1
|
Davis BEM, Snedeker J, Ranjan R, Wooten M, Barton SS, Blundon J, Chen X. Increased levels of lagging strand polymerase α in an adult stem cell lineage affect replication-coupled histone incorporation. SCIENCE ADVANCES 2025; 11:eadu6799. [PMID: 40020063 PMCID: PMC11870066 DOI: 10.1126/sciadv.adu6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Stem cells display asymmetric histone inheritance, while nonstem progenitor cells exhibit symmetric patterns in the Drosophila male germ line. Here, we report that components involved in lagging strand synthesis, DNA polymerases α and δ, have substantially reduced levels in stem cells compared to progenitor cells, and this promotes local asymmetry of parental histone incorporation at the replication fork. Compromising Polα genetically induces the local replication-coupled histone incorporation pattern in progenitor cells to resemble that in stem cells, seen by both nuclear localization patterns and chromatin fibers. This is recapitulated using a Polα inhibitor in a concentration-dependent manner. The local old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S phase and M phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in nonstem cells to resemble those in stem cells.
Collapse
Affiliation(s)
- Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Savannah Sáde Barton
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Googins MR, An P, Gauthier CH, Pipas JM. Polyomavirus large T antigens: Unraveling a complex interactome. Tumour Virus Res 2024; 19:200306. [PMID: 39675526 PMCID: PMC11720896 DOI: 10.1016/j.tvr.2024.200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
All members of the polyomavirus family encode a large T antigen (LT) protein that plays essential roles in viral DNA replication, regulation of viral gene expression, and the manipulation of numerous cellular pathways. Over 100 polyomaviruses have been discovered in hosts ranging from arthropods and fish to mammals, including fourteen that infect humans. LT is among the most studied viral proteins with thousands of articles describing its functions in viral productive infection and tumorigenesis. However, nearly all knowledge of LT activities is based on the studies of simian virus 40 (SV40) and a few other viruses. Comparative studies of LT proteins of different polyomaviruses have revealed a remarkable diversity in the mechanisms by which LT proteins function across different polyomavirus species. This review focuses on human polyomaviruses highlights the similarities and differences between polyomavirus LTs and highlights gaps in our understanding of this protein family. The concentration of knowledge around SV40 LT and the corresponding lack of mechanistic studies on LT proteins encoded by other human and animal polyomaviruses severely constrains our understanding of the biology of this important virus family.
Collapse
Affiliation(s)
- Matthew R Googins
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Christian H Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
3
|
Snedeker J, Davis BEM, Ranjan R, Wooten M, Blundon J, Chen X. Reduced Levels of Lagging Strand Polymerases Shape Stem Cell Chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591383. [PMID: 38746451 PMCID: PMC11092439 DOI: 10.1101/2024.04.26.591383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stem cells display asymmetric histone inheritance while non-stem progenitor cells exhibit symmetric patterns in the Drosophila male germline lineage. Here, we report that components involved in lagging strand synthesis, such as DNA polymerase α and δ (Polα and Polδ), have significantly reduced levels in stem cells compared to progenitor cells. Compromising Polα genetically induces the replication-coupled histone incorporation pattern in progenitor cells to be indistinguishable from that in stem cells, which can be recapitulated using a Polα inhibitor in a concentration-dependent manner. Furthermore, stem cell-derived chromatin fibers display a higher degree of old histone recycling by the leading strand compared to progenitor cell-derived chromatin fibers. However, upon reducing Polα levels in progenitor cells, the chromatin fibers now display asymmetric old histone recycling just like GSC-derived fibers. The old versus new histone asymmetry is comparable between stem cells and progenitor cells at both S-phase and M-phase. Together, these results indicate that developmentally programmed expression of key DNA replication components is important to shape stem cell chromatin. Furthermore, manipulating one crucial DNA replication component can induce replication-coupled histone dynamics in non-stem cells in a manner similar to that in stem cells.
