1
|
Lopes M, Lund PJ, Garcia BA. Optimized and Robust Workflow for Quantifying the Canonical Histone Ubiquitination Marks H2AK119ub and H2BK120ub by LC-MS/MS. J Proteome Res 2024; 23:5405-5420. [PMID: 39556659 PMCID: PMC11932154 DOI: 10.1021/acs.jproteome.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here, we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones, followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nano-LC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.
Collapse
Affiliation(s)
- Mariana Lopes
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peder J. Lund
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
2
|
Lopes M, Lund PJ, Garcia BA. An optimized and robust workflow for quantifying the canonical histone ubiquitination marks H2AK119ub and H2BK120ub by LC-MS/MS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.596744. [PMID: 38915586 PMCID: PMC11195131 DOI: 10.1101/2024.06.11.596744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The eukaryotic genome is packaged around histone proteins, which are subject to a myriad of post-translational modifications. By controlling DNA accessibility and the recruitment of protein complexes that mediate chromatin-related processes, these modifications constitute a key mechanism of epigenetic regulation. Since mass spectrometry can easily distinguish between these different modifications, it has become an essential technique in deciphering the histone code. Although robust LC-MS/MS methods are available to analyze modifications on the histone N-terminal tails, routine methods for characterizing ubiquitin marks on histone C-terminal regions, especially H2AK119ub, are less robust. Here we report the development of a simple workflow for the detection and improved quantification of the canonical histone ubiquitination marks H2AK119ub and H2BK120ub. The method entails a fully tryptic digestion of acid-extracted histones followed by derivatization with heavy or light propionic anhydride. A pooled sample is then spiked into oppositely labeled single samples as a reference channel for relative quantification, and data is acquired using PRM-based nanoLC-MS/MS. We validated our approach with synthetic peptides as well as treatments known to modulate the levels of H2AK119ub and H2BK120ub. This new method complements existing histone workflows, largely focused on the lysine-rich N-terminal regions, by extending modification analysis to other sequence contexts.
Collapse
Affiliation(s)
- Mariana Lopes
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Peder J. Lund
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin A. Garcia
- Penn Epigenetics Institute, Dept. of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Dept. of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
3
|
Yang D, He Y, Li R, Huang Z, Zhou Y, Shi Y, Deng Z, Wu J, Gao Y. Histone H3K79 methylation by DOT1L promotes Aurora B localization at centromeres in mitosis. Cell Rep 2023; 42:112885. [PMID: 37494186 DOI: 10.1016/j.celrep.2023.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
Centromere localization of the chromosome passenger complex (CPC) is paramount for achieving accurate sister chromosome segregation in mitosis. Although it has been widely recognized that the recruitment of CPC is directly regulated by two histone codes, phosphorylation of histone H3 at threonine 3 (H3T3ph) and phosphorylation of histone H2A at threonine 120 (H2AT120ph), the regulation of CPC localization by other histone codes remains elusive. We show that dysfunction of disruptor of telomeric silencing 1 like (DOT1L) leads to mislocation of the CPC in prometaphase, caused by disturbing the level of H3T3ph and its reader Survivin. This cascade is initiated by over-dephosphorylation of H3T3ph mediated by the phosphatase RepoMan-PP1, whose scaffold RepoMan translocalizes to chromosomes, while the level of H3K79me2/3 is diminished. Together, our findings uncover a biological function of DOT1L and H3K79 methylation in mitosis and give insight into how genomic stability is coordinated by different histone codes.
Collapse
Affiliation(s)
- Dan Yang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanji He
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Renyan Li
- Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, China
| | - Zhenting Huang
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhou
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yingxu Shi
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhongliang Deng
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jingxian Wu
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yanfei Gao
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Noberini R, Restellini C, Savoia EO, Bonaldi T. Enrichment of histones from patient samples for mass spectrometry-based analysis of post-translational modifications. Methods 2020; 184:19-28. [DOI: 10.1016/j.ymeth.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
|
5
|
Coradin M, Mendoza MR, Sidoli S, Alpert AJ, Lu C, Garcia BA. Bullet points to evaluate the performance of the middle-down proteomics workflow for histone modification analysis. Methods 2020; 184:86-92. [PMID: 32070774 PMCID: PMC7727281 DOI: 10.1016/j.ymeth.2020.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Middle-down proteomics has emerged as the method of choice to study combinatorial histone post translational modifications (PTMs). In the common bottom-up workflow, histones are digested into relatively short peptides (4-20 aa), separated using reversed-phase chromatography and analyzed using typical proteomics methods in mass spectrometry. In middle-down, histones are cleaved into longer polypeptides (50-60 aa) mostly corresponding to their N-terminal tails, resolved using weak cation exchange-hydrophilic interaction liquid chromatography (WCX-HILIC) and analyzed with less conventional mass spectrometry, i.e. using Electron Transfer Dissociation (ETD) for analyte fragmentation. Middle-down is not nearly as utilized as bottom-up for PTM analysis, partially due to its limited reproducibility and robustness. This has also limited the establishment of rigorous benchmarks to discriminate good vs poor quality experiments. Here, we describe critical aspects of the middle-down workflow to assist the user in evaluating the presence of biased and misleading results. Specifically, we tested the use of porous graphitic carbon (PGC) during the desalting step, demonstrating that desalting using only C18 material leads to sample loss. We also tested different salts in the WCX-HILIC buffers for their effect on retention, selectivity, and reproducibility of analysis of variants of histone tail fragments, in particular replacing ammonium ion with ethylenediammonium ion in buffer A. These substitutions had marked effects on selectivity and retention. Our results provide a streamlined way to evaluate middle-down performance to identify and quantify combinatorial histone PTMs.
