1
|
Yan X, Bu J, Chen X, Zhu MJ. Comparative genomic analysis reveals electron transfer pathways of Thermoanaerobacterium thermosaccharolyticum: Insights into thermophilic electroactive bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167294. [PMID: 37741387 DOI: 10.1016/j.scitotenv.2023.167294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/27/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Microbial extracellular respiration is an important energy metabolism on earth, which is significant for the elemental biogeochemical cycle. Herein, extracellular Fe(III) and electrode respiration were confirmed in Thermoanaerobacterium thermosaccharolyticum MJ2. The intra/extracellular electron transfer (IET/EET) mechanism of MJ2 was investigated by comparative genomic analysis for the first time. Morphological characterization and electrochemical properties of anode illustrated that MJ2 generated bio-electricity by forming a biofilm. The respiration chain inhibition and enzyme activity tests showed that hydrogenase with cytochrome c (Cyt-c) was involved in IET of MJ2. Noteworthily, the exogenous Cyt-c increased hydrogenase activity to promote bio-electricity generation by 92.84 %. The Cyt-c gene synteny between MJ2 and another well-known exoelectrogen (Thermincola potens JR) indicated that Cyt-c bound to the outer membrane mediated the formation of biofilm involved in EET of MJ2. This study broadened the understanding of microbial extracellular respiration diversity and provided new insights to explore the electron transfer pathways of exoelectrogens.
Collapse
Affiliation(s)
- Xing Yan
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Jie Bu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, People's Republic of China.
| |
Collapse
|
2
|
Lashani E, Amoozegar MA, Turner RJ, Moghimi H. Use of Microbial Consortia in Bioremediation of Metalloid Polluted Environments. Microorganisms 2023; 11:microorganisms11040891. [PMID: 37110315 PMCID: PMC10143001 DOI: 10.3390/microorganisms11040891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions. Meanwhile, microorganisms with different mechanisms to tolerate and detoxify metalloid contaminants have an essential role in reducing risks. In this review, we first define metalloids and bioremediation methods and examine the ecology and biodiversity of microorganisms in areas contaminated with these metalloids. Then we studied the genes and proteins involved in the tolerance, transport, uptake, and reduction of these metalloids. Most of these studies focused on a single metalloid and co-contamination of multiple pollutants were poorly discussed in the literature. Furthermore, microbial communication within consortia was rarely explored. Finally, we summarized the microbial relationships between microorganisms in consortia and biofilms to remove one or more contaminants. Therefore, this review article contains valuable information about microbial consortia and their mechanisms in the bioremediation of metalloids.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| | - Raymond J. Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada;
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14178-64411, Iran
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| |
Collapse
|
3
|
Motlagh MK, Noroozifar M, Sodhi RNS, Kraatz H. Development of a Bacterial Enzyme‐Based Biosensor for the Detection and Quantification of Selenate. Chemistry 2022; 28:e202200953. [DOI: 10.1002/chem.202200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mozhgan Khorasani Motlagh
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
| | - Meissam Noroozifar
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
| | - Rana N. S. Sodhi
- Ontario Centre for Characterisation of Advanced Materials Department of Chemical Engineering & Applied Chemistry University of Toronto 2200 College Street Toronto M5S 3E5 Ontario Canada
| | - Heinz‐Bernhard Kraatz
- Department Physical and Environmental Sciences University of Toronto Scarborough 1265 Military Trail Toronto M1C1A4 Ontario Canada
- Department of Chemistry University of Toronto 280 St. George St. Toronto M5S 3H6 Ontario Canada
| |
Collapse
|
4
|
Wang Z, Huang W, Pang F. Selenium in Soil-Plant-Microbe: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:167-181. [PMID: 34617141 DOI: 10.1007/s00128-021-03386-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) plays an important role in geochemistry and is an essential trace element for humans and animals. This review summarizes the transformation and accumulation of Se in the plant-soil-microbe system. As one of the important reservoirs of Se, soil is an important material basis of its entry into the food chain through plants. Soil with an appropriate amount of Se is beneficial for plant growth and plays a valuable role in a stress-resistant environment. Among the many migration and transformation pathways, the transformation of Se by microorganisms is particularly important and is the main form of Se transformation in the soil environment. In this review, the role and form transformation of Se in plants, soil, and microorganisms; the role of Se in plants; the form, input, and output of Se in soil; the absorption and transformation of Se by plants; and the role of microorganisms in Se transformation are presented. In addition to describing the migration and transformation laws of Se in the environment, this review expounds on the main directions and trends of Se research in the agricultural field as well as current gaps and difficulties in Se-related research. Overall, this reviews aims to provide necessary information and theoretical references for the development of Se-rich agriculture.
