1
|
Gonzalez LN, Cabeza MS, Robello C, Guerrero SA, Iglesias AA, Arias DG. Biochemical characterization of GAF domain of free-R-methionine sulfoxide reductase from Trypanosoma cruzi. Biochimie 2023; 213:190-204. [PMID: 37423556 DOI: 10.1016/j.biochi.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Trypanosoma cruzi is the causal agent of Chagas Disease and is a unicellular parasite that infects a wide variety of mammalian hosts. The parasite exhibits auxotrophy by L-Met; consequently, it must be acquired from the extracellular environment of the host, either mammalian or invertebrate. Methionine (Met) oxidation produces a racemic mixture (R and S forms) of methionine sulfoxide (MetSO). Reduction of L-MetSO (free or protein-bound) to L-Met is catalyzed by methionine sulfoxide reductases (MSRs). Bioinformatics analyses identified the coding sequence for a free-R-MSR (fRMSR) enzyme in the genome of T. cruzi Dm28c. Structurally, this enzyme is a modular protein with a putative N-terminal GAF domain linked to a C-terminal TIP41 motif. We performed detailed biochemical and kinetic characterization of the GAF domain of fRMSR in combination with mutant versions of specific cysteine residues, namely, Cys12, Cys98, Cys108, and Cys132. The isolated recombinant GAF domain and full-length fRMSR exhibited specific catalytic activity for the reduction of free L-Met(R)SO (non-protein bound), using tryparedoxins as reducing partners. We demonstrated that this process involves two Cys residues, Cys98 and Cys132. Cys132 is the essential catalytic residue on which a sulfenic acid intermediate is formed. Cys98 is the resolutive Cys, which forms a disulfide bond with Cys132 as a catalytic step. Overall, our results provide new insights into redox metabolism in T. cruzi, contributing to previous knowledge of L-Met metabolism in this parasite.
Collapse
Affiliation(s)
- Lihue N Gonzalez
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Matías S Cabeza
- Laboratorio de Micología y Diagnóstico Molecular. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Parasitología y Micología. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Parasitología y Micología. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
2
|
Tarrago L, Kaya A, Kim HY, Manta B, Lee BC, Gladyshev VN. The selenoprotein methionine sulfoxide reductase B1 (MSRB1). Free Radic Biol Med 2022; 191:228-240. [PMID: 36084791 DOI: 10.1016/j.freeradbiomed.2022.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Methionine (Met) can be oxidized to methionine sulfoxide (MetO), which exist as R- and S-diastereomers. Present in all three domains of life, methionine sulfoxide reductases (MSR) are the enzymes that reduce MetO back to Met. Most characterized among them are MSRA and MSRB, which are strictly stereospecific for the S- and R-diastereomers of MetO, respectively. While the majority of MSRs use a catalytic Cys to reduce their substrates, some employ selenocysteine. This is the case of mammalian MSRB1, which was initially discovered as selenoprotein SELR or SELX and later was found to exhibit an MSRB activity. Genomic analyses demonstrated its occurrence in most animal lineages, and biochemical and structural analyses uncovered its catalytic mechanism. The use of transgenic mice and mammalian cell culture revealed its physiological importance in the protection against oxidative stress, maintenance of neuronal cells, cognition, cancer cell proliferation, and the immune response. Coincident with the discovery of Met oxidizing MICAL enzymes, recent findings of MSRB1 regulating the innate immunity response through reversible stereospecific Met-R-oxidation of cytoskeletal actin opened up new avenues for biological importance of MSRB1 and its role in disease. In this review, we discuss the current state of research on MSRB1, compare it with other animal Msrs, and offer a perspective on further understanding of biological functions of this selenoprotein.
Collapse
Affiliation(s)
- Lionel Tarrago
- UMR 1163, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Université, 13009, Marseille, France.
