1
|
Plazolles N, Kulyk H, Cahoreau E, Biran M, Wargnies M, Pineda E, El Kadri M, Rimoldi A, Hervé P, Asencio C, Rivière L, Michels PAM, Inaoka D, Tetaud E, Portais JC, Bringaud F. The glycosomal ATP-dependent phosphofructokinase of Trypanosoma brucei operates also in the gluconeogenic direction. PLoS Biol 2025; 23:e3002938. [PMID: 40378123 PMCID: PMC12121924 DOI: 10.1371/journal.pbio.3002938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 05/29/2025] [Accepted: 04/10/2025] [Indexed: 05/18/2025] Open
Abstract
In the glucose-free environment of the midgut of the tsetse fly vector, the procyclic forms of Trypanosoma brucei primarily consume proline to feed its central carbon and energy metabolism. In this context, the parasite produces through gluconeogenesis, glucose 6-phosphate (G6P), the precursor of essential metabolic pathways, from proline catabolism. We show here that the parasite uses three different enzymes to perform the key gluconeogenic reaction producing fructose 6-phosphate (F6P) from fructose 1,6-bisphosphate, (i) fructose-1,6-bisphosphatase (FBPase), the canonical enzyme performing this reaction, (ii) sedoheptulose-1,7-bisphosphatase (SBPase), and (iii) more surprisingly ATP-dependent phosphofructokinase (PFK), an enzyme considered to irreversibly catalyze the opposite reaction involved in glycolysis. These three enzymes, as well as six other glycolytic/gluconeogenic enzymes, are located in peroxisome-related organelles, named glycosomes. Incorporation of 13C-enriched glycerol (a more effective alternative to proline for monitoring gluconeogenic activity) into F6P and G6P was more affected in the PFK null mutant than in the FBPase null mutant, suggesting the PFK contributes at least as much as FBPase to gluconeogenesis. We also showed that glucose deprivation did not affect the quantities of PFK substrates and products, whereas an approximately 500-fold increase in the substrate/product ratio was expected for PFK to carry out the gluconeogenic reaction. In conclusion, we show for the first time that ATP-dependent PFK can function in vivo in the gluconeogenic direction, even in the presence of FBPase activity. This particular feature, which precludes loss of ATP through a futile cycle involving PFK and FBPase working simultaneously in the glycolytic and gluconeogenic directions, respectively, is possibly due to the supramolecular organization of the metabolic pathway within glycosomes to overcome thermodynamic barriers through metabolic channeling.
Collapse
Affiliation(s)
- Nicolas Plazolles
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Hanna Kulyk
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Marion Wargnies
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Erika Pineda
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Mohammad El Kadri
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Aline Rimoldi
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Perrine Hervé
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Corinne Asencio
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Loïc Rivière
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Paul A. M. Michels
- School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland
| | - Daniel Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Emmanuel Tetaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
- STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| |
Collapse
|
2
|
Allmann S, Wargnies M, Plazolles N, Cahoreau E, Biran M, Morand P, Pineda E, Kulyk H, Asencio C, Villafraz O, Rivière L, Tetaud E, Rotureau B, Mourier A, Portais JC, Bringaud F. Glycerol suppresses glucose consumption in trypanosomes through metabolic contest. PLoS Biol 2021; 19:e3001359. [PMID: 34388147 PMCID: PMC8386887 DOI: 10.1371/journal.pbio.3001359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.
Collapse
Affiliation(s)
- Stefan Allmann
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Marion Wargnies
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Nicolas Plazolles
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Erika Pineda
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Hanna Kulyk
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Corinne Asencio
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Oriana Villafraz
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Loïc Rivière
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Emmanuel Tetaud
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Arnaud Mourier
- Institute of Biochemistry and Genetics of the Cell (IBGC), CNRS, Bordeaux University, Bordeaux, France
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
- STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Frédéric Bringaud
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
- * E-mail:
| |
Collapse
|
3
|
The Trypanosome UDP-Glucose Pyrophosphorylase Is Imported by Piggybacking into Glycosomes, Where Unconventional Sugar Nucleotide Synthesis Takes Place. mBio 2021; 12:e0037521. [PMID: 34044588 PMCID: PMC8262884 DOI: 10.1128/mbio.00375-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosomes are peroxisome-related organelles of trypanosomatid parasites containing metabolic pathways, such as glycolysis and biosynthesis of sugar nucleotides, usually present in the cytosol of other eukaryotes. UDP-glucose pyrophosphorylase (UGP), the enzyme responsible for the synthesis of the sugar nucleotide UDP-glucose, is localized in the cytosol and glycosomes of the bloodstream and procyclic trypanosomes, despite the absence of any known peroxisome-targeting signal (PTS1 and PTS2). The questions that we address here are (i) is the unusual glycosomal biosynthetic pathway of sugar nucleotides functional and (ii) how is the PTS-free UGP imported into glycosomes? We showed that UGP is imported into glycosomes by piggybacking on the glycosomal PTS1-containing phosphoenolpyruvate carboxykinase (PEPCK) and identified the domains involved in the UGP/PEPCK interaction. Proximity ligation assays revealed that this interaction occurs in 3 to 10% of glycosomes, suggesting that these correspond to organelles competent for protein import. We also showed that UGP is essential for the growth of trypanosomes and that both the glycosomal and cytosolic metabolic pathways involving UGP are functional, since the lethality of the knockdown UGP mutant cell line (RNAiUGP, where RNAi indicates RNA interference) was rescued by expressing a recoded UGP (rUGP) in the organelle (RNAiUGP/EXPrUGP-GPDH, where GPDH is glycerol-3-phosphate dehydrogenase). Our conclusion was supported by targeted metabolomic analyses (ion chromatography–high-resolution mass spectrometry [IC-HRMS]) showing that UDP-glucose is no longer detectable in the RNAiUGP mutant, while it is still produced in cells expressing UGP exclusively in the cytosol (PEPCK null mutant) or glycosomes (RNAiUGP/EXPrUGP-GPDH). Trypanosomatids are the only known organisms to have selected functional peroxisomal (glycosomal) sugar nucleotide biosynthetic pathways in addition to the canonical cytosolic ones.