Collapse
Affiliation(s)
- Zhen Wang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wei Huang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Fei Pang
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
5
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
6
|
Ma H, Gao X, Chen Y, Zhu J, Liu T. Fe(II) enhances simultaneous phosphorus removal and denitrification in heterotrophic denitrification by chemical precipitation and stimulating denitrifiers activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117668. [PMID: 34426390 DOI: 10.1016/j.envpol.2021.117668] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Using Fe(II) salt as the precipitant in heterotrophic denitrification achieves improved TP removal, and enhancement in denitrification was often observed. This study aimed to obtain a better understanding of Fe(II)-enhanced denitrification with sufficient carbon source supply. Laboratory-scale experiments were conducted in SBRs with or without Fe(II) addition. Remarkably improved TP removal was experienced. TP removal efficiency in Fe(II) adding reactor was 85.8 ± 3.4%; whereas, that in the reactor without Fe(II) addition was 31.1 ± 2.8%. Besides improved TP removal, better TN removal efficiency (94.1 ± 1.1%) were recorded when Fe(II) was added, and that in the reactor without Fe(II) addition was 89 ± 0.8%. The specific denitrification rate were observed increase by 12.6% when Fe(II) was added. Further microbial analyses revealed increases in the abundances of typical denitrifiers (i.e. Niastella, Opitutus, Dechloromonas, Ignavibacterium, Anaeromyxobacter, Pedosphaera, and Myxococcus). Their associated denitrifying genes, narG, nirS, norB, and nosZ, were observed had 14.2%, 19.4%, 21.6%, and 9.9% elevation, respectively. Such enhancement in denitrification shall not be due to nitrate-dependent ferrous oxidation, which prevails in organic-deficient environments. In an environment with a continuous supply of Fe(II) and plenty of carbon sources, a cycle of denitrifying enzyme activity enhancement in the presence of Fe(II) facilitating nitrogen substrate utilization, stimulating denitrifier metabolism and growth, elevating denitrifying genes abundance, and increasing denitrifying enzymes expression were thought to be responsible for the Fe(II)-enhanced heterotrophic denitrification. Fe(II) salt is often a less expensive precipitant and has recently become attractive for TP removal in wastewater. The findings of this study solidify previous observation of enhancement of both TP and TN removal by adding Fe(II) in denitrification, and would be helpful for developing cost-effective pollutant removal processes.
Collapse
Affiliation(s)
- Hang Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xinlei Gao
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; Guangdong Water Co., Ltd, Shenzhen, 518021, China
| | - Yihua Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jiaxin Zhu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Tongzhou Liu
- Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
7
|
Abstract
Selenium nanoparticles (SeNPs) are gaining importance in the food and medical fields due to their antibacterial properties. The microbial inhibition of these kinds of particles has been tested in a wide range of Gram (+) and Gram (−) pathogenic bacteria. When SeNPs are synthesized by biological methods, they are called biogenic SeNPs, which have a negative charge caused by their interaction between surface and capping layer (bioorganic material), producing their high stability. This review is focused on SeNPs synthesis by bacteria and summarizes the main factors that influence their main characteristics: shape, size and surface charge, considering the bacteria growth conditions for their synthesis. The different mechanisms of antimicrobial activity are revised, and this review describes several biosynthesis hypotheses that have been proposed due to the fact that the biological mechanism of SeNP synthesis is not fully known.
