADAMTSL1 in particular.
Collapse
Affiliation(s)
- Shi Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education of China, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China.,Fuzhou Medical Center of Neuroscience, Fuzhou, China
| | - Mengqi Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education of China, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education of China, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China
| | - Shengze Liu
- Department of Neurosurgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian, China
| | - Linfei Zheng
- Department of Neurosurgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian, China
| | - Yan Li
- Department of Radiology, Zhenning People's Hospital, Zhengning, Gansu, China
| | - Mengyao Li
- Department of Neurology, Wuzhong People's Hospital, Wuzhong, Ningxia, China
| | - Mengxiong Zhan
- Department of Neurosurgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education of China, Tianjin, China.,Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
21
|
Underestimated Aspect of Mucopolysaccharidosis Pathogenesis: Global Changes in Cellular Processes Revealed by Transcriptomic Studies. Int J Mol Sci 2020; 21:ijms21041204. [PMID: 32054071 PMCID: PMC7072725 DOI: 10.3390/ijms21041204] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Mucopolysaccharidoses (MPS), a group of inherited metabolic disorders caused by deficiency in enzymes involved in degradation of glycosaminoglycans (GAGs), are examples (and models) of monogenic diseases. Accumulation of undegraded GAGs in lysosomes was supposed to be the major cause of MPS symptoms; however, their complexity and variability between particular types of the disease can be hardly explained by such a simple storage mechanism. Here we show that transcriptomic (RNA-seq) analysis of the material derived from fibroblasts of patients suffering from all types and subtypes of MPS, supported by RT-qPCR results, revealed surprisingly large changes in expression of genes involved in various cellular processes, indicating complex mechanisms of MPS. Although each MPS type and subtype was characterized by specific changes in gene expression profile, there were genes with significantly changed expression relative to wild-type cells that could be classified as common for various MPS types, suggesting similar disturbances in cellular processes. Therefore, both common features of all MPS types, and differences between them, might be potentially explained on the basis of changes in certain cellular processes arising from disturbed regulations of genes’ expression. These results may shed a new light on the mechanisms of genetic diseases, indicating how a single mutation can result in complex pathomechanism, due to perturbations in the network of cellular reactions. Moreover, they should be considered in studies on development of novel therapies, suggesting also why currently available treatment methods fail to correct all/most symptoms of MPS. We propose a hypothesis that disturbances in some cellular processes cannot be corrected by simple reduction of GAG levels; thus, combined therapies are necessary which may require improvement of these processes.
Collapse
|
22
|
Identification of Loci Controlling the Dwarfism Trait in the White Sailfin Molly ( Poecilia latipinna) Using Genome-Wide Association Studies Based on Genotyping-By-Sequencing. Genes (Basel) 2019; 10:genes10060418. [PMID: 31151300 PMCID: PMC6628085 DOI: 10.3390/genes10060418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 11/26/2022] Open
Abstract
Dwarfism is a condition defined by low harvest weight in fish, but also results in strange body figures which may have potential for the selective breeding of new ornamental fish strains. The objectives of this study are to reveal the physiological causes of dwarfism and identify the genetic loci controlling this trait in the white sailfin molly. Skeletons of dwarf and normal sailfin mollies were observed by X-ray radioscopy and skeletal staining. Genome-wide association studies based on genotyping-by-sequencing (n = 184) were used to map candidate genomic regions associated with the dwarfism trait. Quantitative real-time PCR was performed to determine the expression level of candidate genes in normal (n = 8) and dwarf (n = 8) sailfin mollies. We found that the dwarf sailfin molly has a short and dysplastic spine in comparison to the normal fish. Two regions, located at NW_015112742.1 and NW_015113621.1, were significantly associated with the dwarfism trait. The expression level of three candidate genes, ADAMTS like 1, Larp7 and PPP3CA, were significantly different between the dwarf and normal sailfin mollies in the hepatopancreas, with PPP3CA also showing significant differences in the vertebrae and Larp7 showing significant differences in the muscle. This study identified genomic regions and candidate genes associated with the dwarfism trait in the white sailfin molly and would provide a reference to determine dwarf-causing variations.
