1
|
Yao H, Li C, He F, Song T, Brosseau JP, Wang H, Lu H, Fang C, Shi H, Lan J, Fang JY, Xu J. A peptidic inhibitor for PD-1 palmitoylation targets its expression and functions. RSC Chem Biol 2020; 2:192-205. [PMID: 34458782 PMCID: PMC8341464 DOI: 10.1039/d0cb00157k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death protein 1 (PD-1) is a crucial anticancer target, but the relatively low response rate and acquired resistance to existing antibody drugs highlight an urgent need to develop alternative targeting strategies. Here, we report the palmitoylation of PD-1, discover the main DHHC enzyme for this modification, reveal the mechanism of its effect on PD-1 protein stability, and rationally develop a peptide for targeting PD-1 expression. Palmitoylation promoted the trafficking of PD-1 to the recycling endosome, thus preventing its lysosome-dependent degradation. Palmitoylation of PD-1, but not of PD-L1, promoted mTOR signaling and tumor cell proliferation, and targeting palmitoylation displayed significant anti-tumor effects in a three-dimensional culture system. A peptide was designed to competitively inhibit PD-1 palmitoylation and expression, opening a new route for developing PD-1 inhibitors and combinatorial cancer immunotherapy. We show for the first time that PD-1 is palmitoylated, identify DHHC9 as the predominant enzyme for its palmitoylation, and reveal the molecular mechanisms underlying its effects on PD-1 stability and functions. Importantly, we also designed PD1-PALM, a competitive inhibitor of PD-1 palmitoylation, and this first-in-class molecule may inspire the development of new checkpoint inhibitors.![]()
Collapse
Affiliation(s)
- Han Yao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University 145 Middle Shandong Road Shanghai 200001 China
| | - Chushu Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University 145 Middle Shandong Road Shanghai 200001 China
| | - Fang He
- Institutes of Biomedical Sciences, Fudan University, and Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Fudan University Shanghai China
| | - Teng Song
- Institutes of Biomedical Sciences, Fudan University, and Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Fudan University Shanghai China
| | - Jean-Philippe Brosseau
- Department of Biochemistry and functional Genomics, University of Sherbrooke 3001 Jean-Mignault Sherbrooke J1E4K8 Canada
| | - Huanbin Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University 145 Middle Shandong Road Shanghai 200001 China
| | - Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University Shanghai China
| | - Caiyun Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University Shanghai China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu China
| | - Jiang Lan
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center Chengdu China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University 145 Middle Shandong Road Shanghai 200001 China
| | - Jie Xu
- Institutes of Biomedical Sciences, Fudan University, and Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Fudan University Shanghai China
| |
Collapse
|
2
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Mulvaney EP, O'Meara F, Khan AR, O'Connell DJ, Kinsella BT. Identification of α-helix 4 (α4) of Rab11a as a novel Rab11-binding domain (RBD): Interaction of Rab11a with the Prostacyclin Receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1819-1832. [PMID: 28739266 DOI: 10.1016/j.bbamcr.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022]
Abstract
The cellular trafficking of numerous G protein-coupled receptors (GPCRs) is known to be regulated by Rab proteins that involves a direct protein:protein interaction between the receptor and the GTPase. In the case of the human prostacyclin receptor (hIP), it undergoes agonist-induced internalization and subsequent Rab11a-dependent recyclization involving an interaction between a Rab11-binding domain (RBD) localized within its carboxyl-tail domain with Rab11a. However, the GPCR-interacting domain on Rab11a itself is unknown. Hence, we sought to identify the region within Rab11a that mediates its interaction with the RBD of the hIP. The α4 helix region of Rab11 was identified as a novel binding domain for the hIP, a site entirely distinct from the Switch I/Switch II -regions that act as specific binding domain for most other Rab and Ras-like GTPase interactants. Specifically, Glu138 within α4 helix of Rab11a appears to contact with key residues (e.g. Lys304) within the RBD of the hIP, where such contacts differ depending on the agonist-activated versus -inactive status of the hIP. Through mutational studies, supported by in silico homology modelling of the inactive and active hIP:Rab11a complexes, a mechanism is proposed to explain both the constitutive and agonist-induced binding of Rab11a to regulate intracellular trafficking of the hIP. Collectively, these studies are not only the first to identify α4 helix of Rab11a as a protein binding domain on the GTPase but also reveal novel mechanistic insights into the intracellular trafficking of the hIP, and potentially of other members of the GPCR superfamily, involving Rab11-dependent mechanisms.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fergal O'Meara
