1
|
Deo N, Redpath G. Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety. Front Cell Neurosci 2022; 15:804592. [PMID: 35280519 PMCID: PMC8912961 DOI: 10.3389/fncel.2021.804592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression and anxiety are common, debilitating psychiatric conditions affecting millions of people throughout the world. Current treatments revolve around selective serotonin reuptake inhibitors (SSRIs), yet these drugs are only moderately effective at relieving depression. Moreover, up to 30% of sufferers are SSRI non-responders. Endocytosis, the process by which plasma membrane and extracellular constituents are internalized into the cell, plays a central role in the regulation of serotonin (5-hydroxytryptophan, 5-HT) signaling, SSRI function and depression and anxiety pathogenesis. Despite their therapeutic potential, surprisingly little is known about the endocytosis of the serotonin receptors (5-HT receptors) or the serotonin transporter (SERT). A subset of 5-HT receptors are endocytosed by clathrin-mediated endocytosis following serotonin binding, while for the majority of 5-HT receptors the endocytic regulation is not known. SERT internalizes serotonin from the extracellular space into the cell to limit the availability of serotonin for receptor binding and signaling. Endocytosis of SERT reduces serotonin uptake, facilitating serotonin signaling. SSRIs predominantly inhibit SERT, preventing serotonin uptake to enhance 5-HT receptor signaling, while hallucinogenic compounds directly activate specific 5-HT receptors, altering their interaction with endocytic adaptor proteins to induce alternate signaling outcomes. Further, multiple polymorphisms and transcriptional/proteomic alterations have been linked to depression, anxiety, and SSRI non-response. In this review, we detail the endocytic regulation of 5-HT receptors and SERT and outline how SSRIs and hallucinogenic compounds modulate serotonin signaling through endocytosis. Finally, we will examine the deregulated proteomes in depression and anxiety and link these with 5-HT receptor and SERT endocytosis. Ultimately, in attempting to integrate the current studies on the cellular biology of depression and anxiety, we propose that endocytosis is an important factor in the cellular basis of depression and anxiety. We will highlight how a thorough understanding 5-HT receptor and SERT endocytosis is integral to understanding the biological basis of depression and anxiety, and to facilitate the development of a next generation of specific, efficacious antidepressant treatments.
Collapse
Affiliation(s)
- Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gregory Redpath
- European Molecular Biology Lab (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences and the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Gregory Redpath
| |
Collapse
|
2
|
Eickelbeck D, Karapinar R, Jack A, Suess ST, Barzan R, Azimi Z, Surdin T, Grömmke M, Mark MD, Gerwert K, Jancke D, Wahle P, Spoida K, Herlitze S. CaMello-XR enables visualization and optogenetic control of G q/11 signals and receptor trafficking in GPCR-specific domains. Commun Biol 2019; 2:60. [PMID: 30793039 PMCID: PMC6376006 DOI: 10.1038/s42003-019-0292-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The signal specificity of G protein-coupled receptors (GPCRs) including serotonin receptors (5-HT-R) depends on the trafficking and localization of the GPCR within its subcellular signaling domain. Visualizing traffic-dependent GPCR signals in neurons is difficult, but important to understand the contribution of GPCRs to synaptic plasticity. We engineered CaMello (Ca2+-melanopsin-local-sensor) and CaMello-5HT2A for visualization of traffic-dependent Ca2+ signals in 5-HT2A-R domains. These constructs consist of the light-activated Gq/11 coupled melanopsin, mCherry and GCaMP6m for visualization of Ca2+ signals and receptor trafficking, and the 5-HT2A C-terminus for targeting into 5-HT2A-R domains. We show that the specific localization of the GPCR to its receptor domain drastically alters the dynamics and localization of the intracellular Ca2+ signals in different neuronal populations in vitro and in vivo. The CaMello method may be extended to every GPCR coupling to the Gq/11 pathway to help unravel new receptor-specific functions in respect to synaptic plasticity and GPCR localization. Dennis Eickelbeck et al. engineered light-activated constructs, CaMello and CaMello-5HT2A, which are targeted to the 5HT2A-R domains and enable visualization of calcium signals and receptor trafficking in response to activation. The reported CaMello tool could be applied to other GPCRs coupled to the Gq/11 signaling pathways which may shed light on mechanisms of GPCR localization and plasticity.