Collapse
|
23
|
Kantaputra PN, Pruksametanan A, Phondee N, Hutsadaloi A, Intachai W, Kawasaki K, Ohazama A, Ngamphiw C, Tongsima S, Ketudat Cairns JR, Tripuwabhrut P. ADAMTSL1
and mandibular prognathism. Clin Genet 2019; 95:507-515. [DOI: 10.1111/cge.13519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Piranit N. Kantaputra
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
- Dentaland Clinic; Chiang Mai Thailand
| | - Apitchaya Pruksametanan
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Nattapol Phondee
- Department of Dental Health; Srisangwan Hospital; Mae Hon Son Thailand
| | | | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Katsushig Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC); Thailand Science Park, Khlong Luang; Pathum Thani Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC); Thailand Science Park, Khlong Luang; Pathum Thani Thailand
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application; Suranaree University of Technology; Nakhon Ratchasima Thailand
| | - Polbhat Tripuwabhrut
- Division of Orthodontics, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
24
|
Mead TJ, Apte SS. ADAMTS proteins in human disorders. Matrix Biol 2018; 71-72:225-239. [PMID: 29885460 DOI: 10.1016/j.matbio.2018.06.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
ADAMTS proteins are a superfamily of 26 secreted molecules comprising two related, but distinct families. ADAMTS proteases are zinc metalloendopeptidases, most of whose substrates are extracellular matrix (ECM) components, whereas ADAMTS-like proteins lack a metalloprotease domain, reside in the ECM and have regulatory roles vis-à-vis ECM assembly and/or ADAMTS activity. Evolutionary conservation and expansion of ADAMTS proteins in mammals is suggestive of crucial embryologic or physiological roles in humans. Indeed, Mendelian disorders or birth defects resulting from naturally occurring ADAMTS2, ADAMTS3, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTS20, ADAMTSL2 and ADAMTSL4 mutations as well as numerous phenotypes identified in genetically engineered mice have revealed ADAMTS participation in major biological pathways. Important roles have been identified in a few acquired conditions. ADAMTS5 is unequivocally implicated in pathogenesis of osteoarthritis via degradation of aggrecan, a major structural proteoglycan in cartilage. ADAMTS7 is strongly associated with coronary artery disease and promotes atherosclerosis. Autoantibodies to ADAMTS13 lead to a platelet coagulopathy, thrombotic thrombocytopenic purpura, which is similar to that resulting from ADAMTS13 mutations. ADAMTS proteins have numerous potential connections to other human disorders that were identified by genome-wide association studies. Here, we review inherited and acquired human disorders in which ADAMTS proteins participate, and discuss progress and prospects in therapeutics.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, United States.
| |
Collapse
|
25
|
Luo Y, Xuan Z, Zhu X, Zhan P, Wang Z. Long non-coding RNAs RP5-821D11.7, APCDD1L-AS1 and RP11-277P12.9 were associated with the prognosis of lung squamous cell carcinoma. Mol Med Rep 2018; 17:7238-7248. [PMID: 29568882 PMCID: PMC5928681 DOI: 10.3892/mmr.2018.8770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC), a type of non-small cell lung carcinoma, has a poor therapeutic response, high relapse rate and poor prognosis. The present study was designed to reveal the key long non-coding RNAs (lncRNAs) associated with the prognosis of LUSC. The lncRNA expression profiles of LUSC and adjacent samples were downloaded from The Cancer Genome Atlas database. Based on the edgeR and DEseq packages, the differentially expressed lncRNAs (DELs) between LUSC and adjacent samples were obtained and the intersecting DELs were regarded as significant DELs. Subsequently, a prognostic risk model was established using Cox regression analysis and its classification effect was detected by survival analysis. Using survival analysis, the effect of the prognostic risk model was assessed in the validation set and other types of cancer. Finally, the co-expression genes of key lncRNAs were screened using the Multi-Experiment Matrix tool and the STRING database, and their functions were predicted via enrichment analysis using the Database for Annotation, Visualization and Integrated Discovery tool. A total of 2,041 significant DELs between LUSC and adjacent samples were screened. The prognostic risk model consisting of RP5-821D11.7, APCDD1L-AS1 and RP11-277P12.9 was established, which had a good classification effect. Cox multivariate regression analysis demonstrated that risk score may serve as an independent prognostic factor. Furthermore, certain co-expression genes of RP5-821D11.7 (including proliferating cell nuclear antigen), APCDD1L-AS1 (including semaphorin 5A, semaphorin 6D, ADAMTS like 1, ADAM metallopeptidase with thrombospondin type 1 motif 6, slit guidance ligand 3, and tenascin C) and RP11-277P12.9 (including Wnt family member 2B) were identified. Additionally, ‘positive regulation of cell migration’ and ‘proteinaceous extracellular matrix’ were enriched. In conclusion, the expression levels of the lncRNAs RP5-821D11.7, APCDD1L-AS1 and RP11-277P12.9 may affect the prognosis of LUSC.
Collapse
Affiliation(s)
- Yanzhuo Luo
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhaobo Xuan
- Department of Neurosurgery, The First Hospital Affiliated to Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Xiaofeng Zhu
- Department of Thoracic Surgery, The First Hospital Affiliated to Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Peng Zhan
- Department of Thoracic Surgery, The First Hospital Affiliated to Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
26
|
Hansmeier N, Buttigieg J, Kumar P, Pelle S, Choi KY, Kopriva D, Chao TC. Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2017; 17:164-176. [DOI: 10.1021/acs.jproteome.7b00487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nicole Hansmeier
- Department
of Biology/Chemistry, Division of Microbiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Josef Buttigieg
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Pankaj Kumar
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Shaneen Pelle
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Kyoo Yoon Choi
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - David Kopriva
- Regina Qu’Appelle Health Region and University of Saskatchewan, 1440-14th Avenue, Regina, Saskatchewan S4P 0W5, Canada
| | - Tzu-Chiao Chao
- Department
of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
27
|
Kadalayil L, Khan S, Nevanlinna H, Fasching PA, Couch FJ, Hopper JL, Liu J, Maishman T, Durcan L, Gerty S, Blomqvist C, Rack B, Janni W, Collins A, Eccles D, Tapper W. Germline variation in ADAMTSL1 is associated with prognosis following breast cancer treatment in young women. Nat Commun 2017; 8:1632. [PMID: 29158497 PMCID: PMC5696339 DOI: 10.1038/s41467-017-01775-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
To identify genetic variants associated with breast cancer prognosis we conduct a meta-analysis of overall survival (OS) and disease-free survival (DFS) in 6042 patients from four cohorts. In young women, breast cancer is characterized by a higher incidence of adverse pathological features, unique gene expression profiles and worse survival, which may relate to germline variation. To explore this hypothesis, we also perform survival analysis in 2315 patients aged ≤ 40 years at diagnosis. Here, we identify two SNPs associated with early-onset DFS, rs715212 (P meta = 3.54 × 10-5) and rs10963755 (P meta = 3.91 × 10-4) in ADAMTSL1. The effect of these SNPs is independent of classical prognostic factors and there is no heterogeneity between cohorts. Most importantly, the association with rs715212 is noteworthy (FPRP <0.2) and approaches genome-wide significance in multivariable analysis (P multivariable = 5.37 × 10-8). Expression quantitative trait analysis provides tentative evidence that rs715212 may influence AREG expression (P eQTL = 0.035), although further functional studies are needed to confirm this association and determine a mechanism.