Collapse
Affiliation(s)
- Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brendon E. M. Davis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Current address: Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Joshua Blundon
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Nasheuer HP, Meaney AM, Hulshoff T, Thiele I, Onwubiko NO. Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci 2024; 25:588. [PMID: 38203759 PMCID: PMC10779431 DOI: 10.3390/ijms25010588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Replication protein A (RPA) is a heterotrimeric protein complex and the main single-stranded DNA (ssDNA)-binding protein in eukaryotes. RPA has key functions in most of the DNA-associated metabolic pathways and DNA damage signalling. Its high affinity for ssDNA helps to stabilise ssDNA structures and protect the DNA sequence from nuclease attacks. RPA consists of multiple DNA-binding domains which are oligonucleotide/oligosaccharide-binding (OB)-folds that are responsible for DNA binding and interactions with proteins. These RPA-ssDNA and RPA-protein interactions are crucial for DNA replication, DNA repair, DNA damage signalling, and the conservation of the genetic information of cells. Proteins such as ATR use RPA to locate to regions of DNA damage for DNA damage signalling. The recruitment of nucleases and DNA exchange factors to sites of double-strand breaks are also an important RPA function to ensure effective DNA recombination to correct these DNA lesions. Due to its high affinity to ssDNA, RPA's removal from ssDNA is of central importance to allow these metabolic pathways to proceed, and processes to exchange RPA against downstream factors are established in all eukaryotes. These faceted and multi-layered functions of RPA as well as its role in a variety of human diseases will be discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Anna Marie Meaney
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| | - Timothy Hulshoff
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ines Thiele
- Molecular Systems Physiology Group, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Nichodemus O. Onwubiko
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, Biochemistry, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
5
|
Jones ML, Aria V, Baris Y, Yeeles JTP. How Pol α-primase is targeted to replisomes to prime eukaryotic DNA replication. Mol Cell 2023; 83:2911-2924.e16. [PMID: 37506699 PMCID: PMC10501992 DOI: 10.1016/j.molcel.2023.06.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.
Collapse
Affiliation(s)
- Morgan L Jones
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Valentina Aria
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yasemin Baris
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
6
|
Nasheuer HP, Onwubiko NO. Lagging Strand Initiation Processes in DNA Replication of Eukaryotes-Strings of Highly Coordinated Reactions Governed by Multiprotein Complexes. Genes (Basel) 2023; 14:genes14051012. [PMID: 37239371 DOI: 10.3390/genes14051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In their influential reviews, Hanahan and Weinberg coined the term 'Hallmarks of Cancer' and described genome instability as a property of cells enabling cancer development. Accurate DNA replication of genomes is central to diminishing genome instability. Here, the understanding of the initiation of DNA synthesis in origins of DNA replication to start leading strand synthesis and the initiation of Okazaki fragment on the lagging strand are crucial to control genome instability. Recent findings have provided new insights into the mechanism of the remodelling of the prime initiation enzyme, DNA polymerase α-primase (Pol-prim), during primer synthesis, how the enzyme complex achieves lagging strand synthesis, and how it is linked to replication forks to achieve optimal initiation of Okazaki fragments. Moreover, the central roles of RNA primer synthesis by Pol-prim in multiple genome stability pathways such as replication fork restart and protection of DNA against degradation by exonucleases during double-strand break repair are discussed.