Collapse
|
4
|
Wargnies M, Plazolles N, Schenk R, Villafraz O, Dupuy JW, Biran M, Bachmaier S, Baudouin H, Clayton C, Boshart M, Bringaud F. Metabolic selection of a homologous recombination-mediated gene loss protects Trypanosoma brucei from ROS production by glycosomal fumarate reductase. J Biol Chem 2021; 296:100548. [PMID: 33741344 PMCID: PMC8065229 DOI: 10.1016/j.jbc.2021.100548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.
Collapse
Affiliation(s)
- Marion Wargnies
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Nicolas Plazolles
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Robin Schenk
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Oriana Villafraz
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | | | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Sabine Bachmaier
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Hélène Baudouin
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZBMH), Universität Heidelberg, Heidelberg, Germany
| | - Michael Boshart
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France.
| |
Collapse
|
5
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
6
|
Mattos EC, Canuto G, Manchola NC, Magalhães RDM, Crozier TWM, Lamont DJ, Tavares MFM, Colli W, Ferguson MAJ, Alves MJM. Reprogramming of Trypanosoma cruzi metabolism triggered by parasite interaction with the host cell extracellular matrix. PLoS Negl Trop Dis 2019; 13:e0007103. [PMID: 30726203 PMCID: PMC6380580 DOI: 10.1371/journal.pntd.0007103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, affects 8 million people predominantly living in socioeconomic underdeveloped areas. T. cruzi trypomastigotes (Ty), the classical infective stage, interact with the extracellular matrix (ECM), an obligatory step before invasion of almost all mammalian cells in different tissues. Here we have characterized the proteome and phosphoproteome of T. cruzi trypomastigotes upon interaction with ECM (MTy) and the data are available via ProteomeXchange with identifier PXD010970. Proteins involved with metabolic processes (such as the glycolytic pathway), kinases, flagellum and microtubule related proteins, transport-associated proteins and RNA/DNA binding elements are highly represented in the pool of proteins modified by phosphorylation. Further, important metabolic switches triggered by this interaction with ECM were indicated by decreases in the phosphorylation of hexokinase, phosphofructokinase, fructose-2,6-bisphosphatase, phosphoglucomutase, phosphoglycerate kinase in MTy. Concomitantly, a decrease in the pyruvate and lactate and an increase of glucose and succinate contents were detected by GC-MS. These observations led us to focus on the changes in the glycolytic pathway upon binding of the parasite to the ECM. Inhibition of hexokinase, pyruvate kinase and lactate dehydrogenase activities in MTy were observed and this correlated with the phosphorylation levels of the respective enzymes. Putative kinases involved in protein phosphorylation altered upon parasite incubation with ECM were suggested by in silico analysis. Taken together, our results show that in addition to cytoskeletal changes and protease activation, a reprogramming of the trypomastigote metabolism is triggered by the interaction of the parasite with the ECM prior to cell invasion and differentiation into amastigotes, the multiplicative intracellular stage of T. cruzi in the vertebrate host.
Collapse
Affiliation(s)
- Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gisele Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Nubia C. Manchola
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rubens D. M. Magalhães
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thomas W. M. Crozier
- Wellcome Centre for Anti-Infectives Research, School of Life Science, University of Dundee, Dundee, United Kingdom
| | - Douglas J. Lamont
- Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marina F. M. Tavares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Walter Colli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Science, University of Dundee, Dundee, United Kingdom
| | - Maria Júlia M. Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog 2018; 14:e1007502. [PMID: 30557412 PMCID: PMC6312356 DOI: 10.1371/journal.ppat.1007502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/31/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022] Open
Abstract
In the glucose-free environment that is the midgut of the tsetse fly vector, the procyclic form of Trypanosoma brucei primarily uses proline to feed its central carbon and energy metabolism. In these conditions, the parasite needs to produce glucose 6-phosphate (G6P) through gluconeogenesis from metabolism of non-glycolytic carbon source(s). We showed here that two phosphoenolpyruvate-producing enzymes, PEP carboxykinase (PEPCK) and pyruvate phosphate dikinase (PPDK) have a redundant function for the essential gluconeogenesis from proline. Indeed, incorporation of 13C-enriched proline into G6P was abolished in the PEPCK/PPDK null double mutant (Δppdk/Δpepck), but not in the single Δppdk and Δpepck mutant cell lines. The procyclic trypanosome also uses the glycerol conversion pathway to feed gluconeogenesis, since the death of the Δppdk/Δpepck double null mutant in glucose-free conditions is only observed after RNAi-mediated down-regulation of the expression of the glycerol kinase, the first enzyme of the glycerol conversion pathways. Deletion of the gene encoding fructose-1,6-bisphosphatase (Δfbpase), a key gluconeogenic enzyme irreversibly producing fructose 6-phosphate from fructose 1,6-bisphosphate, considerably reduced, but not abolished, incorporation of 13C-enriched proline into G6P. In addition, the Δfbpase cell line is viable in glucose-free conditions, suggesting that an alternative pathway can be used for G6P production in vitro. However, FBPase is essential in vivo, as shown by the incapacity of the Δfbpase null mutant to colonise the fly vector salivary glands, while the parental phenotype is restored in the Δfbpase rescued cell line re-expressing FBPase. The essential role of FBPase for the development of T. brucei in the tsetse was confirmed by taking advantage of an in vitro differentiation assay based on the RNA-binding protein 6 over-expression, in which the procyclic forms differentiate into epimastigote forms but not into mammalian-infective metacyclic parasites. In total, morphology, immunofluorescence and cytometry analyses showed that the differentiation of the epimastigote stages into the metacyclic forms is abolished in the Δfbpase mutant.