Collapse
Affiliation(s)
- Latha Kadalayil
- Genetic Epidemiology and Bioinformatics Research Group, Human Development and Health Academic Unit, Faculty of Medicine, Duthie Building (MP 808), University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.,Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Sofia Khan
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, P.O. BOX 700, 00029 HUS, Finland
| | - Heli Nevanlinna
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, P.O. BOX 700, 00029 HUS, Finland
| | - Peter A Fasching
- University Breast Center Franconia, Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 55901, USA
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore, 117549, Singapore
| | - Tom Maishman
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Lorraine Durcan
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Sue Gerty
- Southampton Clinical Trials Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Central Hospital, P.O. Box 180, FIN-00029, Helsinki, Finland
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Andrew Collins
- Genetic Epidemiology and Bioinformatics Research Group, Human Development and Health Academic Unit, Faculty of Medicine, Duthie Building (MP 808), University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Diana Eccles
- Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton University Hospitals NHS Trust, Southampton, SO16 6YD, UK
| | - William Tapper
- Genetic Epidemiology and Bioinformatics Research Group, Human Development and Health Academic Unit, Faculty of Medicine, Duthie Building (MP 808), University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
28
|
Shi AP, Fan ZM, Ma KW, Jiang YF, Wang L, Zhang KW, Fu SB, Xu N, Zhang ZR. Isolation and characterization of adult mammary stem cells from breast cancer-adjacent tissues. Oncol Lett 2017; 14:2894-2902. [PMID: 28927044 PMCID: PMC5588124 DOI: 10.3892/ol.2017.6485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/28/2017] [Indexed: 01/06/2023] Open
Abstract
Normal adult mammary stem cells (AMSCs) are promising sources for breast reconstruction, particularly following the resection of breast tumors. However, carcinogenic events can potentially convert normal AMSCs to cancer stem cells, posing a safety concern for the use of AMSCs for clinical tissue regeneration. In the present study, AMSCs and autologous primary breast cancer cells were isolated and compared for their ability to differentiate, their gene expression profile, and their potential to form tumors in vivo. AMSCs were isolated from normal tissue surrounding primary breast tumors by immunomagnetic sorting. The pluripotency of these cells was investigated by differentiation analysis, and gene expression profiles were compared with microarrays. Differentially expressed candidate genes were confirmed by reverse transcription-polymerase chain reaction and western blot analyses. The in vivo tumorigenicity of these cells, compared with low-malignancy MCF-7 cells, was also investigated by xenograft tumor formation analysis. The results revealed that AMSCs isolated from normal tissues surrounding primary breast tumors were positive for the stem cell markers epithelial-specific antigen and keratin-19. When stimulated with basic fibroblast growth factor, a differentiation agent, these AMSCs formed lobuloalveolar structures with myoepithelia that were positive for common acute lymphoblastic leukemia antigen. The gene expression profiles revealed that, compared with cancer cells, AMSCs expressed low levels of oncogenes, including MYC, RAS and ErbB receptor tyrosine kinase 2, and high levels of tumor suppressor genes, including RB transcriptional corepressor 1, phosphatase and tensin homolog, and cyclin-dependent kinase inhibitor 2A. When injected into nude non-obese diabetic/severe combined immunodeficiency-type mice, the AMSCs did not form tumors, and regular mammary ductal structures were generated. The AMSCs isolated from normal tissue adjacent to primary breast tumors had the normal phenotype of mammary stem cells, and therefore may be promising candidates for mammary reconstruction subsequent to breast tumor resection.
Collapse
Affiliation(s)
- Ai-Ping Shi
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhi-Min Fan
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ke-Wei Ma
- Department of Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan-Fang Jiang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ke-Wei Zhang
- Department of Oncology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shi-Bo Fu
- MH Radiobiology Research Unit, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ning Xu
- Department of Urology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhi-Ru Zhang
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
29
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
30
|
ADAMTS-3, -13, -16, and -19 levels in patients with habitual abortion. Kaohsiung J Med Sci 2017; 33:30-35. [DOI: 10.1016/j.kjms.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023] Open
|
31
|
Yusakul G, Sakamoto S, Pongkitwitoon B, Tanaka H, Morimoto S. Effect of linker length between variable domains of single chain variable fragment antibody against daidzin on its reactivity. Biosci Biotechnol Biochem 2016; 80:1306-12. [PMID: 27116996 DOI: 10.1080/09168451.2016.1156482] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The peptide linker between variable domains of heavy (VH) and light (VL) chains is one of important factors that influence the characteristics of scFv, including binding activity and specificity against target antigen. The scFvs against daidzin (DZ-scFvs) with different linker lengths were constructed in the format of VH-(GGGGS)n-VL (n = 1, 3, 5, and 7). They were expressed in the hemolymph of silkworm larvae using the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system, and their reactivity against daidzin and related compounds were evaluated using an indirect competitive enzyme-linked immunosorbent assay (icELISA), which is applicable for quantitative analysis of daidzin. The results showed that the reactivity of scFvs against daidzin was increased, whereas specificity slightly decreased when their peptide linker was lengthened. These results suggested that the linker length of DZ-scFvs contributes to its reactivity. In addition, the results emphasize that the linker length could control the reactivity of DZ-scFvs.