Collapse
Affiliation(s)
- Heinz Peter Nasheuer
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| | - Nichodemus O Onwubiko
- Centre for Chromosome Biology, Arts & Science Building, Main Concourse, School of Biological and Chemical Sciences, Biochemistry, University of Galway, Distillery Road, H91 TK33 Galway, Ireland
| |
Collapse
|
7
|
Cai SW, Zinder JC, Svetlov V, Bush MW, Nudler E, Walz T, de Lange T. Cryo-EM structure of the human CST-Polα/primase complex in a recruitment state. Nat Struct Mol Biol 2022; 29:813-819. [PMID: 35578024 PMCID: PMC9371972 DOI: 10.1038/s41594-022-00766-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 12/03/2022]
Abstract
The CST–Polα/primase complex is essential for telomere maintenance and functions to counteract resection at double-strand breaks. We report a 4.6-Å resolution cryo-EM structure of human CST–Polα/primase, captured prior to catalysis in a recruitment state stabilized by chemical cross-linking. Our structure reveals an evolutionarily conserved interaction between the C-terminal domain of the catalytic POLA1 subunit and an N-terminal expansion in metazoan CTC1. Cross-linking mass spectrometry and negative-stain EM analysis provide insight into CST binding by the flexible POLA1 N-terminus. Finally, Coats plus syndrome disease mutations previously characterized to disrupt formation of the CST–Polα/primase complex map to protein–protein interfaces observed in the recruitment state. Together, our results shed light on the architecture and stoichiometry of the metazoan fill-in machinery. Cryo-EM analysis of the human CST–Polα/primase complex reveals a metazoan-specific mode of interaction between CST and DNA polymerase α that is proposed to function in telomeric recruitment of Polα/primase for C-strand maintenance.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY, USA.,Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - John C Zinder
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Martin W Bush
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA.
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Kilkenny ML, Simon AC, Mainwaring J, Wirthensohn D, Holzer S, Pellegrini L. The human CTF4-orthologue AND-1 interacts with DNA polymerase α/primase via its unique C-terminal HMG box. Open Biol 2017; 7:170217. [PMID: 29167311 PMCID: PMC5717350 DOI: 10.1098/rsob.170217] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022] Open
Abstract
A dynamic multi-protein assembly known as the replisome is responsible for DNA synthesis in eukaryotic cells. In yeast, the hub protein Ctf4 bridges DNA helicase and DNA polymerase and recruits factors with roles in metabolic processes coupled to DNA replication. An important question in DNA replication is the extent to which the molecular architecture of the replisome is conserved between yeast and higher eukaryotes. Here, we describe the biochemical basis for the interaction of the human CTF4-orthologue AND-1 with DNA polymerase α (Pol α)/primase, the replicative polymerase that initiates DNA synthesis. AND-1 has maintained the trimeric structure of yeast Ctf4, driven by its conserved SepB domain. However, the primary interaction of AND-1 with Pol α/primase is mediated by its C-terminal HMG box, unique to mammalian AND-1, which binds the B subunit, at the same site targeted by the SV40 T-antigen for viral replication. In addition, we report a novel DNA-binding activity in AND-1, which might promote the correct positioning of Pol α/primase on the lagging-strand template at the replication fork. Our findings provide a biochemical basis for the specific interaction between two critical components of the human replisome, and indicate that important principles of replisome architecture have changed significantly in evolution.
Collapse
Affiliation(s)
- Mairi L Kilkenny
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Aline C Simon
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jack Mainwaring
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - David Wirthensohn
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Sandro Holzer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
9
|
Li YC, Naveen V, Lin MG, Hsiao CD. Structural analyses of the bacterial primosomal protein DnaB reveal that it is a tetramer and forms a complex with a primosomal re-initiation protein. J Biol Chem 2017; 292:15744-15757. [PMID: 28808061 PMCID: PMC5612107 DOI: 10.1074/jbc.m117.792002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/08/2017] [Indexed: 11/06/2022] Open
Abstract
The DnaB primosomal protein from Gram-positive bacteria plays a key role in DNA replication and restart as a loader protein for the recruitment of replisome cascade proteins. Previous investigations have established that DnaB is composed of an N-terminal domain, a middle domain, and a C-terminal domain. However, structural evidence for how DnaB functions at the atomic level is lacking. Here, we report the crystal structure of DnaB, encompassing the N-terminal and middle domains (residues 1-300), from Geobacillus stearothermophilus (GstDnaB1-300) at 2.8 Å resolution. Our structure revealed that GstDnaB1-300 forms a tetramer with two basket-like architectures, a finding consistent with those from solution studies using analytical ultracentrifugation. Furthermore, our results from both GST pulldown assays and analytical ultracentrifugation show that GstDnaB1-300 is sufficient to form a complex with PriA, the primosomal reinitiation protein. Moreover, with the aid of small angle X-ray scattering experiments, we also determined the structural envelope of full-length DnaB (GstDnaBFL) in solution. These small angle X-ray scattering studies indicated that GstDnaBFL has an elongated conformation and that the protruding density envelopes originating from GstDnaB1-300 could completely accommodate the GstDnaB C-terminal domain (residues 301-461). Taken together with biochemical assays, our results suggest that GstDnaB uses different domains to distinguish the PriA interaction and single-stranded DNA binding. These findings can further extend our understanding of primosomal assembly in replication restart.