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - David J O'Connell
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Eivers SB, Kinsella BT. Regulated expression of the prostacyclin receptor (IP) gene by androgens within the vasculature: Combined role for androgens and serum cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1333-51. [PMID: 27365208 DOI: 10.1016/j.bbagrm.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 01/11/2023]
Abstract
The prostanoid prostacyclin plays a key cardioprotective role within the vasculature. There is increasing evidence that androgens may also confer cardioprotection but through unknown mechanisms. This study investigated whether the androgen dihydrotestosterone (DHT) may regulate expression of the prostacyclin/I prostanoid receptor or, in short, the IP in platelet-progenitor megakaryoblastic and vascular endothelial cells. DHT significantly increased IP mRNA and protein expression, IP-induced cAMP generation and promoter (PrmIP)-directed gene expression in all cell types examined. The androgen-responsive region was localised to a cis-acting androgen response element (ARE), which lies in close proximity to a functional sterol response element (SRE) within the core promoter. In normal serum conditions, DHT increased IP expression through classic androgen receptor (AR) binding to the functional ARE within the PrmIP. However, under conditions of low-cholesterol, DHT led to further increases in IP expression through an indirect mechanism involving AR-dependent upregulation of SCAP expression and enhanced SREBP1 processing & binding to the SRE within the PrmIP. Chromatin immunoprecipitation assays confirmed DHT-induced AR binding to the ARE in vivo in cells cultured in normal serum while, in conditions of low cholesterol, DHT led to increased AR and SREBP1 binding to the functional ARE and SRE cis-acting elements, respectively, within the core PrmIP resulting in further increases in IP expression. Collectively, these data establish that the human IP gene is under the transcriptional regulation of DHT, where this regulation is further influenced by serum-cholesterol levels. This may explain, in part, some of the protective actions of androgens within the vasculature.
Collapse
Affiliation(s)
- Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
5
|
Grimsey NJ, Coronel LJ, Cordova IC, Trejo J. Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins. J Biol Chem 2015; 291:2223-36. [PMID: 26635365 DOI: 10.1074/jbc.m115.702993] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that undergoes proteolytic irreversible activation by coagulant and anti-coagulant proteases. Given the irreversible activation of PAR1, signaling by the receptor is tightly regulated through desensitization and intracellular trafficking. PAR1 displays both constitutive and agonist-induced internalization. Constitutive internalization of PAR1 is important for generating an internal pool of naïve receptors that replenish the cell surface and facilitate resensitization, whereas agonist-induced internalization of PAR1 is critical for terminating G protein signaling. We showed that PAR1 constitutive internalization is mediated by the adaptor protein complex-2 (AP-2), whereas AP-2 and epsin control agonist-induced PAR1 internalization. However, the mechanisms that regulate PAR1 recycling are not known. In the present study we screened a siRNA library of 140 different membrane trafficking proteins to identify key regulators of PAR1 intracellular trafficking. In addition to known mediators of PAR1 endocytosis, we identified Rab11B as a critical regulator of PAR1 trafficking. We found that siRNA-mediated depletion of Rab11B and not Rab11A blocks PAR1 recycling, which enhanced receptor lysosomal degradation. Although Rab11A is not required for PAR1 recycling, depletion of Rab11A resulted in intracellular accumulation of PAR1 through disruption of basal lysosomal degradation of the receptor. Moreover, enhanced degradation of PAR1 observed in Rab11B-deficient cells is blocked by depletion of Rab11A and the autophagy related-5 protein, suggesting that PAR1 is shuttled to an autophagic degradation pathway in the absence of Rab11B recycling. Together these findings suggest that Rab11A and Rab11B differentially regulate intracellular trafficking of PAR1 through distinct endosomal sorting mechanisms.