Collapse
Affiliation(s)
- Gorawit Yusakul
- a Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences , Kyushu University , Fukuoka , Japan
| | - Seiichi Sakamoto
- a Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences , Kyushu University , Fukuoka , Japan
| | - Benyakan Pongkitwitoon
- b Faculty of Pharmacy, Department of Pharmaceutical Botany , Mahidol University , Bangkok , Thailand
| | - Hiroyuki Tanaka
- a Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences , Kyushu University , Fukuoka , Japan
| | - Satoshi Morimoto
- a Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences , Kyushu University , Fukuoka , Japan
| |
Collapse
|
32
|
Efficient expression of single chain variable fragment antibody against paclitaxel using the Bombyx mori nucleopolyhedrovirus bacmid DNA system and its characterizations. J Nat Med 2016; 70:592-601. [PMID: 26940321 DOI: 10.1007/s11418-016-0981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/21/2016] [Indexed: 10/22/2022]
Abstract
A single chain variable fragment (scFv), the smallest unit of functional recombinant antibody, is an attractive format of recombinant antibodies for various applications due to its small fragment and possibility of genetic engineering. Hybridoma clone 3A3 secreting anti-paclitaxel monoclonal antibody was used to construct genes encoding its variable domains of heavy (VH) and light (VL) chains. The VH and VL domains were linked to be the PT-scFv3A3 using flexible peptide linker in a format of VH-(GGGGS)5-VL. The PT-scFv3A3 was primarily expressed using the pET28a(+) vector in the Escherichia coli system, and was then further expressed by using the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. Interestingly, the reactivity of PT-scFv3A3 expressed in the hemolymph of B. mori using the BmNPV bacmid DNA system was much higher than that expressed in the E. coli system. Using indirect competitive enzyme-linked immunosorbent assay (icELISA), the PT-scFv3A3 (B. mori) reacted not only with immobilized paclitaxel, but also with free paclitaxel in a concentration-dependent manner, with the linear range of free paclitaxel between 0.156 and 5.00 µg/ml. The PT-scFv3A3 (B. mori) exhibited less cross-reactivity (%) than its parental MAb clone 3A3 against paclitaxel-related compounds, including docetaxel (31.1 %), 7-xylosyltaxol (22.1 %), baccatin III (<0.68 %), 10-deacetylbaccatin III (<0.68 %), 1-hydroxybaccatin I (<0.68 %), and 1-acetoxy-5-deacetylbaccatin I (<0.68 %). With the exception of cephalomannine, the cross-reactivity was slightly increased to 8.50 %. The BmNPV bacmid DNA system was a highly efficient expression system of active PT-scFv3A3, which is applicable for PT-scFv3A3-based immunoassay of paclitaxel. In addition, the PT-scFv3A3 can be applied to evaluate its neutralizing property of paclitaxel or docetaxel toxicity.
Collapse
|
33
|
Abstract
The mechanisms mediating the appropriate clustering of neurotransmitter receptors opposite release sites are poorly understood. Two studies in this issue of Neuron, Maro et al. (2015) and Tu et al. (2015), identify a new extracellular effector for neuroligin in GABAergic postsynaptic differentiation.
Collapse
Affiliation(s)
- Peng Zhang
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Ann Marie Craig
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
34
|
Hubmacher D, Wang LW, Mecham RP, Reinhardt DP, Apte SS. Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia--a novel mouse model providing insights into geleophysic dysplasia. Dis Model Mech 2015; 8:487-99. [PMID: 25762570 PMCID: PMC4415891 DOI: 10.1242/dmm.017046] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/05/2015] [Indexed: 12/24/2022] Open
Abstract
Mutations in the secreted glycoprotein ADAMTSL2 cause recessive geleophysic dysplasia (GD) in humans and Musladin–Lueke syndrome (MLS) in dogs. GD is a severe, often lethal, condition presenting with short stature, brachydactyly, stiff skin, joint contractures, tracheal-bronchial stenosis and cardiac valve anomalies, whereas MLS is non-lethal and characterized by short stature and severe skin fibrosis. Although most mutations in fibrillin-1 (FBN1) cause Marfan syndrome (MFS), a microfibril disorder leading to transforming growth factor-β (TGFβ) dysregulation, domain-specific FBN1 mutations result in dominant GD. ADAMTSL2 has been previously shown to bind FBN1 and latent TGFβ-binding protein-1 (LTBP1). Here, we investigated mice with targeted Adamtsl2 inactivation as a new model for GD (Adamtsl2−/− mice). An intragenic lacZ reporter in these mice showed that ADAMTSL2 was produced exclusively by bronchial smooth muscle cells during embryonic lung development. Adamtsl2−/− mice, which died at birth, had severe bronchial epithelial dysplasia with abnormal glycogen-rich inclusions in bronchial epithelium resembling the cellular anomalies described previously in GD. An increase in microfibrils in the bronchial wall was associated with increased FBN2 and microfibril-associated glycoprotein-1 (MAGP1) staining, whereas LTBP1 staining was increased in bronchial epithelium. ADAMTSL2 was shown to bind directly to FBN2 with an affinity comparable to FBN1. The observed extracellular matrix (ECM) alterations were associated with increased bronchial epithelial TGFβ signaling at 17.5 days of gestation; however, treatment with TGFβ-neutralizing antibody did not correct the epithelial dysplasia. These investigations reveal a new function of ADAMTSL2 in modulating microfibril formation, and a previously unsuspected association with FBN2. Our studies suggest that the bronchial epithelial dysplasia accompanying microfibril dysregulation in Adamtsl2−/− mice cannot be reversed by TGFβ neutralization, and thus might be mediated by other mechanisms. Summary: The extracellular protein ADAMTSL2 is a crucial regulator of microfibril composition in the extracellular matrix of bronchial smooth muscle cells and influences bronchial epithelial function.