Collapse
Affiliation(s)
- Yi-Ching Li
- From the Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and
| | - Vankadari Naveen
- From the Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and
| | - Min-Guan Lin
- From the Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- From the Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and
| |
Collapse
|
10
|
Suwa Y, Gu J, Baranovskiy AG, Babayeva ND, Pavlov YI, Tahirov TH. Crystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic Subunit. J Biol Chem 2015; 290:14328-37. [PMID: 25847248 DOI: 10.1074/jbc.m115.649954] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å(2). Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes.
Collapse
Affiliation(s)
- Yoshiaki Suwa
- From the Eppley Institute for Research in Cancer and Allied Diseases and
| | - Jianyou Gu
- From the Eppley Institute for Research in Cancer and Allied Diseases and
| | | | - Nigar D Babayeva
- From the Eppley Institute for Research in Cancer and Allied Diseases and
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases and the Departments of Biochemistry and Molecular Biology and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases and
| |
Collapse
|
11
|
Baranovskiy AG, Babayeva ND, Suwa Y, Gu J, Pavlov YI, Tahirov TH. Structural basis for inhibition of DNA replication by aphidicolin. Nucleic Acids Res 2014; 42:14013-21. [PMID: 25429975 PMCID: PMC4267640 DOI: 10.1093/nar/gku1209] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Natural tetracyclic diterpenoid aphidicolin is a potent and specific inhibitor of B-family DNA polymerases, haltering replication and possessing a strong antimitotic activity in human cancer cell lines. Clinical trials revealed limitations of aphidicolin as an antitumor drug because of its low solubility and fast clearance from human plasma. The absence of structural information hampered the improvement of aphidicolin-like inhibitors: more than 50 modifications have been generated so far, but all have lost the inhibitory and antitumor properties. Here we report the crystal structure of the catalytic core of human DNA polymerase α (Pol α) in the ternary complex with an RNA-primed DNA template and aphidicolin. The inhibitor blocks binding of dCTP by docking at the Pol α active site and by rotating the template guanine. The structure provides a plausible mechanism for the selectivity of aphidicolin incorporation opposite template guanine and explains why previous modifications of aphidicolin failed to improve its affinity for Pol α. With new structural information, aphidicolin becomes an attractive lead compound for the design of novel derivatives with enhanced inhibitory properties for B-family DNA polymerases.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yoshiaki Suwa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jianyou Gu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Zhang Y, Baranovskiy AG, Tahirov TH, Pavlov YI. The C-terminal domain of the DNA polymerase catalytic subunit regulates the primase and polymerase activities of the human DNA polymerase α-primase complex. J Biol Chem 2014; 289:22021-34. [PMID: 24962573 DOI: 10.1074/jbc.m114.570333] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The initiation of DNA synthesis during replication of the human genome is accomplished primarily by the DNA polymerase α-primase complex, which makes the RNA-DNA primers accessible to processive DNA pols. The structural information needed to understand the mechanism of regulation of this complex biochemical reaction is incomplete. The presence of two enzymes in one complex poses the question of how these two enzymes cooperate during priming of DNA synthesis. Yeast two-hybrid and direct pulldown assays revealed that the N-terminal domain of the large subunit of primase (p58N) directly interacts with the C-terminal domain of the catalytic subunit of polα (p180C). We found that a complex of the C-terminal domain of the catalytic subunit of polα with the second subunit (p180C-p70) stimulated primase activity, whereas the whole catalytically active heterodimer of polα (p180ΔN-p70) inhibited RNA synthesis by primase. Conversely, the polα catalytic domain without the C-terminal part (p180ΔN-core) possessed a much higher propensity to extend the RNA primer than the two-subunit polα (p180ΔN-p70), suggesting that p180C and/or p70 are involved in the negative regulation of DNA pol activity. We conclude that the interaction between p180C, p70, and p58 regulates the proper primase and polymerase function. The composition of the template DNA is another important factor determining the activity of the complex. We have found that polα activity strongly depends on the sequence of the template and that homopyrimidine runs create a strong barrier for DNA synthesis by polα.