Collapse
|
8
|
Millerioux Y, Mazet M, Bouyssou G, Allmann S, Kiema TR, Bertiaux E, Fouillen L, Thapa C, Biran M, Plazolles N, Dittrich-Domergue F, Crouzols A, Wierenga RK, Rotureau B, Moreau P, Bringaud F. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions. PLoS Pathog 2018; 14:e1007116. [PMID: 29813135 PMCID: PMC5993337 DOI: 10.1371/journal.ppat.1007116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/08/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022] Open
Abstract
De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by trypanosomes in the infected insect vector digestive tract to feed the mevalonate pathway.
Collapse
Affiliation(s)
- Yoann Millerioux
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Muriel Mazet
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Guillaume Bouyssou
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Stefan Allmann
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Tiila-Riikka Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Eloïse Bertiaux
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Laetitia Fouillen
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
- Metabolome Facility of Bordeaux, Functional Genomics Center, Villenave d'Ornon
| | - Chandan Thapa
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
| | - Nicolas Plazolles
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Franziska Dittrich-Domergue
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Rik K. Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Patrick Moreau
- Membrane Biogenesis Laboratory, CNRS-University of Bordeaux, UMR-5200, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS UMR-5536, Bordeaux, France
- * E-mail:
| |
Collapse
|
9
|
Colasante C, Zheng F, Kemp C, Voncken F. A plant-like mitochondrial carrier family protein facilitates mitochondrial transport of di- and tricarboxylates in Trypanosoma brucei. Mol Biochem Parasitol 2018; 221:36-51. [PMID: 29581011 DOI: 10.1016/j.molbiopara.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022]
Abstract
The procyclic form of the human parasite Trypanosoma brucei harbors one single, large mitochondrion containing all tricarboxylic acid (TCA) cycle enzymes and respiratory chain complexes present also in higher eukaryotes. Metabolite exchange among subcellular compartments such as the cytoplasm, the mitochondrion, and the peroxisomes is crucial for redox homeostasis and for metabolic pathways whose enzymes are dispersed among different organelles. In higher eukaryotes, mitochondrial carrier family (MCF) proteins transport TCA-cycle intermediates across the inner mitochondrial membrane. Previously, we identified several MCF members that are essential for T. brucei survival. Among these, only one MCF protein, TbMCP12, potentially could transport dicarboxylates and tricarboxylates. Here, we conducted phylogenetic and sequence analyses and functionally characterised TbMCP12 in vivo. Our results suggested that similarly to its homologues in plants, TbMCP12 transports both dicarboxylates and tricarboxylates across the mitochondrial inner membrane. Deleting this carrier in T. brucei was not lethal, while its overexpression was deleterious. Our results suggest that the intracellular abundance of TbMCP12 is an important regulatory element for the NADPH balance and mitochondrial ATP-production.
Collapse
Affiliation(s)
- Claudia Colasante
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Aulweg 123, University of Giessen, 35392, Giessen, Germany.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xue Yuan Road, Fu Zhou, Fujian, PR China
| | - Cordula Kemp
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Frank Voncken
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| |
Collapse
|
10
|
Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci Rep 2017; 7:11868. [PMID: 28928432 PMCID: PMC5605654 DOI: 10.1038/s41598-017-11942-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/10/2017] [Indexed: 01/25/2023] Open
Abstract
In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid β-oxidation. During this process, NAD+ is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD+ by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the cytosol by the malate/oxaloacetate shuttle. The ultimate step in lysine biosynthesis, the NAD+-dependent dehydrogenation of saccharopine to lysine, is another NAD+-dependent reaction performed inside peroxisomes. We have found that in glucose grown cells, both the malate/oxaloacetate shuttle and a glycerol-3-phosphate dehydrogenase 1(Gpd1p)-dependent shuttle are able to maintain the intraperoxisomal redox balance. Single mutants in MDH3 or GPD1 grow on lysine-deficient medium, but an mdh3/gpd1Δ double mutant accumulates saccharopine and displays lysine bradytrophy. Lysine biosynthesis is restored when saccharopine dehydrogenase is mislocalised to the cytosol in mdh3/gpd1Δ cells. We conclude that the availability of intraperoxisomal NAD+ required for saccharopine dehydrogenase activity can be sustained by both shuttles. The extent to which each of these shuttles contributes to the intraperoxisomal redox balance may depend on the growth medium. We propose that the presence of multiple peroxisomal redox shuttles allows eukaryotic cells to maintain the peroxisomal redox status under different metabolic conditions.
Collapse
|
11
|
Zhuo Y, Cordeiro CD, Hekmatyar SK, Docampo R, Prestegard JH. Dynamic nuclear polarization facilitates monitoring of pyruvate metabolism in Trypanosoma brucei. J Biol Chem 2017; 292:18161-18168. [PMID: 28887303 DOI: 10.1074/jbc.m117.807495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 11/06/2022] Open
Abstract
Dynamic nuclear polarization provides sensitivity improvements that make NMR a viable method for following metabolic conversions in real time. There are now many in vivo applications to animal systems and even to diagnosis of human disease. However, application to microbial systems is rare. Here we demonstrate its application to the pathogenic protozoan, Trypanosoma brucei, using hyperpolarized 13C1 pyruvate as a substrate and compare the parasite metabolism with that of commonly cultured mammalian cell lines, HEK-293 and Hep-G2. Metabolic differences between insect and bloodstream forms of T. brucei were also investigated. Significant differences are noted with respect to lactate, alanine, and CO2 production. Conversion of pyruvate to CO2 in the T. brucei bloodstream form provides new support for the presence of an active pyruvate dehydrogenase in this stage.
