1
|
Adhisantoso YG, Körner T, Müntefering F, Ostermann J, Voges J. HiCMC: High-Efficiency Contact Matrix Compressor. BMC Bioinformatics 2024; 25:296. [PMID: 39256681 PMCID: PMC11389233 DOI: 10.1186/s12859-024-05907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Chromosome organization plays an important role in biological processes such as replication, regulation, and transcription. One way to study the relationship between chromosome structure and its biological functions is through Hi-C studies, a genome-wide method for capturing chromosome conformation. Such studies generate vast amounts of data. The problem is exacerbated by the fact that chromosome organization is dynamic, requiring snapshots at different points in time, further increasing the amount of data to be stored. We present a novel approach called the High-Efficiency Contact Matrix Compressor (HiCMC) for efficient compression of Hi-C data. RESULTS By modeling the underlying structures found in the contact matrix, such as compartments and domains, HiCMC outperforms the state-of-the-art method CMC by approximately 8% and the other state-of-the-art methods cooler, LZMA, and bzip2 by over 50% across multiple cell lines and contact matrix resolutions. In addition, HiCMC integrates domain-specific information into the compressed bitstreams that it generates, and this information can be used to speed up downstream analyses. CONCLUSION HiCMC is a novel compression approach that utilizes intrinsic properties of contact matrix, such as compartments and domains. It allows for a better compression in comparison to the state-of-the-art methods. HiCMC is available at https://github.com/sXperfect/hicmc .
Collapse
Affiliation(s)
- Yeremia Gunawan Adhisantoso
- Institut für Informationsverarbeitung and L3S Research Center, Leibniz University Hannover, Hannover, Germany.
| | - Tim Körner
- Institut für Informationsverarbeitung and L3S Research Center, Leibniz University Hannover, Hannover, Germany
| | - Fabian Müntefering
- Institut für Informationsverarbeitung and L3S Research Center, Leibniz University Hannover, Hannover, Germany
| | - Jörn Ostermann
- Institut für Informationsverarbeitung and L3S Research Center, Leibniz University Hannover, Hannover, Germany
| | - Jan Voges
- CIMA University of Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| |
Collapse
|
2
|
Dobransky A, Root M, Hafner N, Marcum M, Sharifi HJ. CRL4-DCAF1 Ubiquitin Ligase Dependent Functions of HIV Viral Protein R and Viral Protein X. Viruses 2024; 16:1313. [PMID: 39205287 PMCID: PMC11360348 DOI: 10.3390/v16081313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The Human Immunodeficiency Virus (HIV) encodes several proteins that contort the host cell environment to promote viral replication and spread. This is often accomplished through the hijacking of cellular ubiquitin ligases. These reprogrammed complexes initiate or enhance the ubiquitination of cellular proteins that may otherwise act to restrain viral replication. Ubiquitination of target proteins may alter protein function or initiate proteasome-dependent destruction. HIV Viral Protein R (Vpr) and the related HIV-2 Viral Protein X (Vpx), engage the CRL4-DCAF1 ubiquitin ligase complex to target numerous cellular proteins. In this review we describe the CRL4-DCAF1 ubiquitin ligase complex and its interactions with HIV Vpr and Vpx. We additionally summarize the cellular proteins targeted by this association as well as the observed or hypothesized impact on HIV.