Collapse
|
8
|
Staicu LC, Barton LL. Selenium respiration in anaerobic bacteria: Does energy generation pay off? J Inorg Biochem 2021; 222:111509. [PMID: 34118782 DOI: 10.1016/j.jinorgbio.2021.111509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 01/03/2023]
Abstract
Selenium (Se) respiration in bacteria was revealed for the first time at the end of 1980s. Although thermodynamically-favorable, energy-dense and documented in phylogenetically-diverse bacteria, this metabolic process appears to be accompanied by a number of challenges and numerous unanswered questions. Selenium oxyanions, SeO42- and SeO32-, are reduced to elemental Se (Se0) through anaerobic respiration, the end product being solid and displaying a considerable size (up to 500 nm) at the bacterial scale. Compared to other electron acceptors used in anaerobic respiration (e.g. N, S, Fe, Mn, and As), Se is one of the few elements whose end product is solid. Furthermore, unlike other known bacterial intracellular accumulations such as volutin (inorganic polyphosphate), S0, glycogen or magnetite, Se0 has not been shown to play a nutritional or ecological role for its host. In the context of anaerobic respiration of Se oxyanions, biogenic Se0 appears to be a by-product, a waste that needs proper handling, and this raises the question of the evolutionary implications of this process. Why would bacteria use a respiratory substrate that is useful, in the first place, and then highly detrimental? Interestingly, in certain artificial ecosystems (e.g. upflow bioreactors) Se0 might help bacterial cells to increase their density and buoyancy and thus avoid biomass wash-out, ensuring survival. This review article provides an in-depth analysis of selenium respiration (model selenium respiring bacteria, thermodynamics, respiratory enzymes, and genetic determinants), complemented by an extensive discussion about the evolutionary implications and the properties of biogenic Se0 using published and original/unpublished results.
Collapse
Affiliation(s)
- Lucian C Staicu
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Larry L Barton
- Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM 87131, USA
| |
Collapse
|
9
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
10
|
Bioelectrochemical Fixation of Nitrogen to Extracellular Ammonium by Pseudomonas stutzeri. Appl Environ Microbiol 2021; 87:e0199820. [PMID: 33310714 DOI: 10.1128/aem.01998-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diazotrophs can produce bioavailable nitrogen from inert N2 gas by bioelectrochemical nitrogen fixation (e-BNF), which is emerging as an energy-saving and highly selective strategy for agriculture and industry. However, current e-BNF technology is impeded by requirements for NH4+ assimilation inhibitors to facilitate intracellular ammonia secretion and precious metal catalysts to generate H2 as the energy-carrying intermediate. Here, we initially demonstrate inhibitor- and catalystless extracellular NH4+ production by the diazotroph Pseudomonas stutzeri A1501 using an electrode as the sole electron donor. Multiple lines of evidence revealed that P. stutzeri produced 2.32 ± 0.25 mg/liter extracellular NH4+ at a poised potential of -0.3 V (versus standard hydrogen electrode [SHE]) without the addition of inhibitors or expensive catalysts. The electron uptake mechanism was attributed to the endogenous electron shuttle phenazine-1-carboxylic acid, which was excreted by P. stutzeri and mediated electron transfer from electrodes into cells to directly drive N2 fixation. The faradaic efficiency was 20% ± 3%, which was 2 to 4 times that of previous e-BNF attempts using the H2-mediated pathway. This study reports a diazotroph capable of producing secretable NH4+ via extracellular electron uptake, which has important implications for optimizing the performance of e-BNF systems and exploring the novel nitrogen-fixing mode of syntrophic microbial communities in the natural environment. IMPORTANCE Ammonia greatly affects global ecology, agriculture, and the food industry. Diazotrophs with an enhanced capacity of extracellular NH4+ excretion have been proven to be more beneficial to the growth of microalgae and plants, whereas most previously reported diazotrophs produce intracellular organic nitrogen in the absence of chemical suppression and genetic manipulation. Here, we demonstrate that Pseudomonas stutzeri A1501 is capable of extracellular NH4+ production without chemical suppression or genetic manipulation when the extracellular electrode is used as the sole electron donor. We also reveal the electron uptake pathway from the extracellular electron-donating partner to P. stutzeri A1501 via redox electron shuttle phenazines. Since both P. stutzeri A1501 and potential electron-donating partners (such as electroactive microbes and natural semiconductor minerals) are abundant in diverse soils and sediments, P. stutzeri A1501 has broader implications on the improvement of nitrogen fertilization in the natural environment.