Collapse
Affiliation(s)
- You Zhuo
- From the Complex Carbohydrate Research Center
| | - Ciro D Cordeiro
- the Center for Tropical and Emerging Global Diseases, and.,the Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | | | - Roberto Docampo
- the Center for Tropical and Emerging Global Diseases, and.,the Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | | |
Collapse
|
12
|
Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Exp Parasitol 2016; 165:7-15. [PMID: 26968775 DOI: 10.1016/j.exppara.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 11/22/2022]
Abstract
Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.
Collapse
|
13
|
Štáfková J, Mach J, Biran M, Verner Z, Bringaud F, Tachezy J. Mitochondrial pyruvate carrier in Trypanosoma brucei. Mol Microbiol 2016; 100:442-56. [PMID: 26748989 DOI: 10.1111/mmi.13325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/30/2022]
Abstract
Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock-out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought.
Collapse
Affiliation(s)
- Jitka Štáfková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536 CNRS
| | - Zdeněk Verner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536 CNRS.,Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR5234 CNRS, Université de Bordeaux, Bordeaux, France
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University in Prague, Czech Republic
| |
Collapse
|
14
|
Bringaud F, Biran M, Millerioux Y, Wargnies M, Allmann S, Mazet M. Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways. Mol Microbiol 2015; 96:917-26. [PMID: 25753950 DOI: 10.1111/mmi.12990] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 01/20/2023]
Abstract
Numerous eukaryotes have developed specific metabolic traits that are not present in extensively studied model organisms. For instance, the procyclic insect form of Trypanosoma brucei, a parasite responsible for sleeping sickness in its mammalian-specific bloodstream form, metabolizes glucose into excreted succinate and acetate through pathways with unique features. Succinate is primarily produced from glucose-derived phosphoenolpyruvate in peroxisome-like organelles, also known as glycosomes, by a soluble NADH-dependent fumarate reductase only described in trypanosomes so far. Acetate is produced in the mitochondrion of the parasite from acetyl-CoA by a CoA-transferase, which forms an ATP-producing cycle with succinyl-CoA synthetase. The role of this cycle in ATP production was recently demonstrated in procyclic trypanosomes and has only been proposed so far for anaerobic organisms, in addition to trypanosomatids. We review how nuclear magnetic resonance spectrometry can be used to analyze the metabolic network perturbed by deletion (knockout) or downregulation (RNAi) of the candidate genes involved in these two particular metabolic pathways of procyclic trypanosomes. The role of succinate and acetate production in trypanosomes is discussed, as well as the connections between the succinate and acetate branches, which increase the metabolic flexibility probably required by the parasite to deal with environmental changes such as oxidative stress.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marion Wargnies
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Stefan Allmann
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| |
Collapse
|
15
|
Uttaro AD. Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids. Mol Biochem Parasitol 2014; 196:61-70. [DOI: 10.1016/j.molbiopara.2014.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
|
16
|
Deramchia K, Morand P, Biran M, Millerioux Y, Mazet M, Wargnies M, Franconi JM, Bringaud F. Contribution of pyruvate phosphate dikinase in the maintenance of the glycosomal ATP/ADP balance in the Trypanosoma brucei procyclic form. J Biol Chem 2014; 289:17365-78. [PMID: 24794874 DOI: 10.1074/jbc.m114.567230] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei belongs to a group of protists that sequester the first six or seven glycolytic steps inside specialized peroxisomes, named glycosomes. Because of the glycosomal membrane impermeability to nucleotides, ATP molecules consumed by the first glycolytic steps need to be regenerated in the glycosomes by kinases, such as phosphoenolpyruvate carboxykinase (PEPCK). The glycosomal pyruvate phosphate dikinase (PPDK), which reversibly converts phosphoenolpyruvate into pyruvate, could also be involved in this process. To address this question, we analyzed the metabolism of the main carbon sources used by the procyclic trypanosomes (glucose, proline, and threonine) after deletion of the PPDK gene in the wild-type (Δppdk) and PEPCK null (Δppdk/Δpepck) backgrounds. The rate of acetate production from glucose is 30% reduced in the Δppdk mutant, whereas threonine-derived acetate production is not affected, showing that PPDK function in the glycolytic direction with production of ATP in the glycosomes. The Δppdk/Δpepck mutant incubated in glucose as the only carbon source showed a 3.8-fold reduction of the glycolytic rate compared with the Δpepck mutant, as a consequence of the imbalanced glycosomal ATP/ADP ratio. The role of PPDK in maintenance of the ATP/ADP balance was confirmed by expressing the glycosomal phosphoglycerate kinase (PGKC) in the Δppdk/Δpepck cell line, which restored the glycolytic flux. We also observed that expression of PGKC is lethal for procyclic trypanosomes, as a consequence of ATP depletion, due to glycosomal relocation of cytosolic ATP production. This illustrates the key roles played by glycosomal and cytosolic kinases, including PPDK, to maintain the cellular ATP/ADP homeostasis.