Collapse
Affiliation(s)
| | | | | | | | - H. John Sharifi
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
3
|
Bohnsack KE, Ficner R, Bohnsack MT, Jonas S. Regulation of DEAH-box RNA helicases by G-patch proteins. Biol Chem 2021; 402:561-579. [PMID: 33857358 DOI: 10.1515/hsz-2020-0338] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
RNA helicases of the DEAH/RHA family form a large and conserved class of enzymes that remodel RNA protein complexes (RNPs) by translocating along the RNA. Driven by ATP hydrolysis, they exert force to dissociate hybridized RNAs, dislocate bound proteins or unwind secondary structure elements in RNAs. The sub-cellular localization of DEAH-helicases and their concomitant association with different pathways in RNA metabolism, such as pre-mRNA splicing or ribosome biogenesis, can be guided by cofactor proteins that specifically recruit and simultaneously activate them. Here we review the mode of action of a large class of DEAH-specific adaptor proteins of the G-patch family. Defined only by their eponymous short glycine-rich motif, which is sufficient for helicase binding and stimulation, this family encompasses an immensely varied array of domain compositions and is linked to an equally diverse set of functions. G-patch proteins are conserved throughout eukaryotes and are even encoded within retroviruses. They are involved in mRNA, rRNA and snoRNA maturation, telomere maintenance and the innate immune response. Only recently was the structural and mechanistic basis for their helicase enhancing activity determined. We summarize the molecular and functional details of G-patch-mediated helicase regulation in their associated pathways and their involvement in human diseases.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Stefanie Jonas
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
4
|
Zhu N, Zhang J, Du Y, Qin X, Miao R, Nan J, Chen X, Sun J, Zhao R, Zhang X, Shi L, Li X, Lin Y, Wei W, Mao A, Zhang Z, Stark GR, Wang Y, Yang J. Loss of ZIP facilitates JAK2-STAT3 activation in tamoxifen-resistant breast cancer. Proc Natl Acad Sci U S A 2020; 117:15047-15054. [PMID: 32532922 PMCID: PMC7334450 DOI: 10.1073/pnas.1910278117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tamoxifen, a widely used modulator of the estrogen receptor (ER), targets ER-positive breast cancer preferentially. We used a powerful validation-based insertion mutagenesis method to find that expression of a dominant-negative, truncated form of the histone deacetylase ZIP led to resistance to tamoxifen. Consistently, increased expression of full-length ZIP gives the opposite phenotype, inhibiting the expression of genes whose products mediate resistance. An important example is JAK2 By binding to two specific sequences in the promoter, ZIP suppresses JAK2 expression. Increased expression and activation of JAK2 when ZIP is inhibited lead to increased STAT3 phosphorylation and increased resistance to tamoxifen, both in cell culture experiments and in a mouse xenograft model. Furthermore, data from human tumors are consistent with the conclusion that decreased expression of ZIP leads to resistance to tamoxifen in ER-positive breast cancer.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou 730000, Gansu, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou 730000, Gansu, People's Republic of China
| | - Yuping Du
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou 730000, Gansu, People's Republic of China
| | - Ruidong Miao
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Jing Nan
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Xing Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Jingjie Sun
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Rui Zhao
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xinxin Zhang
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, Shandong, People's Republic of China
| | - Lei Shi
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xin Li
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Yuxi Lin
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Wei Wei
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Aihong Mao
- Department of Translational Medicine, Gansu Provincial Cancer Hospital, Lanzhou 730000, Gansu, People's Republic of China
- Center of Medical Molecular Biology, Gansu Provincial Academic Institute for Medical Research, Lanzhou 730000, Gansu, People's Republic of China
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 77229
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195;
| | - Yuxin Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195;
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, People's Republic of China;
- Institute of Cancer Biology & Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
- Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, Shandong, People's Republic of China
| |
Collapse
|
5
|
Vpr and Its Cellular Interaction Partners: R We There Yet? Cells 2019; 8:cells8111310. [PMID: 31652959 PMCID: PMC6912716 DOI: 10.3390/cells8111310] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Vpr is a lentiviral accessory protein that is expressed late during the infection cycle and is packaged in significant quantities into virus particles through a specific interaction with the P6 domain of the viral Gag precursor. Characterization of the physiologically relevant function(s) of Vpr has been hampered by the fact that in many cell lines, deletion of Vpr does not significantly affect viral fitness. However, Vpr is critical for virus replication in primary macrophages and for viral pathogenesis in vivo. It is generally accepted that Vpr does not have a specific enzymatic activity but functions as a molecular adapter to modulate viral or cellular processes for the benefit of the virus. Indeed, many Vpr interacting factors have been described by now, and the goal of this review is to summarize our current knowledge of cellular proteins targeted by Vpr.
Collapse
|
6
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
7
|
Regulation of DEAH/RHA helicases by G-patch proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:931857. [PMID: 25692149 PMCID: PMC4322301 DOI: 10.1155/2015/931857] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022]
Abstract
RNA helicases from the DEAH/RHA family are present in all the processes of RNA metabolism. The function of two helicases from this family, Prp2 and Prp43, is regulated by protein partners containing a G-patch domain. The G-patch is a glycine-rich domain discovered by sequence alignment, involved in protein-protein and protein-nucleic acid interaction. Although it has been shown to stimulate the helicase's enzymatic activities, the precise role of the G-patch domain remains unclear. The role of G-patch proteins in the regulation of Prp43 activity has been studied in the two biological processes in which it is involved: splicing and ribosome biogenesis. Depending on the pathway, the activity of Prp43 is modulated by different G-patch proteins. A particular feature of the structure of DEAH/RHA helicases revealed by the Prp43 structure is the OB-fold domain in C-terminal part. The OB-fold has been shown to be a platform responsible for the interaction with G-patch proteins and RNA. Though there is still no structural data on the G-patch domain, in the current model, the interaction between the helicase, the G-patch protein, and RNA leads to a cooperative binding of RNA and conformational changes of the helicase.