Collapse
|
11
|
Yu L, Yuan Y, Rensing C, Zhou S. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer. Biosens Bioelectron 2018; 106:21-28. [DOI: 10.1016/j.bios.2018.01.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
|
12
|
Clark IC, Youngblut M, Jacobsen G, Wetmore KM, Deutschbauer A, Lucas L, Coates JD. Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. Environ Microbiol 2015; 18:3342-3354. [PMID: 26411776 DOI: 10.1111/1462-2920.13068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Genes important for growth of Pseudomonas stutzeri PDA on chlorate were identified using a randomly DNA bar-coded transposon mutant library. During chlorate reduction, mutations in genes encoding the chlorate reductase clrABC, predicted molybdopterin cofactor chaperon clrD, molybdopterin biosynthesis and two genes of unknown function (clrE, clrF) had fitness defects in pooled mutant assays (Bar-seq). Markerless in-frame deletions confirmed that clrA, clrB and clrC were essential for chlorate reduction, while clrD, clrE and clrF had less severe growth defects. Interestingly, the key detoxification gene cld was essential for chlorate reduction in isogenic pure culture experiments, but showed only minor fitness defects in Bar-seq experiments. We hypothesized this was enabled through chlorite dismutation by the community, as most strains in the Bar-seq library contained an intact cld. In support of this, Δcld grew with wild-type PDA or ΔclrA, and purified Cld also restored growth to the Δcld mutant. Expanding on this, wild-type PDA and a Δcld mutant of the perchlorate reducer Azospira suillum PS grew on perchlorate in co-culture, but not individually. These results demonstrate that co-occurrence of cld and a chloroxyanion reductase within a single organism is not necessary and raises the possibility of syntrophic (per)chlorate respiration in the environment.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Matt Youngblut
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Gillian Jacobsen
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kelly M Wetmore
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren Lucas
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John D Coates
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Abstract
In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications.
Collapse
Affiliation(s)
- Y V Nancharaiah
- Environmental Engineering and Water Technology Department, UNESCO-IHE Institute for Water Education, Delft, The Netherlands Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, Tamil Nadu, India
| | - P N L Lens
- Environmental Engineering and Water Technology Department, UNESCO-IHE Institute for Water Education, Delft, The Netherlands
| |
Collapse
|
14
|
Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases. J Biol Inorg Chem 2015; 20:403-33. [DOI: 10.1007/s00775-014-1234-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/14/2014] [Indexed: 02/07/2023]
|
15
|
Ma C, Yu Z, Lu Q, Zhuang L, Zhou SG. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Appl Microbiol Biotechnol 2014; 99:3619-28. [PMID: 25503315 DOI: 10.1007/s00253-014-6254-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022]
Abstract
In this study, an anaerobic batch experiment was conducted to investigate the humus- and Fe(III)-reducing ability of a novel humus-reducing bacterium, Thauera humireducens SgZ-1. Inhibition tests were also performed to explore the electron transport pathways with various electron acceptors. The results indicate that in anaerobic conditions, strain SgZ-1 possesses the ability to reduce a humus analog, humic acids, soluble Fe(III), and Fe(III) oxides. Acetate, propionate, lactate, and pyruvate were suitable electron donors for humus and Fe(III) reduction by strain SgZ-1, while fermentable sugars (glucose and sucrose) were not. UV-visible spectra obtained from intact cells of strain SgZ-1 showed absorption peaks at 420, 522, and 553 nm, characteristic of c-type cytochromes (cyt c). Dithionite-reduced cyt c was reoxidized by Fe-EDTA and HFO (hydrous ferric oxide), which suggests that cyt c within intact cells of strain SgZ-1 has the ability to donate electrons to extracellular Fe(III) species. Inhibition tests revealed that dehydrogenases, quinones, and cytochromes b/c (cyt b/c) were involved in reduction of AQS (9, 10-anthraquinone-2-sulfonic acid, humus analog) and oxygen. In contrast, only NADH dehydrogenase was linked to electron transport to HFO, while dehydrogenases and cyt b/c were found to participate in the reduction of Fe-EDTA. Thus, various different electron transport pathways are employed by strain SgZ-1 for different electron acceptors. The results from this study help in understanding the electron transport processes and environmental responses of the genus Thauera.