Collapse
Affiliation(s)
- Dirk Hubmacher
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lauren W Wang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology and Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 0C7
| | - Suneel S Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
35
|
Yang HC, Chang LC, Huggins RM, Chen CH, Mullighan CG. LOHAS: loss-of-heterozygosity analysis suite. Genet Epidemiol 2015; 35:247-60. [PMID: 21312262 DOI: 10.1002/gepi.20573] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/10/2010] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
Abstract
Detection of loss of heterozygosity (LOH) plays an important role in genetic, genomic and cancer research. We develop computational methods to estimate the proportion of homozygous SNP calls, identify samples with structural alterations and/or unusual genotypic patterns, cluster samples with close LOH structures and map the genomic segments bearing LOH by analyzing data of genome-wide SNP arrays or customized SNP arrays. In addition to cancer genetics/genomics, we also apply the methods to study long contiguous stretches of homozygosity (LCSH) in general populations. The LCSH analysis aids in the identification of samples with complex LCSH patterns indicative of nonrandom mating and/or meiotic recombination cold spots, separation of samples with different genetic backgrounds and sex, and mapping of regions of LCSH. Affymetrix Human Mapping 500K Set SNP data from an acute lymphoblastic leukemia study containing 304 cancer patients and 50 normal controls and from the HapMap Project containing 30 African trios, 30 Caucasian trios and 90 independent Asian samples were analyzed. We identified common gene regions of LOH, e.g., ETV6 and CDKN1B, and identified frequent regions of LCSH, e.g., the region that encompasses the centromeric gene desert region of chromosome 16. Unsupervised analysis separated cancer subtypes and ethnic subpopulations by patterns of LOH/LCSH. Simulation studies considering LOH width, effect size and heterozygous interference fraction were performed, and the results show that the proposed LOH association test has good test power and controls type 1 error well. The developed algorithms are packaged into LOHAS written in R and R GUI.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Nankang, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
36
|
Pinan-Lucarré B, Tu H, Pierron M, Cruceyra PI, Zhan H, Stigloher C, Richmond JE, Bessereau JL. C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains. Nature 2014; 511:466-70. [DOI: 10.1038/nature13313] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 04/07/2014] [Indexed: 11/09/2022]
|
37
|
Campbell VT, Nadesan P, Ali SA, Wang CYY, Whetstone H, Poon R, Wei Q, Keilty J, Proctor J, Wang LW, Apte SS, McGovern K, Alman BA, Wunder JS. Hedgehog Pathway Inhibition in Chondrosarcoma Using the Smoothened Inhibitor IPI-926 Directly Inhibits Sarcoma Cell Growth. Mol Cancer Ther 2014; 13:1259-69. [DOI: 10.1158/1535-7163.mct-13-0731] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Omelchenko DO, Rzhaninova AA, Goldshtein DV. Comparative transcriptome pairwise analysis of spontaneously transformed multipotent stromal cells from human adipose tissue. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Schlage P, Egli FE, Nanni P, Wang LW, Kizhakkedathu JN, Apte SS, auf dem Keller U. Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome. Mol Cell Proteomics 2013; 13:580-93. [PMID: 24281761 DOI: 10.1074/mcp.m113.035139] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteolysis is an irreversible post-translational modification that affects intra- and intercellular communication by modulating the activity of bioactive mediators. Key to understanding protease function is the system-wide identification of cleavage events and their dynamics in physiological contexts. Despite recent advances in mass spectrometry-based proteomics for high-throughput substrate screening, current approaches suffer from high false positive rates and only capture single states of protease activity. Here, we present a workflow based on multiplexed terminal amine isotopic labeling of substrates for time-resolved substrate degradomics in complex proteomes. This approach significantly enhances confidence in substrate identification and categorizes cleavage events by specificity and structural accessibility of the cleavage site. We demonstrate concomitant quantification of cleavage site spanning peptides and neo-N and/or neo-C termini to estimate relative ratios of noncleaved and cleaved forms of substrate proteins. By applying this strategy to dissect the matrix metalloproteinase 10 (MMP10) substrate degradome in fibroblast secretomes, we identified the extracellular matrix protein ADAMTS-like protein 1 (ADAMTSL1) as a direct MMP10 substrate and revealed MMP10-dependent ectodomain shedding of platelet-derived growth factor receptor alpha (PDGFRα) as well as sequential processing of type I collagen. The data have been deposited to the ProteomeXchange Consortium with identifier PXD000503.