Collapse
Affiliation(s)
- Neil J Grimsey
- From the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Luisa J Coronel
- From the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Isabel Canto Cordova
- From the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- From the Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
6
|
Prostacyclin receptors: Transcriptional regulation and novel signalling mechanisms. Prostaglandins Other Lipid Mediat 2015; 121:70-82. [DOI: 10.1016/j.prostaglandins.2015.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Accepted: 04/18/2015] [Indexed: 12/24/2022]
|
7
|
Stasi M, De Luca M, Bucci C. Two-hybrid-based systems: powerful tools for investigation of membrane traffic machineries. J Biotechnol 2014; 202:105-17. [PMID: 25529347 DOI: 10.1016/j.jbiotec.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
Protein-protein interactions regulate biological processes and are fundamental for cell functions. Recently, efforts have been made to define interactomes, which are maps of protein-protein interactions that are useful for understanding biological pathways and networks and for investigating how perturbations of these networks lead to diseases. Therefore, interactomes are becoming fundamental for establishing the molecular basis of human diseases and contributing to the discovery of effective therapies. Interactomes are constructed based on experimental data present in the literature and computational predictions of interactions. Several biochemical, genetic and biotechnological techniques have been used in the past to identify protein-protein interactions. The yeast two-hybrid system has beyond doubt represented a revolution in the field, being a versatile tool and allowing the immediate identification of the interacting proteins and isolation of the cDNA coding for the interacting peptide after in vivo screening. Recently, variants of the yeast two-hybrid assay have been developed, including high-throughput systems that promote the rapidly growing field of proteomics. In this review we will focus on the role of this technique in the discovery of Rab interacting proteins, highlighting the importance of high-throughput two-hybrid screening as a tool to study the complexity of membrane traffic machineries.
Collapse
Affiliation(s)
- Mariangela Stasi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
8
|
Esseltine JL, Ferguson SSG. Regulation of G protein-coupled receptor trafficking and signaling by Rab GTPases. Small GTPases 2013; 4:132-5. [PMID: 23511852 DOI: 10.4161/sgtp.24304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rab GTPases play an essential role in the regulation of intracellular transport including the budding, tethering, and fusion of vesicles as well as organelle motility. The regulation of G protein-coupled receptor (GPCR) trafficking by Rab GTPases has traditionally been regarded as a non-specific process that facilitates the movement of the receptors between intracellular membrane compartments. Thus, alterations in GPCR signal transduction and trafficking following the overexpression of constitutively active and dominant negative Rabs were originally considered to be solely the passive by-product of perturbations in intracellular compartmental dynamics. Recently, an explosion of experimental studies has provided increasingly convincing evidence that receptor trafficking actively affects the signal transduction of cargo proteins and that the signaling of GPCR vesicular cargo can in turn modulate Rab GTPase regulated intracellular transport processes. This research is revealing how different Rabs coordinate with themselves and other regulatory molecules to mediate protein trafficking, as well as uncovers novel functions for traditional Rabs, while illustrating the active role these trafficking molecules play in pathology of disease. Recently published in the Journal of Neuroscience, Esseltine et al., present a novel role for the typified exocytic small G protein Rab8 in the intracellular trafficking and signal transduction of metabotropic glutamate receptor 1.