Collapse
Affiliation(s)
- Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and
| | | | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases,
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805
| |
Collapse
|
13
|
An P, Sáenz Robles MT, Pipas JM. Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 2013; 66:213-36. [PMID: 22994493 DOI: 10.1146/annurev-micro-092611-150154] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The large tumor antigen (T antigen) encoded by simian virus 40 is an amazing molecular machine because it orchestrates viral infection by modulating multiple fundamental viral and cellular processes. T antigen is required for viral DNA replication, transcription, and virion assembly. In addition, T antigen targets multiple cellular pathways, including those that regulate cell proliferation, cell death, and the inflammatory response. Ectopic T antigen expression results in the immortalization and transformation of many cell types in culture and T antigen induces neoplasia when expressed in rodents. The analysis of the mechanisms by which T antigen carries out its many functions has proved to be a powerful way of gaining insights into cell biology. The accelerating pace at which new polyomaviruses are being discovered provides a collection of novel T antigens that, like simian virus 40, can be used to discover and study key cellular regulatory systems.
Collapse
Affiliation(s)
- Ping An
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
14
|
Fan J, Pavletich NP. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev 2012; 26:2337-47. [PMID: 23070815 DOI: 10.1101/gad.194787.112] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Replication protein A (RPA) is the main eukaryotic ssDNA-binding protein with essential roles in DNA replication, recombination, and repair. RPA maintains the DNA as single-stranded and also interacts with other DNA-processing proteins, coordinating their assembly and disassembly on DNA. RPA binds to ssDNA in two conformational states with opposing affinities for DNA and proteins. The RPA-protein interactions are compatible with a low DNA affinity state that involves DNA-binding domain A (DBD-A) and DBD-B but not with the high DNA affinity state that additionally engages DBD-C and DBD-D. The structure of the high-affinity RPA-ssDNA complex reported here shows a compact quaternary structure held together by a four-way interface between DBD-B, DBD-C, the intervening linker (BC linker), and ssDNA. The BC linker binds into the DNA-binding groove of DBD-B, mimicking DNA. The associated conformational change and partial occlusion of the DBD-A-DBA-B protein-protein interaction site establish a mechanism for the allosteric coupling of RPA-DNA and RPA-protein interactions.
Collapse
Affiliation(s)
- Jie Fan
- Sloan-Kettering Division, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10065, USA
| | | |
Collapse
|
15
|
Zhou B, Arnett DR, Yu X, Brewster A, Sowd GA, Xie CL, Vila S, Gai D, Fanning E, Chen XS. Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase α-primase. J Biol Chem 2012; 287:26854-66. [PMID: 22700977 DOI: 10.1074/jbc.m112.363655] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guler GD, Liu H, Vaithiyalingam S, Arnett DR, Kremmer E, Chazin WJ, Fanning E. Human DNA helicase B (HDHB) binds to replication protein A and facilitates cellular recovery from replication stress. J Biol Chem 2011; 287:6469-81. [PMID: 22194613 DOI: 10.1074/jbc.m111.324582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Maintenance of genomic stability in proliferating cells depends on a network of proteins that coordinate chromosomal replication with DNA damage responses. Human DNA helicase B (HELB or HDHB) has been implicated in chromosomal replication, but its role in this coordinated network remains undefined. Here we report that cellular exposure to UV irradiation, camptothecin, or hydroxyurea induces accumulation of HDHB on chromatin in a dose- and time-dependent manner, preferentially in S phase cells. Replication stress-induced recruitment of HDHB to chromatin is independent of checkpoint signaling but correlates with the level of replication protein A (RPA) recruited to chromatin. We show using purified proteins that HDHB physically interacts with the N-terminal domain of the RPA 70-kDa subunit (RPA70N). NMR spectroscopy and site-directed mutagenesis reveal that HDHB docks on the same RPA70N surface that recruits S phase checkpoint signaling proteins to chromatin. Consistent with this pattern of recruitment, cells depleted of HDHB display reduced recovery from replication stress.