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Bruno Manta
- Laboratorio de Genomica Microbiana, Institut Pasteur de Montevideo, Mataojo 2020, 11440, Montevideo, Uruguay; Catedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Las Heras 1925, 11600, Montevideo, Uruguay
| | - Byung-Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
3
|
Xiang MH, Huang H, Liu XJ, Tong ZX, Zhang CX, Wang F, Yu RQ, Jiang JH. Mitochondrion-Targeting Fluorescence Probe via Reduction Induced Charge Transfer for Fast Methionine Sulfoxide Reductases Imaging. Anal Chem 2019; 91:5489-5493. [DOI: 10.1021/acs.analchem.9b00383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mei-Hao Xiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hui Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xian-Jun Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zong-Xuan Tong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chun-Xia Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Methionine Sulfoxide Reductases of Archaea. Antioxidants (Basel) 2018; 7:antiox7100124. [PMID: 30241308 PMCID: PMC6211008 DOI: 10.3390/antiox7100124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023] Open
Abstract
Methionine sulfoxide reductases are found in all domains of life and are important in reversing the oxidative damage of the free and protein forms of methionine, a sulfur containing amino acid particularly sensitive to reactive oxygen species (ROS). Archaea are microbes of a domain of life distinct from bacteria and eukaryotes. Archaea are well known for their ability to withstand harsh environmental conditions that range from habitats of high ROS, such as hypersaline lakes of intense ultraviolet (UV) radiation and desiccation, to hydrothermal vents of low concentrations of dissolved oxygen at high temperature. Recent evidence reveals the methionine sulfoxide reductases of archaea function not only in the reduction of methionine sulfoxide but also in the ubiquitin-like modification of protein targets during oxidative stress, an association that appears evolutionarily conserved in eukaryotes. Here is reviewed methionine sulfoxide reductases and their distribution and function in archaea.
Collapse
|
5
|
Singh VK, Vaish M, Johansson TR, Baum KR, Ring RP, Singh S, Shukla SK, Moskovitz J. Significance of four methionine sulfoxide reductases in Staphylococcus aureus. PLoS One 2015; 10:e0117594. [PMID: 25680075 PMCID: PMC4334518 DOI: 10.1371/journal.pone.0117594] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/29/2014] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen and emergence of antibiotic resistance in clinical staphylococcal isolates raises concerns about our ability to control these infections. Cell wall-active antibiotics cause elevated synthesis of methionine sulfoxide reductases (Msrs: MsrA1 and MsrB) in S. aureus. MsrA and MsrB enzymes reduce S-epimers and R-epimers of methionine sulfoxide, respectively, that are generated under oxidative stress. In the S. aureus chromosome, there are three msrA genes (msrA1, msrA2 and msrA3) and one msrB gene. To understand the precise physiological roles of Msr proteins in S. aureus, mutations in msrA1, msrA2 and msrA3 and msrB genes were created by site-directed mutagenesis. These mutants were combined to create a triple msrA (msrA1, msrA2 and msrA3) and a quadruple msrAB (msrA1, msrA2, msrA3, msrB) mutant. These mutants were used to determine the roles of Msr proteins in staphylococcal growth, antibiotic resistance, adherence to human lung epithelial cells, pigment production, and survival in mice relative to the wild-type strains. MsrA1-deficient strains were sensitive to oxidative stress conditions, less pigmented and less adherent to human lung epithelial cells, and showed reduced survival in mouse tissues. In contrast, MsrB-deficient strains were resistant to oxidants and were highly pigmented. Lack of MsrA2 and MsrA3 caused no apparent growth defect in S. aureus. In complementation experiments with the triple and quadruple mutants, it was MsrA1 and not MsrB that was determined to be critical for adherence and phagocytic resistance of S. aureus. Overall, the data suggests that MsrA1 may be an important virulence factor and MsrB probably plays a balancing act to counter the effect of MsrA1 in S. aureus.