Collapse
Affiliation(s)
- Jessica L Esseltine
- The J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
9
|
Rab8 modulates metabotropic glutamate receptor subtype 1 intracellular trafficking and signaling in a protein kinase C-dependent manner. J Neurosci 2013; 32:16933-42a. [PMID: 23175844 DOI: 10.1523/jneurosci.0625-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors (GPCRs) that are activated by glutamate, the primary excitatory neurotransmitter in the CNS. Alterations in glutamate receptor signaling are implicated in neuropathologies such as Alzheimer's disease, ischemia, and Huntington's disease among others. Group 1 mGluRs (mGluR1 and mGluR5) are primarily coupled to Gα(q/11) leading to the activation of phospholipase C and the formation of diacylglycerol and inositol 1,4,5-trisphosphate, which results in the release of intracellular calcium stores and protein kinase C (PKC) activation. Desensitization, endocytosis, and recycling are major mechanisms of GPCR regulation, and the intracellular trafficking of GPCRs is linked to the Rab family of small G proteins. Rab8 is a small GTPase that is specifically involved in the regulation of secretory/recycling vesicles, modulation of the actin cytoskeleton, and cell polarity. Rab8 has been shown to regulate the synaptic delivery of AMPA receptors during long-term potentiation and during constitutive receptor recycling. We show here that Rab8 interacts with the C-terminal tail of mGluR1a in an agonist-dependent manner and plays a role in regulating of mGluR1a signaling and intracellular trafficking in human embryonic kidney 293 cells. Specifically, Rab8 expression attenuates mGluR1a-mediated inositol phosphate formation and calcium release from mouse neurons in a PKC-dependent manner, while increasing cell surface mGluR1a expression via decreased receptor endocytosis. These experiments provide us with an understanding of the role Rabs play in coordinated regulation of mGluR1a and how this impacts mGluR1a signaling.
Collapse
|
10
|
β-Arrestins: modulators of small GTPase activation and function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:149-74. [PMID: 23764053 DOI: 10.1016/b978-0-12-394440-5.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most cellular events responsible for accurate G protein-coupled receptor trafficking involve small GTP-binding proteins. For example, trafficking of receptors via the endocytic and exocytic pathways requires activation of ADP-ribosylation factors and Rab proteins, while receptor-mediated complex responses such as migration are well characterized to be dependent upon Rho family members. Because β-arrestin proteins are recruited to activated receptors and now considered as key signaling molecules, whether they act to control small GTPase activity remains a subject of great interest. Over the years, considerable evidence has suggested that β-arrestins and GTPases might be effectors of the same signaling pathways. One example is the roles of both β-arrestin and Ras, the prototypical GTPase, in coordinating activation of mitogen-activated protein kinase. Recently developed tools effective in suppressing the expression of β-arrestins will help define whether they are essential for small G protein activation. Furthermore, novel approaches to identify protein complexes will greatly advance our understanding of the possible cross talk between β-arrestin and small GTPases.
Collapse
|
11
|
Interaction of the human prostacyclin receptor and the NHERF4 family member intestinal and kidney enriched PDZ protein (IKEPP). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1998-2012. [DOI: 10.1016/j.bbamcr.2012.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022]
|
12
|
Turner EC, Kinsella BT. Regulation of the human prostacyclin receptor gene by the cholesterol-responsive SREBP1. J Lipid Res 2012; 53:2390-404. [PMID: 22969152 DOI: 10.1194/jlr.m029314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.
Collapse
Affiliation(s)
- Elizebeth C Turner
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
13
|
Magalhaes AC, Dunn H, Ferguson SS. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 2012; 165:1717-1736. [PMID: 21699508 DOI: 10.1111/j.1476-5381.2011.01552.x] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GPCRs represent the largest family of integral membrane proteins and were first identified as receptor proteins that couple via heterotrimeric G-proteins to regulate a vast variety of effector proteins to modulate cellular function. It is now recognized that GPCRs interact with a myriad of proteins that not only function to attenuate their signalling but also function to couple these receptors to heterotrimeric G-protein-independent signalling pathways. In addition, intracellular and transmembrane proteins associate with GPCRs and regulate their processing in the endoplasmic reticulum, trafficking to the cell surface, compartmentalization to plasma membrane microdomains, endocytosis and trafficking between intracellular membrane compartments. The present review will overview the functional consequence of β-arrestin, receptor activity-modifying proteins (RAMPS), regulators of G-protein signalling (RGS), GPCR-associated sorting proteins (GASPs), Homer, small GTPases, PSD95/Disc Large/Zona Occludens (PDZ), spinophilin, protein phosphatases, calmodulin, optineurin and Src homology 3 (SH3) containing protein interactions with GPCRs.