Collapse
Affiliation(s)
- Kamel Deramchia
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Pauline Morand
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Marc Biran
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Yoann Millerioux
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Muriel Mazet
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Marion Wargnies
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Jean-Michel Franconi
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Frédéric Bringaud
- From the Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, CNRS UMR-5536, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
17
|
Mazet M, Morand P, Biran M, Bouyssou G, Courtois P, Daulouède S, Millerioux Y, Franconi JM, Vincendeau P, Moreau P, Bringaud F. Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Negl Trop Dis 2013; 7:e2587. [PMID: 24367711 PMCID: PMC3868518 DOI: 10.1371/journal.pntd.0002587] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022] Open
Abstract
Background The bloodstream forms of Trypanosoma brucei, the causative agent of sleeping sickness, rely solely on glycolysis for ATP production. It is generally accepted that pyruvate is the major end-product excreted from glucose metabolism by the proliferative long-slender bloodstream forms of the parasite, with virtually no production of succinate and acetate, the main end-products excreted from glycolysis by all the other trypanosomatid adaptative forms, including the procyclic insect form of T. brucei. Methodology/Principal Findings A comparative NMR analysis showed that the bloodstream long-slender and procyclic trypanosomes excreted equivalent amounts of acetate and succinate from glucose metabolism. Key enzymes of acetate production from glucose-derived pyruvate and threonine are expressed in the mitochondrion of the long-slender forms, which produces 1.4-times more acetate from glucose than from threonine in the presence of an equal amount of both carbon sources. By using a combination of reverse genetics and NMR analyses, we showed that mitochondrial production of acetate is essential for the long-slender forms, since blocking of acetate biosynthesis from both carbon sources induces cell death. This was confirmed in the absence of threonine by the lethal phenotype of RNAi-mediated depletion of the pyruvate dehydrogenase, which is involved in glucose-derived acetate production. In addition, we showed that de novo fatty acid biosynthesis from acetate is essential for this parasite, as demonstrated by a lethal phenotype and metabolic analyses of RNAi-mediated depletion of acetyl-CoA synthetase, catalyzing the first cytosolic step of this pathway. Conclusions/Significance Acetate produced in the mitochondrion from glucose and threonine is synthetically essential for the long-slender mammalian forms of T. brucei to feed the essential fatty acid biosynthesis through the “acetate shuttle” that was recently described in the procyclic insect form of the parasite. Consequently, key enzymatic steps of this pathway, particularly acetyl-CoA synthetase, constitute new attractive drug targets against trypanosomiasis. Many protists, including parasitic helminthes, trichomonads and trypanosomatids, produce acetate in their mitochondrion or mitochondrion-like organelle, which is excreted as a main metabolic end-product of their energy metabolism. We have recently demonstrated that mitochondrial production of acetate is essential for fatty acid biosynthesis and ATP production in the procyclic insect form of T. brucei. However, acetate metabolism has not been investigated in the long-slender bloodstream forms of the parasite, the proliferative forms responsible for the sleeping sickness. In contrast to the current view, we showed that the bloodstream forms produce almost as much acetate from glucose than the procyclic parasites. Acetate production from glucose and threonine is synthetically essential for growth and de novo synthesis of fatty acids of the bloodstream trypanosomes. These data highlight that the central metabolism of the bloodstream forms contains unexpected essential pathways, although minor in terms of metabolic flux, which could be targeted for the development of trypanocidal drugs.
Collapse
Affiliation(s)
- Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université Bordeaux Segalen, CNRS, Bordeaux, France
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université Bordeaux Segalen, CNRS, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université Bordeaux Segalen, CNRS, Bordeaux, France
| | - Guillaume Bouyssou
- Laboratoire de Biogenèse Membranaire, UMR5200 Université Bordeaux Segalen, CNRS, Bâtiment A3, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Pierrette Courtois
- Laboratoire de Parasitologie, UMR177 IRD CIRAD, Université Bordeaux Segalen, BP 43, Bordeaux, France
| | - Sylvie Daulouède
- Laboratoire de Parasitologie, UMR177 IRD CIRAD, Université Bordeaux Segalen, BP 43, Bordeaux, France
| | - Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université Bordeaux Segalen, CNRS, Bordeaux, France
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université Bordeaux Segalen, CNRS, Bordeaux, France
| | - Philippe Vincendeau
- Laboratoire de Parasitologie, UMR177 IRD CIRAD, Université Bordeaux Segalen, BP 43, Bordeaux, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, UMR5200 Université Bordeaux Segalen, CNRS, Bâtiment A3, INRA Bordeaux Aquitaine, Villenave d'Ornon, France
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université Bordeaux Segalen, CNRS, Bordeaux, France
- * E-mail: .
| |
Collapse
|
18
|
Characterization of two mitochondrial flavin adenine dinucleotide-dependent glycerol-3-phosphate dehydrogenases in Trypanosoma brucei. EUKARYOTIC CELL 2013; 12:1664-73. [PMID: 24142106 DOI: 10.1128/ec.00152-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD(+) reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei, while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion.
Collapse
|
19
|
Millerioux Y, Ebikeme C, Biran M, Morand P, Bouyssou G, Vincent IM, Mazet M, Riviere L, Franconi JM, Burchmore RJS, Moreau P, Barrett MP, Bringaud F. The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control. Mol Microbiol 2013; 90:114-29. [PMID: 23899193 PMCID: PMC4034587 DOI: 10.1111/mmi.12351] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
The Trypanosoma brucei procyclic form resides within the digestive tract of its insect vector, where it exploits amino acids as carbon sources. Threonine is the amino acid most rapidly consumed by this parasite, however its role is poorly understood. Here, we show that the procyclic trypanosomes grown in rich medium only use glucose and threonine for lipid biosynthesis, with threonine's contribution being ∼ 2.5 times higher than that of glucose. A combination of reverse genetics and NMR analysis of excreted end-products from threonine and glucose metabolism, shows that acetate, which feeds lipid biosynthesis, is also produced primarily from threonine. Interestingly, the first enzymatic step of the threonine degradation pathway, threonine dehydrogenase (TDH, EC 1.1.1.103), is under metabolic control and plays a key role in the rate of catabolism. Indeed, a trypanosome mutant deleted for the phosphoenolpyruvate decarboxylase gene (PEPCK, EC 4.1.1.49) shows a 1.7-fold and twofold decrease of TDH protein level and activity, respectively, associated with a 1.8-fold reduction in threonine-derived acetate production. We conclude that TDH expression is under control and can be downregulated in response to metabolic perturbations, such as in the PEPCK mutant in which the glycolytic metabolic flux was redirected towards acetate production.