Collapse
Affiliation(s)
- Chen Ma
- Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
17
|
Bertolini C, van Aerle R, Lampis S, Moore KA, Paszkiewicz K, Butler CS, Vallini G, van der Giezen M. Draft Genome Sequence of Stenotrophomonas maltophilia SeITE02, a Gammaproteobacterium Isolated from Selenite-Contaminated Mining Soil. GENOME ANNOUNCEMENTS 2014; 2:e00331-14. [PMID: 24812214 PMCID: PMC4014682 DOI: 10.1128/genomea.00331-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/14/2014] [Indexed: 11/20/2022]
Abstract
Stenotrophomonas maltophilia strain SeITE02 was isolated from the rhizosphere of the selenium-hyperaccumulating legume Astragalus bisculcatus. In this report, we provide the 4.56-Mb draft genome sequence of S. maltophilia SeITE02, a gammaproteobacterium that can withstand high concentrations of selenite and reduce these to elemental selenium.
Collapse
Affiliation(s)
| | | | - Silvia Lampis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Karen A. Moore
- Biosciences, University of Exeter, Exeter, United Kingdom
| | | | | | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
18
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
19
|
Abstract
UNLABELLED The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of genomes failed to join regions adjacent to genes involved in chlorate reduction, suggesting the presence of repeat regions. Using a bioinformatics approach and finishing PCRs to connect fragmented contigs, we discovered that chlorate reduction genes are flanked by insertion sequences, forming composite transposons in all four newly sequenced strains. These insertion sequences delineate regions with the potential to move horizontally and define a set of genes that may be important for chlorate reduction. In addition to core metabolic components, we have highlighted several such genes through comparative analysis and visualization. Phylogenetic analysis places chlorate reductase within a functionally diverse clade of type II dimethyl sulfoxide (DMSO) reductases, part of a larger family of enzymes with reactivity toward chlorate. Nucleotide-level forensics of regions surrounding chlorite dismutase (cld), as well as its phylogenetic clustering in a betaproteobacterial Cld clade, indicate that cld has been mobilized at least once from a perchlorate reducer to build chlorate respiration. IMPORTANCE Genome sequencing has identified, for the first time, chlorate reduction composite transposons. These transposons are constructed with flanking insertion sequences that differ in type and orientation between organisms, indicating that this mobile element has formed multiple times and is important for dissemination. Apart from core metabolic enzymes, very little is known about the genetic factors involved in chlorate reduction. Comparative analysis has identified several genes that may also be important, but the relative absence of accessory genes suggests that this mobile metabolism relies on host systems for electron transport, regulation, and cofactor synthesis. Phylogenetic analysis of Cld and ClrA provides support for the hypothesis that chlorate reduction was built multiple times from type II dimethyl sulfoxide (DMSO) reductases and cld. In at least one case, cld has been coopted from a perchlorate reduction island for this purpose. This work is a significant step toward understanding the genetics and evolution of chlorate reduction.