Collapse
Affiliation(s)
- Ana C Magalhaes
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Henry Dunn
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| | - Stephen Sg Ferguson
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, London, ON, CanadaThe Department of Physiology & Pharmacology, the University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Aratake Y, Okuno T, Matsunobu T, Saeki K, Takayanagi R, Furuya S, Yokomizo T. Helix 8 of leukotriene B
4
receptor 1 inhibits ligand‐induced internalization. FASEB J 2012; 26:4068-78. [DOI: 10.1096/fj.12-212050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yoshifusa Aratake
- Department of Medical BiochemistryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Toshiaki Okuno
- Department of Medical BiochemistryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takehiko Matsunobu
- Department of Medical BiochemistryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kazuko Saeki
- Department of Medical BiochemistryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Sonoko Furuya
- Section of Brain Structure Information, Supportive Center for Brain ResearchNational Institute for Physiological SciencesAichiJapan
| | - Takehiko Yokomizo
- Department of Medical BiochemistryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
15
|
Keating GL, Turner EC, Kinsella BT. Regulation of the human prostacyclin receptor gene in megakaryocytes: Major roles for C/EBPδ and PU.1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:428-45. [DOI: 10.1016/j.bbagrm.2012.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/03/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|
16
|
Olausson BES, Grossfield A, Pitman MC, Brown MF, Feller SE, Vogel A. Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes. J Am Chem Soc 2012; 134:4324-31. [PMID: 22280374 DOI: 10.1021/ja2108382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and phosphoethanolamine headgroups. The simulation reveals striking differences between the palmitoylations at Cys322 and Cys323 as well as between the palmitoyl chains and the neighboring lipids. Notably the palmitoyl group at Cys322 shows considerably greater contact with helix H1 of rhodopsin, yielding frequent chain upturns with longer reorientational correlation times, and relatively low order parameters. While the palmitoylation at Cys323 makes fewer protein contacts and has increased order compared to Cys322, it nevertheless exhibits greater flexibility with smaller order parameters than the stearoyl chains of the surrounding lipids. The dynamical structure of the palmitoylations-as well as their extensive fluctuations-suggests a complex function for the post-translational modifications in rhodopsin and potentially other G protein-coupled receptors, going beyond their role as membrane anchoring elements. Rather, we propose that the palmitoylation at Cys323 has a potential role as a lipid anchor, whereas the palmitoyl-protein interaction observed for Cys322 suggests a more specific interaction that affects the stability of the dark state of rhodopsin.
Collapse
Affiliation(s)
- Bjoern E S Olausson
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, D-06120 Halle/Saale, Germany
| | | | | | | | | | | |
Collapse
|
17
|
The role of palmitoylation in signalling, cellular trafficking and plasma membrane localization of protease-activated receptor-2. PLoS One 2011; 6:e28018. [PMID: 22140500 PMCID: PMC3226677 DOI: 10.1371/journal.pone.0028018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/29/2011] [Indexed: 01/05/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. This irreversible activation mechanism leads to rapid receptor desensitization by internalisation and degradation. We have explored the role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Experiments using the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling using two approaches, which showed that PAR2 stably expressed by CHO-K1 cells is palmitoylated and that palmitoylation occurs on cysteine 361. Palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ∼9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. We also show that receptor palmitoylation occurs within the Golgi apparatus and is required for efficient agonist-induced rab11a-mediated trafficking of PAR2 to the cell surface. Palmitoylation is also required for receptor desensitization, as agonist-induced β-arrestin recruitment and receptor endocytosis and degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. These data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor.