Collapse
Affiliation(s)
- Dennis Eickelbeck
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Raziye Karapinar
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, ND6/72, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Sandra T Suess
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Ruxandra Barzan
- Optical Imaging Group, Institut für Neuroinformatik, NB 2/27, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Zohre Azimi
- Optical Imaging Group, Institut für Neuroinformatik, NB 2/27, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Tatjana Surdin
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Michelle Grömmke
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, ND04/596, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, NB 2/27, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, ND6/72, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Katharina Spoida
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
| |
Collapse
|
3
|
Di Giovanni G, De Deurwaerdère P. TCB-2 [(7R)-3-bromo-2, 5-dimethoxy-bicyclo[4.2.0]octa-1,3,5-trien-7-yl]methanamine]: A hallucinogenic drug, a selective 5-HT 2A receptor pharmacological tool, or none of the above? Neuropharmacology 2017; 142:20-29. [PMID: 28987938 DOI: 10.1016/j.neuropharm.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/28/2023]
Abstract
The development of 5-HT2A receptor agonists has been considerably marginalized since the demonstration that the tryptaminergic drugs, LSD and psilocybin, or the phenylakylamine drugs, mescaline and DOI, exert their hallucinogenic properties via the stimulation of 5-HT2A receptors. Nonetheless, the ability of drugs to stimulate 5-HT2A receptors is not necessarily associated with psychedelic experience and the hallucinogenic properties are still not understood. Several studies have increased interest in stimulating 5-HT2A receptors in various CNS diseases. (7R)-3-bromo-2, 5-dimethoxy-bicyclo[4.2.0]octa-1,3,5-trien-7-yl]methanamine (TCB-2) which was synthetized in 2006 presents a high affinity with human and rat 5-HT2A receptors. Its main feature of interest is that it preferentially stimulates the phospholipase C and not phospholipase A2 pathway, which is at variance with several hallucinogenic drugs. Preference for TCB-2 has increased in preclinical studies and it exhibits subtle differences compared to DOI or LSD in some molecular, cellular and behavioral studies. The purpose of this review is to take a position on the use of TCB-2 as a pharmacological tool. A careful reading of the literature has revealed that the suspected hallucinogenic properties of TCB-2 cannot firmly be ascertained while its pharmacological profile is unknown and likely not selective at 5-HT2A receptors. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France
| |
Collapse
|
4
|
Darmon M, Al Awabdh S, Emerit MB, Masson J. Insights into Serotonin Receptor Trafficking: Cell Membrane Targeting and Internalization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:97-126. [PMID: 26055056 DOI: 10.1016/bs.pmbts.2015.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serotonin receptors (5-HTRs) mediate both central and peripheral control on numerous physiological functions such as sleep/wake cycle, thermoregulation, food intake, nociception, locomotion, sexual behavior, gastrointestinal motility, blood coagulation, and cardiovascular homeostasis. Six families of the G-protein-coupled receptors comprise most of serotonin receptors besides the conserved 5-HT3R Cys-loop type which belongs to the family of Cys-loop ligand-gated cation channel receptors. Many of these receptors are targets of pharmaceutical drugs, justifying the importance for elucidating their coupling, signaling and functioning. Recently, special interest has been focused on their trafficking inside cell lines or neurons in conjunction with their interaction with partner proteins. In this review, we describe the trafficking of 5-HTRs including their internalization, desensitization, or addressing to the plasma membrane depending on specific mechanisms which are peculiar for each class of serotonin receptor.
Collapse
Affiliation(s)
- Michèle Darmon
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Sana Al Awabdh
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel-Boris Emerit
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Justine Masson
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
5
|
Bredholt T, Ersvær E, Erikstein BS, Sulen A, Reikvam H, Aarstad HJ, Johannessen AC, Vintermyr OK, Bruserud Ø, Gjertsen BT. Distinct single cell signal transduction signatures in leukocyte subsets stimulated with khat extract, amphetamine-like cathinone, cathine or norephedrine. BMC Pharmacol Toxicol 2013; 14:35. [PMID: 23845085 PMCID: PMC3733921 DOI: 10.1186/2050-6511-14-35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/03/2013] [Indexed: 11/16/2022] Open
Abstract
Background Amphetamine and amphetamine derivatives are suggested to induce an immunosuppressive effect. However, knowledge of how amphetamines modulate intracellular signaling pathways in cells of the immune system is limited. We have studied phosphorylation of signal transduction proteins (Akt, CREB, ERK1/2, NF-κB, c-Cbl, STAT1/3/5/6) and stress sensors (p38 MAPK, p53) in human leukocyte subsets following in vitro treatment with the natural amphetamine cathinone, the cathinone derivatives cathine and norephedrine, in comparison with a defined extract of the psychostimulating herb khat (Catha edulis Forsk.). Intracellular protein modifications in single cells were studied using immunostaining and flow cytometry, cell viability was determined by Annexin V-FITC/Propidium Iodide staining, and T-lymphocyte proliferation was measured by 3H-thymidine incorporation. Results Cathinone, cathine and norephedrine generally reduced post-translational modifications of intracellular signal transducers in T-lymphocytes, B-lymphocytes, natural killer cells and monocytes, most prominently affecting c-Cbl (pTyr700), ERK1/2 (p-Thr202/p-Tyr204), p38 MAPK (p-Thr180/p-Tyr182) and p53 (both total p53 protein and p-Ser15). In contrast, the botanical khat-extract induced protein phosphorylation of STAT1 (p-Tyr701), STAT6 (p-Tyr641), c-Cbl (pTyr700), ERK1/2 (p-Thr202/p-Tyr204), NF-κB (p-Ser529), Akt (p-Ser473), p38 MAPK (p-Thr180/p-Tyr182), p53 (Ser15) as well as total p53 protein. Cathinone, cathine and norephedrine resulted in unique signaling profiles, with B-lymphocytes and natural killer cells more responsive compared to T-lymphocytes and monocytes. Treatment with norephedrine resulted in significantly increased T-lymphocyte proliferation, whereas khat-extract reduced proliferation and induced cell death. Conclusions Single-cell signal transduction analyses of leukocytes distinctively discriminated between stimulation with cathinone and the structurally similar derivatives cathine and norephedrine. Cathinone, cathine and norephedrine reduced phosphorylation of c-Cbl, ERK1/2, p38 MAPK and p53(Ser15), and norephedrine induced T-lymphocyte proliferation. Khat-extract induced protein phosphorylation of signal transducers, p38 MAPK and p53, followed by reduced cell proliferation and cell death. This study suggests that protein modification-specific single-cell analysis of immune cells could unravel pharmacologic effects of amphetamines and amphetamine-like agents, and further could represent a valuable tool in elucidation of mechanism(s) of action of complex botanical extracts.
Collapse
Affiliation(s)
- Therese Bredholt
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|