Collapse
|
20
|
Lücker S, Nowka B, Rattei T, Spieck E, Daims H. The Genome of Nitrospina gracilis Illuminates the Metabolism and Evolution of the Major Marine Nitrite Oxidizer. Front Microbiol 2013; 4:27. [PMID: 23439773 PMCID: PMC3578206 DOI: 10.3389/fmicb.2013.00027] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/02/2013] [Indexed: 01/17/2023] Open
Abstract
In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of N. gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae.
Collapse
Affiliation(s)
- Sebastian Lücker
- Department of Microbial Ecology, Ecology Centre, University of Vienna Vienna, Austria
| | | | | | | | | |
Collapse
|
21
|
Biomineralization of selenium by the selenate-respiring bacterium Thauera selenatis. Biochem Soc Trans 2012; 40:1239-43. [DOI: 10.1042/bst20120087] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial anaerobic respiration using selenium oxyanions as the sole electron acceptor primarily result in the precipitation of selenium biominerals observed as either intracellular or extracellular selenium deposits. Although a better understanding of the enzymology of bacterial selenate reduction is emerging, the processes by which the selenium nanospheres are constructed, and in some cases secreted, has remained poorly studied. Thauera selenatis is a Gram-negative betaproteobacterium that is capable of respiring selenate due to the presence of a periplasmic selenate reductase (SerABC). SerABC is a molybdoenzyme that catalyses the reduction of selenate to selenite by accepting electrons from the Q-pool via a dihaem c-type cytochrome (cytc4). The product selenite is presumed to be reduced in the cytoplasm, forming intracellular selenium nanospheres that are ultimately secreted into the surrounding medium. The secretion of the selenium nanospheres is accompanied by the export of a ~95 kDa protein SefA (selenium factor A). SefA has no cleavable signal peptide, suggesting that it is also exported directly for the cytoplasmic compartment. It has been suggested that SefA functions to stabilize the formation of the selenium nanospheres before secretion, possibly providing reaction sites for selenium nanosphere creation or providing a shell to prevent subsequent selenium aggregation. The present paper draws on our current knowledge of selenate respiration and selenium biomineralization in T. selenatis and other analogous systems, and extends the application of nanoparticle tracking analysis to determine the size distribution profile of the selenium nanospheres secreted.
Collapse
|
22
|
van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B. Arsenics as bioenergetic substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:176-88. [PMID: 22982475 DOI: 10.1016/j.bbabio.2012.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 01/24/2023]
Abstract
Although at low concentrations, arsenic commonly occurs naturally as a local geological constituent. Whereas both arsenate and arsenite are strongly toxic to life, a number of prokaryotes use these compounds as electron acceptors or donors, respectively, for bioenergetic purposes via respiratory arsenate reductase, arsenite oxidase and alternative arsenite oxidase. The recent burst in discovered arsenite oxidizing and arsenate respiring microbes suggests the arsenic bioenergetic metabolisms to be anything but exotic. The first goal of the present review is to bring to light the widespread distribution and diversity of these metabolizing pathways. The second goal is to present an evolutionary analysis of these diverse energetic pathways. Taking into account not only the available data on the arsenic metabolizing enzymes and their phylogenetical relatives but also the palaeogeochemical records, we propose a crucial role of arsenite oxidation via arsenite oxidase in primordial life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Robert van Lis
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, F-13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
23
|
Nilsson T, Rova M, Smedja Bäcklund A. Microbial metabolism of oxochlorates: a bioenergetic perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:189-97. [PMID: 22735192 DOI: 10.1016/j.bbabio.2012.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/05/2012] [Accepted: 06/15/2012] [Indexed: 11/28/2022]
Abstract
The microbial metabolism of oxochlorates is part of the biogeochemical cycle of chlorine. Organisms capable of growth using perchlorate or chlorate as respiratory electron acceptors are also interesting for applications in biotreatment of oxochlorate-containing effluents or bioremediation of contaminated areas. In this review, we discuss the reactions of oxochlorate respiration, the corresponding enzymes, and the relation to respiratory electron transport that can contribute to a proton gradient across the cell membrane. Enzymes specific for oxochlorate respiration are oxochlorate reductases and chlorite dismutase. The former belong to DMSO reductase family of molybdenum-containing enzymes. The heme protein chlorite dismutase, which decomposes chlorite into chloride and molecular oxygen, is only distantly related to other proteins with known functions. Pathways for electron transport may be different in perchlorate and chlorate reducers, but appear in both cases to be similar to pathways found in other respiratory systems. This article is part of a Special Issue entitled: Evolutionary aspects bioenergetic systems.