Collapse
|
18
|
Lachance V, Cartier A, Génier S, Munger S, Germain P, Labrecque P, Parent JL. Regulation of β2-adrenergic receptor maturation and anterograde trafficking by an interaction with Rab geranylgeranyltransferase: modulation of Rab geranylgeranylation by the receptor. J Biol Chem 2011; 286:40802-13. [PMID: 21990357 DOI: 10.1074/jbc.m111.267815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous reports by us and others demonstrated that G protein-coupled receptors interact functionally with Rab GTPases. Here, we show that the β(2)-adrenergic receptor (β(2)AR) interacts with the Rab geranylgeranyltransferase α-subunit (RGGTA). Confocal microscopy showed that β(2)AR co-localizes with RGGTA in intracellular compartments and at the plasma membrane. Site-directed mutagenesis revealed that RGGTA binds to the L(339)L(340) motif in the β(2)AR C terminus known to be involved in the transport of the receptor from the endoplasmic reticulum to the cell surface. Modulation of the cellular levels of RGGTA protein by overexpression or siRNA-mediated knockdown of the endogenous protein demonstrated that RGGTA has a positive role in the maturation and anterograde trafficking of the β(2)AR, which requires the interaction of RGGTA with the β(2)AR L(339)L(340) motif. Furthermore, the β(2)AR modulates the geranylgeranylation of Rab6a, Rab8a, and Rab11a, but not of other Rab proteins tested in this study. Regulation of Rab geranylgeranylation by the β(2)AR was dependent on the RGGTA-interacting L(339)L(340) motif. Interestingly, a RGGTA-Y107F mutant was unable to regulate Rab geranylgeranylation but still promoted β(2)AR maturation, suggesting that RGGTA may have functions independent of Rab geranylgeranylation. We demonstrate for the first time an interaction between a transmembrane receptor and RGGTA which regulates the maturation and anterograde transport of the receptor, as well as geranylgeranylation of Rab GTPases.
Collapse
Affiliation(s)
- Véronik Lachance
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, the Centre de Recherche Clinique Étienne-Le Bel, and the Institut de Pharmacologie de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Takako Hirata
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Turner EC, Mulvaney EP, Reid HM, Kinsella BT. Interaction of the human prostacyclin receptor with the PDZ adapter protein PDZK1: role in endothelial cell migration and angiogenesis. Mol Biol Cell 2011; 22:2664-79. [PMID: 21653824 PMCID: PMC3145543 DOI: 10.1091/mbc.e11-04-0374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prostacyclin is widely implicated in re-endothelialization and angiogenesis but through unknown mechanisms. Herein the HDL scavenger receptor class B, type 1 adapter PDZK1 was identified as a direct, functional interactant of the human prostacyclin receptor and was found to influence prostacyclin-mediated endothelial migration and in vitro angiogenesis. Prostacyclin is increasingly implicated in re-endothelialization and angiogenesis but through largely unknown mechanisms. Herein the high-density lipoprotein (HDL) scavenger receptor class B, type 1 (SR-B1) adapter protein PDZ domain-containing protein 1 (PDZK1) was identified as an interactant of the human prostacyclin receptor (hIP) involving a Class I PDZ ligand at its carboxyl terminus and PDZ domains 1, 3, and 4 of PDZK1. Although the interaction is constitutive, it may be dynamically regulated following cicaprost activation of the hIP through a mechanism involving cAMP-dependent protein kinase (PK)A-phosphorylation of PDZK1 at Ser-505. Although PDZK1 did not increase overall levels of the hIP, it increased its functional expression at the cell surface, enhancing ligand binding and cicaprost-induced cAMP generation. Consistent with its role in re-endothelialization and angiogenesis, cicaprost activation of the hIP increased endothelial cell migration and tube formation/in vitro angiogenesis, effects completely abrogated by the specific IP antagonist RO1138452. Furthermore, similar to HDL/SR-B1, small interfering RNA (siRNA)-targeted disruption of PDZK1 abolished cicaprost-mediated endothelial responses but did not affect VEGF responses. Considering the essential role played by prostacyclin throughout the cardiovascular system, identification of PDZK1 as a functional interactant of the hIP sheds significant mechanistic insights into the protective roles of these key players, and potentially HDL/SR-B1, within the vascular endothelium.