Collapse
|
8
|
Maudet C, Sourisce A, Dragin L, Lahouassa H, Rain JC, Bouaziz S, Ramirez BC, Margottin-Goguet F. HIV-1 Vpr induces the degradation of ZIP and sZIP, adaptors of the NuRD chromatin remodeling complex, by hijacking DCAF1/VprBP. PLoS One 2013; 8:e77320. [PMID: 24116224 PMCID: PMC3792905 DOI: 10.1371/journal.pone.0077320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023] Open
Abstract
The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered.
Collapse
Affiliation(s)
- Claire Maudet
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Adèle Sourisce
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Loïc Dragin
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Hichem Lahouassa
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | | | - Serge Bouaziz
- University Paris Descartes, Paris, France
- CNRS UMR8015, Paris, France
| | - Bertha Cécilia Ramirez
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Florence Margottin-Goguet
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene 2013; 514:1-30. [PMID: 22909801 PMCID: PMC5632952 DOI: 10.1016/j.gene.2012.07.083] [Citation(s) in RCA: 548] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/15/2022]
Abstract
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in 'splicing programs', which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed.
Collapse
Affiliation(s)
- Olga Kelemen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yuan Wen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Marina Falaleeva
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
10
|
Morgan MAJ, Mould AW, Li L, Robertson EJ, Bikoff EK. Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions. Mol Cell Biol 2012; 32:3403-13. [PMID: 22733990 PMCID: PMC3422002 DOI: 10.1128/mcb.00174-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023] Open
Abstract
Prdm1/Blimp-1 is a master regulator of gene expression in diverse tissues of the developing embryo and adult organism. Its C-terminal zinc finger domain mediates nuclear import, DNA binding, and recruitment of the corepressors G9a and HDAC1/2. Alternatively spliced transcripts lacking exon 7 sequences encode a structurally divergent isoform (Blimp-1Δexon7) predicted to have distinct functions. Here we demonstrate that the short Blimp-1Δexon7 isoform lacks DNA binding activity and fails to bind G9a or HDAC1/2 but retains the ability to interact with PRMT5. To investigate functional roles of alternative splicing in vivo, we engineered novel mouse strains via embryonic stem (ES) cell technology. Like null mutants, embryos carrying a targeted deletion of exon 7 and exclusively expressing Blimp-1Δexon7 die at around embryonic day 10.5 (E10.5) due to placental defects. In heterozygous Δexon7 mice, there is no evidence of dominant-negative effects. Mice carrying a knock-in allele with an exon 6-exon 7 fusion express full-length Blimp-1 only, develop normally, are healthy and fertile as adults, and efficiently generate mature plasma cells. These findings strongly suggest that the short Blimp-1Δexon7 isoform is dispensable. We propose that developmentally regulated alternative splicing is influenced by chromatin structure at the locus and fine-tunes Blimp-1's functional capabilities.
Collapse
Affiliation(s)
- Marc A J Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Gui B, Han X, Zhang Y, Liang J, Wang D, Xuan C, Yu Z, Shang Y. Dimerization of ZIP promotes its transcriptional repressive function and biological activity. Int J Biochem Cell Biol 2012; 44:886-95. [PMID: 22387311 DOI: 10.1016/j.biocel.2012.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/05/2012] [Accepted: 02/15/2012] [Indexed: 12/31/2022]
Abstract
Self-association of a protein to form dimer and oligomer is a general theme in biological control mechanism, and is increasingly understood to be an important step in many cellular processes, including signaling transduction, protein degradation and transcriptional regulation. Previously, we cloned and functionally characterized a gene encoded for ZIP (zinc finger and G-patch domain-containing protein). We showed that ZIP is a novel transcription repressor that regulates, through recruitment of the nucleosome remodeling and deacetylase (NuRD) complex, a collection of functionally important genes including the epidermal growth factor receptor (EGFR) oncogene. The important role ZIP plays in controlling cell proliferation and carcinogenesis highlights the need for a detailed understanding of the finely mechanisms by which ZIP is regulated. Here, we report that ZIP forms homodimers in vitro and in vivo through its C-terminal domains. We demonstrated that ZIP dimerization promotes its transcriptional repressive activity and is essential for its DNA binding. We showed that enforced dimerization of ZIP suppresses EGFR expression, leading to the delay of cell cycle progression and the inhibition of breast cancer cell proliferation. Thus, our results revealed that dimerization is crucial for is transcriptional repressive function and biological activity and provided a finely tuned means for the regulation the expression of EGFR oncogene. These may shed new light on the EGFR-related breast carcinogenesis and offer a potential new target for breast cancer therapy.
Collapse
Affiliation(s)
- Bin Gui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|