Collapse
Affiliation(s)
- Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR-5536 Université Bordeaux Segalen, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim DH, Barrett MP. Metabolite-dependent regulation of gene expression in Trypanosoma brucei. Mol Microbiol 2013; 88:841-5. [PMID: 23668674 DOI: 10.1111/mmi.12243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2013] [Indexed: 12/21/2022]
Abstract
Mechanisms regulating gene expression in trypanosomatid protozoa differ significantly from those in other eukaryotes. Transcription of the genome appears to be more or less constitutive with the polyadenylation and trans-splicing of large polycistronic RNAs producing monocistronic RNAs whose translation may then depend upon information within their 3' untranslated regions (3'UTRs). Various 3'UTR sequences involved in life-cycle stage-dependent differential gene expression have been described. Moreover, several RNA-binding proteins have been implicated in regulating expression of these transcripts through altering either their stability or their ability to interact with ribosomes. In this issue of Molecular Microbiology Xiao et al. report on a regulatory element within the 3'UTR of the transcript that encodes the polyamine pathway regulatory protein called prozyme. It appears that the RNA element controls translation of the prozyme RNA causing expression to be upregulated when levels of decarboxylated S-adenosylmethionine (dcAdoMet) are depleted. Since prozyme activates the enzyme S-adenosylmethionine decarboxylase (AdoMetDC), which is responsible for the production of dcAdoMet, losing this metabolite leads to upregulation of prozyme, activation of AdoMetDC and restoration of optimal levels of dcAdomet. The system thus represents a novel metabolite-sensing regulatory circuit that maintains polyamine homeostasis in these cells.
Collapse
|
21
|
Allmann S, Morand P, Ebikeme C, Gales L, Biran M, Hubert J, Brennand A, Mazet M, Franconi JM, Michels PAM, Portais JC, Boshart M, Bringaud F. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux. J Biol Chem 2013; 288:18494-505. [PMID: 23665470 DOI: 10.1074/jbc.m113.462978] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All living organisms depend on NADPH production to feed essential biosyntheses and for oxidative stress defense. Protozoan parasites such as the sleeping sickness pathogen Trypanosoma brucei adapt to different host environments, carbon sources, and oxidative stresses during their infectious life cycle. The procyclic stage develops in the midgut of the tsetse insect vector, where they rely on proline as carbon source, although they prefer glucose when grown in rich media. Here, we investigate the flexible and carbon source-dependent use of NADPH synthesis pathways in the cytosol of the procyclic stage. The T. brucei genome encodes two cytosolic NADPH-producing pathways, the pentose phosphate pathway (PPP) and the NADP-dependent malic enzyme (MEc). Reverse genetic blocking of those pathways and a specific inhibitor (dehydroepiandrosterone) of glucose-6-phosphate dehydrogenase together established redundancy with respect to H2O2 stress management and parasite growth. Blocking both pathways resulted in ∼10-fold increase of susceptibility to H2O2 stress and cell death. Unexpectedly, the same pathway redundancy was observed in glucose-rich and glucose-depleted conditions, suggesting that gluconeogenesis can feed the PPP to provide NADPH. This was confirmed by (i) a lethal phenotype of RNAi-mediated depletion of glucose-6-phosphate isomerase (PGI) in the glucose-depleted Δmec/Δmec null background, (ii) an ∼10-fold increase of susceptibility to H2O2 stress observed for the Δmec/Δmec/(RNAi)PGI double mutant when compared with the single mutants, and (iii) the (13)C enrichment of glycolytic and PPP intermediates from cells incubated with [U-(13)C]proline, in the absence of glucose. Gluconeogenesis-supported NADPH supply may also be important for nucleotide and glycoconjugate syntheses in the insect host.
Collapse
Affiliation(s)
- Stefan Allmann
- Faculty of Biology, Section of Genetics, Ludwig-Maximilians-Universität München, Biozentrum, Grosshadernerstrasse 2-4, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei. Parasitology 2012; 140:328-37. [PMID: 23111000 DOI: 10.1017/s003118201200162x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The respiratory chain of the procyclic stage of Trypanosoma brucei contains the standard complexes I through IV, as well as several alternative enzymes contributing to electron flow. In this work, we studied the function of an alternative NADH : ubiquinone oxidoreductase (NDH2). Depletion of target mRNA was achieved using RNA interference (RNAi). In the non-induced and RNAi-induced cell growth, membrane potential change, alteration in production of reactive oxygen species, overall respiration, enzymatic activities of complexes I, III and/or IV and distribution of NADH : ubiquinone oxidoreductase activities in glycerol gradient fractions were measured. Finally, respiration using different substrates was tested on digitonin-permeabilized cells. The induced RNAi cell line exhibited slower growth, decreased mitochondrial membrane potential and lower sensitivity of respiration to inhibitors. Mitochondrial glycerol-3-phosphate dehydrogenase was the only enzymatic activity that has significantly changed in the interfered cells. This elevation as well as a decrease of respiration using NADH was confirmed on digitonin-permeabilized cells. The data presented here together with previously published findings on complex I led us to propose that NDH2 is the major NADH : ubiquinone oxidoreductase responsible for cytosolic and not for mitochondrial NAD+ regeneration in the mitochondrion of procyclic T. brucei.