Collapse
Affiliation(s)
- Thomas Nilsson
- Karlstad University, Dept. Chemistry and Biomedical Sciences, SE-651 88 Karlstad, Sweden.
| | | | | |
Collapse
|
24
|
Bini E, Rauschenbach I, Narasingarao P, Starovoytov V, Hauser L, Jeffries CD, Land M, Bruce D, Detter C, Goodwin L, Han S, Held B, Tapia R, Copeland A, Ivanova N, Mikhailova N, Nolan M, Pati A, Pennacchio L, Pitluck S, Woyke T, Häggblom M. Complete genome sequence of Desulfurispirillum indicum strain S5(T). Stand Genomic Sci 2011; 5:371-8. [PMID: 22675586 PMCID: PMC3368425 DOI: 10.4056/sigs.2425302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desulfurispirillum indicum strain S5(T) is a strictly anaerobic bacterium isolated from river sediment in Chennai, India. D. indicum belongs to the deep branching phylum of Chrysiogenetes, which currently only includes three other cultured species. Strain S5(T) is the type strain of the species and it is capable of growth using selenate, selenite, arsenate, nitrate or nitrite as terminal electron acceptors. The 2,928,377 bp genome encodes 2,619 proteins and 49 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of arsenic and selenium, in addition to deepening our knowledge of the underrepresented phylum of Chrysiogenetes.
Collapse
Affiliation(s)
- Elisabetta Bini
- Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, New Brunswick, New Jersey, USA
- Corresponding author: Elisabetta Bini,
| | - Ines Rauschenbach
- Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, New Brunswick, New Jersey, USA
| | - Priya Narasingarao
- Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, New Brunswick, New Jersey, USA
- Current address: Scripps Institution of Oceanography, San Diego, CA, USA
| | - Valentin Starovoytov
- Rutgers, The State University of New Jersey, Department of Cell Biology and Neuroscience, Piscataway, NJ, USA
| | - Lauren Hauser
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Miriam Land
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David Bruce
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Chris Detter
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Lynne Goodwin
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Shunsheng Han
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Brittany Held
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | | | - Matt Nolan
- Joint Genome Institute, Walnut Creek, USA
| | | | | | | | | | - Max Häggblom
- Rutgers, The State University of New Jersey, Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, New Brunswick, New Jersey, USA
| |
Collapse
|
25
|
Abstract
During selenate respiration by Thauera selenatis, the reduction of selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approximately 150 nm in diameter. We report that the Se nanospheres are associated with a protein of approximately 95 kDa. Subsequent experiments to investigate the expression and secretion profile of this protein have demonstrated that it is up-regulated and secreted in response to increasing selenite concentrations. The protein was purified from Se nanospheres, and peptide fragments from a tryptic digest were used to identify the gene in the draft T. selenatis genome. A matched open reading frame was located, encoding a protein with a calculated mass of 94.5 kDa. N-terminal sequence analysis of the mature protein revealed no cleavable signal peptide, suggesting that the protein is exported directly from the cytoplasm. The protein has been called Se factor A (SefA), and homologues of known function have not been reported previously. The sefA gene was cloned and expressed in Escherichia coli, and the recombinant His-tagged SefA purified. In vivo experiments demonstrate that SefA forms larger (approximately 300 nm) Se nanospheres in E. coli when treated with selenite, and these are retained within the cell. In vitro assays demonstrate that the formation of Se nanospheres upon the reduction of selenite by glutathione are stabilized by the presence of SefA. The role of SefA in selenium nanosphere assembly has potential for exploitation in bionanomaterial fabrication.