Collapse
Affiliation(s)
- Pascal Schlage
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Schafmattstr. 22, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Bader HL, Wang LW, Ho JC, Tran T, Holden P, Fitzgerald J, Atit RP, Reinhardt DP, Apte SS. A disintegrin-like and metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5) is a novel fibrillin-1-, fibrillin-2-, and heparin-binding member of the ADAMTS superfamily containing a netrin-like module. Matrix Biol 2012; 31:398-411. [PMID: 23010571 DOI: 10.1016/j.matbio.2012.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
ADAMTS-like proteins are related to ADAMTS metalloproteases by their similarity to ADAMTS ancillary domains. Here, we have characterized ADAMTSL5, a novel member of the superfamily with a unique modular organization that includes a single C-terminal netrin-like (NTR) module. Alternative splicing of ADAMTSL5 at its 5' end generates two transcripts that encode different signal peptides, but the same mature protein. These transcripts differ in their translational efficiency. Recombinant ADAMTSL5 is a secreted, N-glycosylated 60kDa glycoprotein located in the subcellular matrix, on the cell-surface, and in the medium of transfected cells. RT-PCR and western blot analysis of adult mouse tissues showed broad expression. Western blot analysis suggested proteolytic release of the NTR module in transfected cells as well as in some mouse tissues. Immunostaining during mouse organogenesis identified ADAMTSL5 in musculoskeletal tissues such as skeletal muscle, cartilage and bone, as well as in many epithelia. Affinity-chromatography demonstrated heparin-binding of ADAMTSL5 through its NTR-module. Recombinant ADAMTSL5 bound to both fibrillin-1 and fibrillin-2, and co-localized with fibrillin microfibrils in the extracellular matrix of cultured fibroblasts, but without discernible effect on microfibril assembly. ADAMTSL5 is the first family member shown to bind both fibrillin-1 and fibrillin-2. Like other ADAMTS proteins implicated in microfibril biology through identification of human and animal mutations, ADAMTSL5 could have a role in modulating microfibril functions.
Collapse
Affiliation(s)
- Hannah L Bader
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Obika M, Ogawa H, Takahashi K, Li J, Hatipoglu OF, Cilek MZ, Miyoshi T, Inagaki J, Ohtsuki T, Kusachi S, Ninomiya Y, Hirohata S. Tumor growth inhibitory effect of ADAMTS1 is accompanied by the inhibition of tumor angiogenesis. Cancer Sci 2012; 103:1889-97. [PMID: 22776012 DOI: 10.1111/j.1349-7006.2012.02381.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis plays an important role in tumor progression. Several reports have demonstrated that a disintegrin and metalloproteinase with thrombospondin motifs1 (ADAMTS1) inhibited angiogenesis via multiple mechanisms. The aim of this study was to investigate the effect of ADAMTS1 on endothelial cells in vitro and on tumor growth with regard to angiogenesis in vivo. We examined the effects of the transfection of ADAMTS1 using two constructs, full-length ADAMTS1 (full ADAMTS1) and catalytic domain-deleted ADAMTS1 (delta ADAMTS1). Transfection of both the full ADAMTS1 and delta ADAMTS1 gene constructs demonstrated the secretion of tagged-ADAMTS1 protein into the conditioned medium, so we examined the effects of ADAMTS1-containing conditioned medium on endothelial cells. Both types of conditioned media inhibited endothelial tube formation, and this effect was completely abolished after immunoprecipitation of the secreted protein from the medium. Both types of conditioned media also inhibited endothelial cell migration and proliferation. We then examined the impact of ADAMTS1 on endothelial cell apoptosis. Both conditioned media increased the number of Annexin V-positive endothelial cells and caspase-3 activity and this effect was attenuated when z-vad was added. These results indicated that ADAMTS1 induced endothelial cell apoptosis. We next examined the effects of ADAMTS1 gene transfer into tumor-bearing mice. Both full ADAMTS1 and delta ADAMTS1 significantly inhibited the subcutaneous tumor growth. Collectively, our results demonstrated that ADAMTS1 gene transfer inhibited angiogenesis in vitro and in vivo, likely as a result of the induction of endothelial cell apoptosis by ADAMTS1 that occurs independent of the protease activity.