Collapse
|
23
|
Peña-Diaz P, Pelosi L, Ebikeme C, Colasante C, Gao F, Bringaud F, Voncken F. Functional characterization of TbMCP5, a conserved and essential ADP/ATP carrier present in the mitochondrion of the human pathogen Trypanosoma brucei. J Biol Chem 2012; 287:41861-74. [PMID: 23074217 DOI: 10.1074/jbc.m112.404699] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma brucei is a kinetoplastid parasite of medical and veterinary importance. Its digenetic life cycle alternates between the bloodstream form in the mammalian host and the procyclic form (PCF) in the bloodsucking insect vector, the tsetse fly. PCF trypanosomes rely in the glucose-depleted environment of the insect vector primarily on the mitochondrial oxidative phosphorylation of proline for their cellular ATP provision. We previously identified two T. brucei mitochondrial carrier family proteins, TbMCP5 and TbMCP15, with significant sequence similarity to functionally characterized ADP/ATP carriers from other eukaryotes. Comprehensive sequence analysis confirmed that TbMCP5 contains canonical ADP/ATP carrier sequence features, whereas they are not conserved in TbMCP15. Heterologous expression in the ANC-deficient yeast strain JL1Δ2Δ3u(-) revealed that only TbMCP5 was able to restore its growth on the non-fermentable carbon source lactate. Transport studies in yeast mitochondria showed that TbMCP5 has biochemical properties and ADP/ATP exchange kinetics similar to those of Anc2p, the prototypical ADP/ATP carrier of S. cerevisiae. Immunofluorescence microscopy and Western blot analysis confirmed that TbMCP5 is exclusively mitochondrial and is differentially expressed with 4.5-fold more TbMCP5 in the procyclic form of the parasite. Silencing of TbMCP5 expression in PCF T. brucei revealed that this ADP/ATP carrier is essential for parasite growth, particularly when depending on proline for energy generation. Moreover, ADP/ATP exchange in isolated T. brucei mitochondria was eliminated upon TbMCP5 depletion. These results confirmed that TbMCP5 functions as the main ADP/ATP carrier in the trypanosome mitochondrion. The important role of TbMCP5 in the T. brucei energy metabolism is further discussed.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Department of Biological Sciences and Hull York Medical School, University of Hull, Cottingham Road, HU6 7RX Hull, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Isotopic profiling of 13C-labeled biological samples by two-dimensional heteronuclear J-resolved nuclear magnetic resonance spectroscopy. Anal Biochem 2012; 427:158-63. [DOI: 10.1016/j.ab.2012.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/21/2012] [Indexed: 12/26/2022]
|
25
|
Quantitative NMR for bioanalysis and metabolomics. Anal Bioanal Chem 2012; 404:1165-79. [PMID: 22766756 DOI: 10.1007/s00216-012-6188-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 01/16/2023]
Abstract
Over the last several decades, significant technical and experimental advances have made quantitative nuclear magnetic resonance (qNMR) a valuable analytical tool for quantitative measurements on a wide variety of samples. In particular, qNMR has emerged as an important method for metabolomics studies where it is used for interrogation of large sets of biological samples and the resulting spectra are treated with multivariate statistical analysis methods. In this review, recent developments in instrumentation and pulse sequences will be discussed as well as the practical considerations necessary for acquisition of quantitative NMR experiments with an emphasis on their use for bioanalysis. Recent examples of the application of qNMR for metabolomics/metabonomics studies, the characterization of biologicals such as heparin, antibodies, and vaccines, and the analysis of botanical natural products will be presented and the future directions of qNMR discussed.
Collapse
|
26
|
Millerioux Y, Morand P, Biran M, Mazet M, Moreau P, Wargnies M, Ebikeme C, Deramchia K, Gales L, Portais JC, Boshart M, Franconi JM, Bringaud F. ATP synthesis-coupled and -uncoupled acetate production from acetyl-CoA by mitochondrial acetate:succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma. J Biol Chem 2012; 287:17186-17197. [PMID: 22474284 DOI: 10.1074/jbc.m112.355404] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insect stage trypanosomes use an "acetate shuttle" to transfer mitochondrial acetyl-CoA to the cytosol for the essential fatty acid biosynthesis. The mitochondrial acetate sources are acetate:succinate CoA-transferase (ASCT) and an unknown enzymatic activity. We have identified a gene encoding acetyl-CoA thioesterase (ACH) activity, which is shown to be the second acetate source. First, RNAi-mediated repression of ASCT in the ACH null background abolishes acetate production from glucose, as opposed to both single ASCT and ACH mutants. Second, incorporation of radiolabeled glucose into fatty acids is also abolished in this ACH/ASCT double mutant. ASCT is involved in ATP production, whereas ACH is not, because the ASCT null mutant is ∼1000 times more sensitive to oligomycin, a specific inhibitor of the mitochondrial F(0)/F(1)-ATP synthase, than wild-type cells or the ACH null mutant. This was confirmed by RNAi repression of the F(0)/F(1)-ATP synthase F(1)β subunit, which is lethal when performed in the ASCT null background but not in the wild-type cells or the ACH null background. We concluded that acetate is produced from both ASCT and ACH; however, only ASCT is responsible, together with the F(0)/F(1)-ATP synthase, for ATP production in the mitochondrion.
Collapse
Affiliation(s)
- Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, UMR 5200, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Marion Wargnies
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Charles Ebikeme
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Kamel Deramchia
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Lara Gales
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean-Charles Portais
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Michael Boshart
- Biozentrum, Genetik, Ludwig-Maximilians-Universität München, Grosshadernerstr, 2-4, D-82152 Martinsried, Germany
| | - Jean-Michel Franconi
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen, CNRS, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| |
Collapse
|
27
|
Gualdrón-López M, Brennand A, Hannaert V, Quiñones W, Cáceres AJ, Bringaud F, Concepción JL, Michels PAM. When, how and why glycolysis became compartmentalised in the Kinetoplastea. A new look at an ancient organelle. Int J Parasitol 2011; 42:1-20. [PMID: 22142562 DOI: 10.1016/j.ijpara.2011.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
Abstract
A characteristic, well-studied feature of the pathogenic protists belonging to the family Trypanosomatidae is the compartmentalisation of the major part of the glycolytic pathway in peroxisome-like organelles, hence designated glycosomes. Such organelles containing glycolytic enzymes appear to be present in all members of the Kinetoplastea studied, and have recently also been detected in a representative of the Diplonemida, but they are absent from the Euglenida. Glycosomes therefore probably originated in a free-living, common ancestor of the Kinetoplastea and Diplonemida. The initial sequestering of glycolytic enzymes inside peroxisomes may have been the result of a minor mistargeting of proteins, as generally observed in eukaryotic cells, followed by preservation and its further expansion due to the selective advantage of this specific form of metabolic compartmentalisation. This selective advantage may have been a largely increased metabolic flexibility, allowing the organisms to adapt more readily and efficiently to different environmental conditions. Further evolution of glycosomes involved, in different taxonomic lineages, the acquisition of additional enzymes and pathways - often participating in core metabolic processes - as well as the loss of others. The acquisitions may have been promoted by the sharing of cofactors and crucial metabolites between different pathways, thus coupling different redox processes and catabolic and anabolic pathways within the organelle. A notable loss from the Trypanosomatidae concerned a major part of the typical peroxisomal H(2)O(2)-linked metabolism. We propose that the compartmentalisation of major parts of the enzyme repertoire involved in energy, carbohydrate and lipid metabolism has contributed to the multiple development of parasitism, and its elaboration to complicated life cycles involving consecutive different hosts, in the protists of the Kinetoplastea clade.