Collapse
Affiliation(s)
- Elizebeth C Turner
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
21
|
Reid HM, Wikström K, Kavanagh DJ, Mulvaney EP, Kinsella BT. Interaction of angio-associated migratory cell protein with the TPα and TPβ isoforms of the human thromboxane A2 receptor. Cell Signal 2011; 23:700-17. [DOI: 10.1016/j.cellsig.2010.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/12/2010] [Indexed: 11/16/2022]
|
22
|
Turner EC, Kavanagh DJ, Mulvaney EP, McLean C, Wikström K, Reid HM, Kinsella BT. Identification of an interaction between the TPalpha and TPbeta isoforms of the human thromboxane A2 receptor with protein kinase C-related kinase (PRK) 1: implications for prostate cancer. J Biol Chem 2011; 286:15440-57. [PMID: 21357687 DOI: 10.1074/jbc.m110.181180] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, thromboxane (TX) A(2) signals through the TPα and TPβ isoforms of the TXA(2) receptor or TP. Here, the RhoA effector protein kinase C-related kinase (PRK) 1 was identified as an interactant of both TPα and ΤPβ involving common and unique sequences within their respective C-terminal (C)-tail domains and the kinase domain of PRK1 (PRK1(640-942)). Although the interaction with PRK1 is constitutive, agonist activation of TPα/TPβ did not regulate the complex per se but enhanced PRK1 activation leading to phosphorylation of its general substrate histone H1 in vitro. Altered PRK1 and TP expression and signaling are increasingly implicated in certain neoplasms, particularly in androgen-associated prostate carcinomas. Agonist activation of TPα/TPβ led to phosphorylation of histone H3 at Thr(11) (H3 Thr(11)), a previously recognized specific marker of androgen-induced chromatin remodeling, in the prostate LNCaP and PC-3 cell lines but not in primary vascular smooth muscle or endothelial cells. Moreover, this effect was augmented by dihydrotestosterone in androgen-responsive LNCaP but not in nonresponsive PC-3 cells. Furthermore, PRK1 was confirmed to constitutively interact with TPα/TPβ in both LNCaP and PC-3 cells, and targeted disruption of PRK1 impaired TPα/TPβ-mediated H3 Thr(11) phosphorylation in, and cell migration of, both prostate cell types. Collectively, considering the role of TXA(2) as a potent mediator of RhoA signaling, the identification of PRK1 as a bona fide interactant of TPα/TPβ, and leading to H3 Thr(11) phosphorylation to regulate cell migration, has broad functional significance such as within the vasculature and in neoplasms in which both PRK1 and the TPs are increasingly implicated.