Collapse
Affiliation(s)
- Masanari Obika
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gabriel LAR, Wang LW, Bader H, Ho JC, Majors AK, Hollyfield JG, Traboulsi EI, Apte SS. ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Invest Ophthalmol Vis Sci 2012; 53:461-9. [PMID: 21989719 DOI: 10.1167/iovs.10-5955] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE ADAMTSL4 mutations cause autosomal recessive isolated ectopia lentis (IEL) and ectopia lentis et pupillae. Dominant FBN1 mutations cause IEL or syndromic ectopia lentis (Marfan syndrome and Weill-Marchesani syndrome). The authors sought to characterize recombinant ADAMTSL4 and the ocular distribution of ADAMTSL4 and to investigate whether ADAMTSL4 influences the biogenesis of fibrillin-1 microfibrils, which compose the zonule. METHODS ADAMTSL4 was expressed by the transfection of HEK293F cells. Protein extracts and paraffin sections from human eyes were analyzed by Western blot analysis and by immunoperoxidase staining, respectively. Immunofluorescence was used to evaluate fibrillin-1 deposition in the ECM of fetal bovine nuchal ligament cells after culture in ADAMTSL4-conditioned medium or control medium. Confocal microscopy was performed to investigate ADAMTSL4 and fibrillin-1 colocalization in these cultures. RESULTS Western blot analysis identified ADAMTSL4 as a glycoprotein in HEK293F cells and as a major band of 150 kDa in ocular tissues including ciliary body, sclera, cornea, and retina. Immunoperoxidase staining showed a broad ocular distribution of ADAMTSL4, associated with both cells and fibrillar ECM. When cultured in ADAMTSL4-containing medium, fetal bovine nuchal ligament cells showed accelerated fibrillin-1 deposition in ECM. ADAMTSL4 colocalized with fibrillin-1 microfibrils in the ECM of these cells. CONCLUSIONS ADAMTSL4 is a secreted glycoprotein that is widely distributed in the human eye. Enhanced fibrillin-1 deposition in the presence of ADAMTSL4 and colocalization of ADAMTSL4 with fibrillin-1 in the ECM of cultured fibroblasts suggest a potential role for ADAMTSL4 in the formation or maintenance of the zonule.
Collapse
Affiliation(s)
- Luis A R Gabriel
- Departments of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Salom D, Wang B, Dong Z, Sun W, Padayatti P, Jordan S, Salon JA, Palczewski K. Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells. Biochemistry 2011; 51:214-24. [PMID: 22145929 DOI: 10.1021/bi201707v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G-protein-coupled serotonin receptor type 4 (5-HT(4)R) is a pharmacological target implicated in a variety of gastrointestinal and nervous system disorders. As for many other integral membrane proteins, structural and functional studies of this receptor could be facilitated by its heterologous overexpression in eukaryotic systems that can perform appropriate post-translational modifications (PTMs) on the protein. We previously reported the development of an expression system that employs rhodopsin's biosynthetic machinery in rod cells of the retina to express heterologous G-protein-coupled receptors (GPCRs) in a pharmacologically functional form. In this study, we analyzed the glycosylation, phosphorylation, and palmitoylation of 5-HT(4)R heterologously expressed in rod cells of transgenic mice. We found that the glycosylation pattern in 5-HT(4)R was more complex than in murine and bovine rhodopsin. Moreover, overexpression of this exogenous GPCR in rod cells also affected the glycosylation pattern of coexisting native rhodopsin. These results highlight not only the occurrence of heterogeneous PTMs on transgenic proteins but also the complications that non-native PTMs can cause in the structural and functional characterization of both endogenous and heterologous protein targets.
Collapse
Affiliation(s)
- David Salom
- Polgenix Inc., Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Seetharaman A, Selman G, Puckrin R, Barbier L, Wong E, D'Souza S, Roy P. MADD-4 Is a Secreted Cue Required for Midline-Oriented Guidance in Caenorhabditis elegans. Dev Cell 2011; 21:669-80. [DOI: 10.1016/j.devcel.2011.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/31/2011] [Indexed: 11/28/2022]
|
45
|
Saito M, Kurokawa M, Oda M, Oshima M, Tsutsui K, Kosaka K, Nakao K, Ogawa M, Manabe RI, Suda N, Ganjargal G, Hada Y, Noguchi T, Teranaka T, Sekiguchi K, Yoneda T, Tsuji T. ADAMTSL6β protein rescues fibrillin-1 microfibril disorder in a Marfan syndrome mouse model through the promotion of fibrillin-1 assembly. J Biol Chem 2011; 286:38602-38613. [PMID: 21880733 DOI: 10.1074/jbc.m111.243451] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Marfan syndrome (MFS) is a systemic disorder of the connective tissues caused by insufficient fibrillin-1 microfibril formation and can cause cardiac complications, emphysema, ocular lens dislocation, and severe periodontal disease. ADAMTSL6β (A disintegrin-like metalloprotease domain with thrombospondin type I motifs-like 6β) is a microfibril-associated extracellular matrix protein expressed in various connective tissues that has been implicated in fibrillin-1 microfibril assembly. We here report that ADAMTSL6β plays an essential role in the development and regeneration of connective tissues. ADAMTSL6β expression rescues microfibril disorder after periodontal ligament injury in an MFS mouse model through the promotion of fibrillin-1 microfibril assembly. In addition, improved fibrillin-1 assembly in MFS mice following the administration of ADAMTSL6β attenuates the overactivation of TGF-β signals associated with the increased release of active TGF-β from disrupted fibrillin-1 microfibrils within periodontal ligaments. Our current data thus demonstrate the essential contribution of ADAMTSL6β to fibrillin-1 microfibril formation. These findings also suggest a new therapeutic strategy for the treatment of MFS through ADAMTSL6β-mediated fibrillin-1 microfibril assembly.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan.