Collapse
Affiliation(s)
- Vineet K. Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
- * E-mail:
| | - Manisha Vaish
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Trintje R. Johansson
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Kyle R. Baum
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Robert P. Ring
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Saumya Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, United States of America
| | - Sanjay K. Shukla
- Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
6
|
Kim HS, Kwak GH, Lee K, Jo CH, Hwang KY, Kim HY. Structural and biochemical analysis of a type II free methionine-R-sulfoxide reductase from Thermoplasma acidophilum. Arch Biochem Biophys 2014; 560:10-9. [DOI: 10.1016/j.abb.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022]
|
7
|
Boschi-Muller S, Branlant G. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity. Bioorg Chem 2014; 57:222-230. [PMID: 25108804 DOI: 10.1016/j.bioorg.2014.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 01/16/2023]
Abstract
Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form.
Collapse
Affiliation(s)
- Sandrine Boschi-Muller
- UMR 7365 CNRS, Université de Lorraine, IMoPA, Enzymologie Moléculaire et Structurale, Biopôle, CS 50184, 54505 Vandoeuvre-les-Nancy, France
| | - Guy Branlant
- UMR 7365 CNRS, Université de Lorraine, IMoPA, Enzymologie Moléculaire et Structurale, Biopôle, CS 50184, 54505 Vandoeuvre-les-Nancy, France.
| |
Collapse
|
8
|
Tarrago L, Gladyshev VN. Recharging oxidative protein repair: catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates. BIOCHEMISTRY (MOSCOW) 2013; 77:1097-107. [PMID: 23157290 DOI: 10.1134/s0006297912100021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sulfur-containing amino acid methionine (Met) in its free and amino acid residue forms can be readily oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Methionine sulfoxide reductases A (MSRA) and B (MSRB) reduce MetO back to Met in a stereospecific manner, acting on the S and R forms, respectively. A third MSR type, fRMSR, reduces the R form of free MetO. MSRA and MSRB are spread across the three domains of life, whereas fRMSR is restricted to bacteria and unicellular eukaryotes. These enzymes protect against abiotic and biotic stresses and regulate lifespan. MSRs are thiol oxidoreductases containing catalytic redox-active cysteine or selenocysteine residues, which become oxidized by the substrate, requiring regeneration for the next catalytic cycle. These enzymes can be classified according to the number of redox-active cysteines (selenocysteines) and the strategies to regenerate their active forms by thioredoxin and glutaredoxin systems. For each MSR type, we review catalytic parameters for the reduction of free MetO, low molecular weight MetO-containing compounds, and oxidized proteins. Analysis of these data reinforces the concept that MSRAs reduce various types of MetO-containing substrates with similar efficiency, whereas MSRBs are specialized for the reduction of MetO in proteins.
Collapse
Affiliation(s)
- L Tarrago
- Brigham and Women's Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Denkel LA, Horst SA, Rouf SF, Kitowski V, Böhm OM, Rhen M, Jäger T, Bange FC. Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium. PLoS One 2011; 6:e26974. [PMID: 22073230 PMCID: PMC3206869 DOI: 10.1371/journal.pone.0026974] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/06/2011] [Indexed: 12/24/2022] Open
Abstract
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium.
Collapse
Affiliation(s)
- Luisa A. Denkel
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Sarah A. Horst
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Syed Fazle Rouf
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Vera Kitowski
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Oliver M. Böhm
- Molecular Links Sachsen-Anhalt Gesellschaft mit beschränkter Haftung, Magdeburg, Germany
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Timo Jäger
- Molecular Links Sachsen-Anhalt Gesellschaft mit beschränkter Haftung, Magdeburg, Germany
| | - Franz-Christoph Bange
- Department of Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
10
|
Gruez A, Libiad M, Boschi-Muller S, Branlant G. Substrate binding in free methionine-R-sulfoxide reductase. J Biol Chem 2010; 285:le17; author reply le18. [PMID: 20851894 DOI: 10.1074/jbc.l110.103119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Bong SM, Kwak GH, Moon JH, Lee KS, Kim HS, Kim HY, Chi YM. Reply to Gruez et al.: Substrate Binding in Reduced Free Methionine-R-sulfoxide Reductase. J Biol Chem 2010. [DOI: 10.1074/jbc.n110.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|