Collapse
Affiliation(s)
- Elizebeth C Turner
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
23
|
Donnellan PD, Kimbembe CC, Reid HM, Kinsella BT. Identification of a novel endoplasmic reticulum export motif within the eighth α-helical domain (α-H8) of the human prostacyclin receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1202-18. [PMID: 21223948 DOI: 10.1016/j.bbamem.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 01/20/2023]
Abstract
The human prostacyclin receptor (hIP) undergoes agonist-dependent trafficking involving a direct interaction with Rab11a GTPase. The region of interaction was localised to a 14 residue Rab11a binding domain (RBD) within the proximal carboxyl-terminal (C)-tail domain of the hIP, consisting of Val(299)-Val(307) within the eighth helical domain (α-H8) adjacent to the palmitoylated residues at Cys(308)-Cys(311). However, the factors determining the anterograde transport of the newly synthesised hIP from the endoplasmic reticulum (ER) to the plasma membrane (PM) have not been identified. The aim of the current study was to identify the major ER export motif(s) within the hIP initially by investigating the role of Lys residues in its maturation and processing. Through site-directed and Ala-scanning mutational studies in combination with analyses of protein expression and maturation, functional analyses of ligand binding, agonist-induced intracellular signalling and confocal image analyses, it was determined that Lys(297), Arg(302) and Lys(304) located within α-H8 represent the critical determinants of a novel ER export motif of the hIP. Furthermore, while substitution of those critical residues significantly impaired maturation and processing of the hIP, replacement of the positively charged Lys with Arg residues, and vice versa, was functionally permissible. Hence, this study has identified a novel 8 residue ER export motif within the functionally important α-H8 of the hIP. This ER export motif, defined by "K/R(X)(4)K/R(X)K/R," has a strict requirement for positively charged, basic Lys/Arg residues at the 1st, 6th and 8th positions and appears to be evolutionarily conserved within IP sequences from mouse to man.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Arginine/chemistry
- Arginine/genetics
- Arginine/metabolism
- Binding Sites
- Blotting, Western
- Calcium/metabolism
- Calnexin/metabolism
- Computational Biology
- Endoplasmic Reticulum/metabolism
- HEK293 Cells
- Humans
- Lysine/chemistry
- Lysine/genetics
- Lysine/metabolism
- Microscopy, Confocal
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Transport
- Radioligand Assay
- Receptors, Epoprostenol/chemistry
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Peter D Donnellan
- School of Biomeolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
24
|
Maurice P, Guillaume JL, Benleulmi-Chaachoua A, Daulat AM, Kamal M, Jockers R. GPCR-Interacting Proteins, Major Players of GPCR Function. PHARMACOLOGY OF G PROTEIN COUPLED RECEPTORS 2011; 62:349-80. [DOI: 10.1016/b978-0-12-385952-5.00001-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Esseltine JL, Dale LB, Ferguson SSG. Rab GTPases bind at a common site within the angiotensin II type I receptor carboxyl-terminal tail: evidence that Rab4 regulates receptor phosphorylation, desensitization, and resensitization. Mol Pharmacol 2011; 79:175-84. [PMID: 20943774 DOI: 10.1124/mol.110.068379] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The human angiotensin II type 1 receptor (AT₁R) is a member of the G protein-coupled receptor (GPCR) superfamily and represents an important target for cardiovascular therapeutic intervention. Agonist-activation of the AT₁R induces β-arrestin-dependent endocytosis to early endosomes in which the receptor resides as a protein complex with the Rab GTPase Rab5. In the present study, we examined whether other Rab GTPases that regulate receptor trafficking through endosomal compartments also bind to the AT₁R. We find that Rab4, Rab7, and Rab11 all bind to the last 10 amino acid residues of the AT₁R carboxyl-terminal tail. Rab11 binds AT₁R more effectively than Rab5, whereas Rab4 binds less effectively than Rab5. Alanine scanning mutagenesis reveals that proline 354 and cysteine 355 contribute to Rab protein binding, and mutation of these residues does not affect G protein coupling. We find that the Rab GTPases each compete with one another for receptor binding and that although Rab4 interacts poorly with the AT₁R, it effectively displaces Rab11 from the receptor. In contrast, Rab11 overexpression does not prevent Rab4 binding to the AT₁R. Overexpression of wild-type Rab4, but not Rab11, facilitates AT₁R dephosphorylation, and a constitutively active Rab4-Q67L mutant reduces AT₁R desensitization and promotes AT₁R resensitization. Taken together, our data indicate that multiple Rab GTPases bind to a motif localized to the distal end of the AT₁R tail and that increased Rab4 activity may contribute to the regulation AT₁R desensitization and dephosphorylation.
Collapse
Affiliation(s)
- Jessica L Esseltine
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|