| | - Misaki Kurokawa
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masahito Oda
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masamitsu Oshima
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ko Tsutsui
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
| | - Kazutaka Kosaka
- Division of Restorative Dentistry, Department of Oral Medicine, Kanagawa Dental College, Yokosuka Kanagawa 238-8580, Japan
| | - Kazuhisa Nakao
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Miho Ogawa
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Organ Technologies Inc., Tokyo, Japan
| | - Ri-Ichiroh Manabe
- RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Naoto Suda
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan
| | - Ganburged Ganjargal
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan
| | - Yasunobu Hada
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Oral Implantology and Regenerative Dental Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan
| | - Toshihide Noguchi
- Department of Periodontology, School of Dentistry, Aichi-Gakuin University, Nisshin 470-0195, Japan
| | - Toshio Teranaka
- Division of Restorative Dentistry, Department of Oral Medicine, Kanagawa Dental College, Yokosuka Kanagawa 238-8580, Japan
| | - Kiyotoshi Sekiguchi
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
| | - Toshiyuki Yoneda
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, Suita Osaka 565-0871, Japan
| | - Takashi Tsuji
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Organ Technologies Inc., Tokyo, Japan
| |
Collapse
|
46
|
Le Goff C, Cormier-Daire V. The ADAMTS(L) family and human genetic disorders. Hum Mol Genet 2011; 20:R163-7. [DOI: 10.1093/hmg/ddr361] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Le Goff C, Mahaut C, Wang L, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y, Brady A, Cordier MP, Devriendt K, Genevieve D, Kiper PS, Kitoh H, Krakow D, Lynch S, Le Merrer M, Mégarbane A, Mortier G, Odent S, Polak M, Rohrbach M, Sillence D, Stolte-Dijkstra I, Superti-Furga A, Rimoin D, Topouchian V, Unger S, Zabel B, Bole-Feysot C, Nitschke P, Handford P, Casanova JL, Boileau C, Apte S, Munnich A, Cormier-Daire V. Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet 2011; 89:7-14. [PMID: 21683322 DOI: 10.1016/j.ajhg.2011.05.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 01/02/2023] Open
Abstract
Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.
Collapse
|
48
|
Molecular characterization, expression pattern, polymorphism and association analysis of bovine ADAMTSL3 gene. Mol Biol Rep 2011; 39:1551-60. [DOI: 10.1007/s11033-011-0894-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
|
49
|
Jameel NM, Thirunavukkarasu C, Murase N, Cascio M, Prelich J, Yang S, Harvey SAK, Gandhi CR. Constitutive release of powerful antioxidant-scavenging activity by hepatic stellate cells: protection of hepatocytes from ischemia/reperfusion injury. Liver Transpl 2010; 16:1400-9. [PMID: 21117250 DOI: 10.1002/lt.22172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the liver, reactive oxygen species produced by infiltrating blood cells and Kupffer cells (resident macrophages) can injure hepatocytes. We hypothesized that hepatocyte survival is influenced by the relatively small juxtaposed population of hepatic stellate cells (HSCs). We used cultures of primary rat hepatocytes as targets for superoxide-induced damage, which was determined by crystal violet assay and lactate dehydrogenase release. An HSC-conditioned medium prevented the superoxide-induced death of hepatocytes, and the protective factor released by HSCs was a protein or proteins (apparent molecular weight > 100 kDa) resistant to heat (70°C) and pH (4.5-8.5). The protein or proteins were partially purified on DE52 cellulose, and the active fraction contained no detectable levels of superoxide dismutase: after separation by Sephadex G-100 gel filtration, the antioxidant activity could be reconstituted by the combination of 2 protein peaks, and this reconstituted activity was protective both in vitro and against liver ischemia/reperfusion injury in intact rats. Mass spectrometry proteomic studies confirmed that this activity could not be attributed to any previously identified antioxidant protein. Thus, HSCs protect hepatocytes against oxidative damage through the production of a novel protein, the further purification of which may lead to the isolation of a powerful oxygen radical scavenger with clinical applications.
Collapse
Affiliation(s)
- Noor Mohamed Jameel
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lu D, Scully M, Kakkar V, Lu X. ADAM-15 disintegrin-like domain structure and function. Toxins (Basel) 2010; 2:2411-27. [PMID: 22069559 PMCID: PMC3153164 DOI: 10.3390/toxins2102411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/13/2010] [Accepted: 10/18/2010] [Indexed: 12/23/2022] Open
Abstract
The ADAM (a disintegrin-like and metalloproteinase) proteins are a family of transmembrane cell-surface proteins with important functions in adhesion and proteolytic processing in all animals. Human ADAM-15 is the only member of the ADAM family with the integrin binding motif Arg-Gly-Asp (RGD) in its disintegrin-like domain. This motif is also found in most snake venom disintegrins and other disintegrin-like proteins. This unique RGD motif within ADAM-15 serves as an integrin ligand binding site, through which it plays a pivotal role in interacting with integrin receptors, a large family of heterodimeric transmembrane glycoproteins. This manuscript will present a review of the RGD-containing disintegrin-like domain structures and the structural features responsible for their activity as antagonists of integrin function in relation to the canonical RGD template.
Collapse
Affiliation(s)
- Dong Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
- Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mike Scully
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
| | - Vijay Kakkar
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
| | - Xinjie Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR, UK; (D.L.); (M.S.); (V.K.)
- Author to whom correspondence should be addressed; ; Tel.: +44-0207-351-8312; Fax: +44-0207-351-8324
| |
Collapse
|