Collapse
|
26
|
Bäcklund AS, Nilsson T. Purification and characterization of a soluble cytochrome c capable of delivering electrons to chlorate reductase in Ideonella dechloratans. FEMS Microbiol Lett 2011; 321:115-20. [DOI: 10.1111/j.1574-6968.2011.02321.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
27
|
Magalon A, Fedor JG, Walburger A, Weiner JH. Molybdenum enzymes in bacteria and their maturation. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.12.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Rauschenbach I, Yee N, Häggblom MM, Bini E. Energy metabolism and multiple respiratory pathways revealed by genome sequencing ofDesulfurispirillum indicumstrain S5. Environ Microbiol 2011; 13:1611-21. [DOI: 10.1111/j.1462-2920.2011.02473.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Molecular cloning and characterization of the srdBCA operon, encoding the respiratory selenate reductase complex, from the selenate-reducing bacterium Bacillus selenatarsenatis SF-1. J Bacteriol 2011; 193:2141-8. [PMID: 21357486 DOI: 10.1128/jb.01197-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we isolated a selenate- and arsenate-reducing bacterium, designated strain SF-1, from selenium-contaminated sediment and identified it as a novel species, Bacillus selenatarsenatis. B. selenatarsenatis strain SF-1 independently reduces selenate to selenite, arsenate to arsenite, and nitrate to nitrite by anaerobic respiration. To identify the genes involved in selenate reduction, 17 selenate reduction-defective mutant strains were isolated from a mutant library generated by random insertion of transposon Tn916. Tn916 was inserted into the same genome position in eight mutants, and the representative strain SF-1AM4 did not reduce selenate but did reduce nitrate and arsenate to the same extent as the wild-type strain. The disrupted gene was located in an operon composed of three genes designated srdBCA, which were predicted to encode a putative oxidoreductase complex by the BLASTX program. The plasmid vector pGEMsrdBCA, containing the srdBCA operon with its own promoter, conferred the phenotype of selenate reduction in Escherichia coli DH5α, although E. coli strains containing plasmids lacking any one or two of the open reading frames from srdBCA did not exhibit the selenate-reducing phenotype. Domain structure analysis of the deduced amino acid sequence revealed that SrdBCA had typical features of membrane-bound and molybdopterin-containing oxidoreductases. It was therefore proposed that the srdBCA operon encoded a respiratory selenate reductase complex. This is the first report of genes encoding selenate reductase in gram-positive bacteria.
Collapse
|
30
|
Abstract
Bacterial cellular metabolism is renowned for its metabolic diversity and adaptability. However, certain environments present particular challenges. Aerobic metabolism of highly reduced carbon substrates by soil bacteria such as Paracoccus pantotrophus presents one such challenge since it may result in excessive electron delivery to the respiratory redox chain when compared with the availability of terminal oxidant, O2. The level of a periplasmic ubiquinol-dependent nitrate reductase, NAP, is up-regulated in the presence of highly reduced carbon substrates. NAP oxidizes ubiquinol at the periplasmic face of the cytoplasmic membrane and reduces nitrate in the periplasm. Thus its activity counteracts the accumulation of excess reducing equivalents in ubiquinol, thereby maintaining the redox poise of the ubiquinone/ubiquinol pool without contributing to the protonmotive force across the cytoplasmic membrane. Although P. pantotrophus NapAB shows a high level of substrate specificity towards nitrate, the enzyme has also been reported to reduce selenate in spectrophotometric solution assays. This transaction draws on our current knowledge concerning the bacterial respiratory nitrate reductases and extends the application of PFE (protein film electrochemistry) to resolve and quantify the selenate reductase activity of NapAB.
Collapse
|
31
|
Thermostable properties of the periplasmic selenate reductase from Thauera selenatis. Biochimie 2010; 92:1268-73. [DOI: 10.1016/j.biochi.2010.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 06/04/2010] [Indexed: 11/18/2022]
|