Collapse
Affiliation(s)
- Melisa Gualdrón-López
- Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, Postal Box B1.74.01, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Creek DJ, Anderson J, McConville MJ, Barrett MP. Metabolomic analysis of trypanosomatid protozoa. Mol Biochem Parasitol 2011; 181:73-84. [PMID: 22027026 DOI: 10.1016/j.molbiopara.2011.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/05/2023]
Abstract
Metabolomics aims to measure all low molecular weight chemicals within a given system in a manner analogous to transcriptomics, proteomics and genomics. In this review we highlight metabolomics approaches that are currently being applied to the kinetoplastid parasites, Trypanosoma brucei and Leishmania spp. The use of untargeted metabolomics approaches, made possible through advances in mass spectrometry and informatics, and stable isotope labelling has increased our understanding of the metabolism in these organisms beyond the views established using classical biochemical approaches. Set within the context of metabolic networks, predicted using genome-wide reconstructions of metabolism, new hypotheses on how to target aspects of metabolism to design new drugs against these protozoa are emerging.
Collapse
Affiliation(s)
- Darren J Creek
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
29
|
Stoffel SA, Alibu VP, Hubert J, Ebikeme C, Portais JC, Bringaud F, Schweingruber ME, Barrett MP. Transketolase in Trypanosoma brucei. Mol Biochem Parasitol 2011; 179:1-7. [PMID: 21570429 DOI: 10.1016/j.molbiopara.2011.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/15/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
Abstract
A single copy gene, encoding a protein highly similar to transketolase from other systems, was identified in the Trypanosoma brucei genome. The gene was expressed in E. coli and the purified protein demonstrated transketolase activity with K(m) values of 0.2mM and 0.8mM respectively for xylulose 5-phosphate and ribose 5-phosphate. A peroxisomal targeting signal (PTS-1) present at the C-terminus of the protein suggested a glycosomal localisation. However, subcellular localisation experiments revealed that while the protein was present in glycosomes it was found mainly within the cytosol and thus has a dual localisation. Transketolase activity was absent from the long slender bloodstream form of the parasite and the protein was not detectable in this life cycle stage, with the RNA present only at low abundance, indicating a strong differential regulation, being present predominantly in the procyclic form. The gene was knocked out from procyclic T. brucei and transketolase activity was lost but no growth phenotype was evident in the null mutants. Metabolite profiling to compare wild type and TKT null mutants revealed substantial increases in transketolase substrate metabolites coupled to loss of sedoheptulose 7-phosphate, a principal product of the transketolase reaction.
Collapse
Affiliation(s)
- Sabine A Stoffel
- Pevion Biotech AG, Worblentalstrasse 32, CH-3063 Ittigen/BE, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Saunders EC, Ng WW, Chambers JM, Ng M, Naderer T, Krömer JO, Likic VA, McConville MJ. Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth. J Biol Chem 2011; 286:27706-17. [PMID: 21636575 DOI: 10.1074/jbc.m110.213553] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Leishmania parasites proliferate within nutritionally complex niches in their sandfly vector and mammalian hosts. However, the extent to which these parasites utilize different carbon sources remains poorly defined. In this study, we have followed the incorporation of various (13)C-labeled carbon sources into the intracellular and secreted metabolites of Leishmania mexicana promastigotes using gas chromatography-mass spectrometry and (13)C NMR. [U-(13)C]Glucose was rapidly incorporated into intermediates in glycolysis, the pentose phosphate pathway, and the cytoplasmic carbohydrate reserve material, mannogen. Enzymes involved in the upper glycolytic pathway are sequestered within glycosomes, and the ATP and NAD(+) consumed by these reactions were primarily regenerated by the fermentation of phosphoenolpyruvate to succinate (glycosomal succinate fermentation). The initiating enzyme in this pathway, phosphoenolpyruvate carboxykinase, was exclusively localized to the glycosome. Although some of the glycosomal succinate was secreted, most of the C4 dicarboxylic acids generated during succinate fermentation were further catabolized in the TCA cycle. A high rate of TCA cycle anaplerosis was further suggested by measurement of [U-(13)C]aspartate and [U-(13)C]alanine uptake and catabolism. TCA cycle anaplerosis is apparently needed to sustain glutamate production under standard culture conditions. Specifically, inhibition of mitochondrial aconitase with sodium fluoroacetate resulted in the rapid depletion of intracellular glutamate pools and growth arrest. Addition of high concentrations of exogenous glutamate alleviated this growth arrest. These findings suggest that glycosomal and mitochondrial metabolism in Leishmania promastigotes is tightly coupled and that, in contrast to the situation in some other trypanosomatid parasites, the TCA cycle has crucial anabolic functions.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|