Collapse
Affiliation(s)
- Gulfem Dilek Guler
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Gai D, Chang YP, Chen XS. Origin DNA melting and unwinding in DNA replication. Curr Opin Struct Biol 2010; 20:756-62. [PMID: 20870402 PMCID: PMC2997676 DOI: 10.1016/j.sbi.2010.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/25/2010] [Accepted: 08/31/2010] [Indexed: 02/04/2023]
Abstract
Genomic DNA replication is a necessary step in the life cycles of all organisms. To initiate DNA replication, the double-stranded DNA (dsDNA) at the origin of replication must be separated or melted; this melted region is propagated and a mature replication fork is formed. To accomplish origin recognition, initial DNA melting, and the eventual formation of a replication fork, coordinated activity of initiators, helicases, and other cellular factors are required. In this review, we focus on recent advances in the structural and biochemical studies of the initiators and the replicative helicases in multiple replication systems, with emphasis on the systems in archaeal and eukaryotic cells. These studies have yielded insights into the plausible mechanisms of the early stages of DNA replication.
Collapse
Affiliation(s)
- Dahai Gai
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Y. Paul Chang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
18
|
Huang H, Zhao K, Arnett DR, Fanning E. A specific docking site for DNA polymerase {alpha}-primase on the SV40 helicase is required for viral primosome activity, but helicase activity is dispensable. J Biol Chem 2010; 285:33475-33484. [PMID: 20685648 PMCID: PMC2963361 DOI: 10.1074/jbc.m110.156240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/31/2010] [Indexed: 11/06/2022] Open
Abstract
Replication of simian virus 40 (SV40) DNA, a model for eukaryotic chromosomal replication, can be reconstituted in vitro using the viral helicase (large tumor antigen, or Tag) and purified human proteins. Tag interacts physically with two cellular proteins, replication protein A and DNA polymerase α-primase (pol-prim), constituting the viral primosome. Like the well characterized primosomes of phages T7 and T4, this trio of proteins coordinates parental DNA unwinding with primer synthesis to initiate the leading strand at the viral origin and each Okazaki fragment on the lagging strand template. We recently determined the structure of a previously unrecognized pol-prim domain (p68N) that docks on Tag, identified the p68N surface that contacts Tag, and demonstrated its vital role in primosome function. Here, we identify the p68N-docking site on Tag by using structure-guided mutagenesis of the Tag helicase surface. A charge reverse substitution in Tag disrupted both p68N-binding and primosome activity but did not affect docking with other pol-prim subunits. Unexpectedly, the substitution also disrupted Tag ATPase and helicase activity, suggesting a potential link between p68N docking and ATPase activity. To assess this possibility, we examined the primosome activity of Tag with a single residue substitution in the Walker B motif. Although this substitution abolished ATPase and helicase activity as expected, it did not reduce pol-prim docking on Tag or primosome activity on single-stranded DNA, indicating that Tag ATPase is dispensable for primosome activity in vitro.
Collapse
Affiliation(s)
- Hao Huang
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Kun Zhao
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Diana R Arnett
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Ellen Fanning
- From the Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634.
| |
Collapse
|