Collapse
Affiliation(s)
- Mariel Coradin
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Congcong Lu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Wang Y, Xu C, Zhong B, Zhan D, Liu M, Gao D, Wang Y, Qin J. Comparative Proteomic Analysis of Histone Modifications upon Acridone Derivative 8a-Induced CCRF-CEM Cells by Data Independent Acquisition. J Proteome Res 2020; 19:819-831. [PMID: 31887055 DOI: 10.1021/acs.jproteome.9b00650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The lead compound acridone derivative 8a showed potent antiproliferative activity by inducing DNA damage through direct stacking with DNA bases and triggering ROS in CCRF-CEM cells. To define the chromatin alterations during DNA damage sensing and repair, a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in CCRF-CEM cells affected by 8a was performed by the Data Independent Acquisition (DIA) method on QE-plus. A total of 79 distinct and 164 coexisting histone PTMs were quantified, of which 16 distinct histone PTMs were significantly altered when comparing 8a-treated cells with vehicle control cells. The changes in histone PTMs were confirmed by Western blotting analysis for three H3 and one H4 histone markers. The up-regulated dimethylation on H3K9, H3K36, and H4K20 implied that CCRF-CEM cells might accelerate DNA damage repair to counteract the DNA lesion induced by 8a, which was verified by an increment in the 53BP1 foci localization at the damaged DNA. Most of the significantly altered PTMs were involved in transcriptional regulation, including down-regulated acetylation on H3K18, H3K27, and H3K122, and up-regulated di- and trimethylation on H3K9 and H3K27. This transcription-silencing phenomenon was associated with G2/M cell cycle arrest after 8a treatment by flow cytometry. This study shows that the DIA proteomics strategy provides a sensitive and accurate way to characterize the coexisting histone PTMs changes and their cross-talk in CCRF-CEM cells after 8a treatment. Specifically, histone PTMs rearrange transcription-silencing, and cell cycle arrest DNA damage repair may contribute to the mechanism of epigenetic response affected by 8a.
Collapse
Affiliation(s)
- Yini Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Caixia Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Bowen Zhong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Dongdong Zhan
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai 200241 , China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Dan Gao
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology , Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055 , China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing 102206 , China.,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics , Beijing 102206 , China.,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| |
Collapse
|
7
|
Zhang T, Zhang W, Liu L, Chen Y. Simultaneous detection of site-specific histone methylations and acetylation assisted by single template oriented molecularly imprinted polymers. Analyst 2020; 145:1376-1383. [DOI: 10.1039/c9an02360g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A targeted proteomics assay combining single template oriented MIPs with LC-MS/MS for the simultaneous quantification of histone post-translational modification.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Pharmarcy, Nanjing Medical University
- Nanjing
- China
| | - Wen Zhang
- School of Pharmarcy, Nanjing Medical University
- Nanjing
- China
| | - Liang Liu
- School of Pharmarcy, Nanjing Medical University
- Nanjing
- China
| | - Yun Chen
- School of Pharmarcy, Nanjing Medical University
- Nanjing
- China
- State Key Laboratory of Reproductive Medicine
- China
| |
Collapse
|
8
|
Aslebagh R, Wormwood KL, Channaveerappa D, Wetie AGN, Woods AG, Darie CC. Identification of Posttranslational Modifications (PTMs) of Proteins by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:199-224. [DOI: 10.1007/978-3-030-15950-4_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Proteomic Analysis of Histone Variants and Their PTMs: Strategies and Pitfalls. Proteomes 2018; 6:proteomes6030029. [PMID: 29933573 PMCID: PMC6161106 DOI: 10.3390/proteomes6030029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications contribute to the determination of cell fate and differentiation. The molecular mechanisms underlying histone variants and post-translational modifications (PTMs) have been studied in the contexts of development, differentiation, and disease. Antibody-based assays have classically been used to target PTMs, but these approaches fail to reveal combinatorial patterns of modifications. In addition, some histone variants are so similar to canonical histones that antibodies have difficulty distinguishing between these isoforms. Mass spectrometry (MS) has progressively developed as a powerful technology for the study of histone variants and their PTMs. Indeed, MS analyses highlighted exquisitely complex combinations of PTMs, suggesting “crosstalk” between them, and also revealed that PTM patterns are often variant-specific. Even though the sensitivity and acquisition speed of MS instruments have considerably increased alongside the development of computational tools for the study of multiple PTMs, it remains challenging to correctly describe the landscape of histone PTMs, and in particular to confidently assign modifications to specific amino acids. Here, we provide an inventory of MS-based strategies and of the pitfalls inherent to histone PTM and variant characterization, while stressing the complex interplay between PTMs and histone sequence variations. We will particularly illustrate the roles played by MS-based analyses in identifying and quantifying histone variants and modifications.
Collapse
|
10
|
Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 2018; 189:75-90. [PMID: 29452276 DOI: 10.1016/j.jprot.2018.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
El Kennani S, Adrait A, Permiakova O, Hesse AM, Ialy-Radio C, Ferro M, Brun V, Cocquet J, Govin J, Pflieger D. Systematic quantitative analysis of H2A and H2B variants by targeted proteomics. Epigenetics Chromatin 2018; 11:2. [PMID: 29329550 PMCID: PMC5767011 DOI: 10.1186/s13072-017-0172-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Histones organize DNA into chromatin through a variety of processes. Among them, a vast diversity of histone variants can be incorporated into chromatin and finely modulate its organization and functionality. Classically, the study of histone variants has largely relied on antibody-based assays. However, antibodies have a limited efficiency to discriminate between highly similar histone variants. RESULTS In this study, we established a mass spectrometry-based analysis to address this challenge. We developed a targeted proteomics method, using selected reaction monitoring or parallel reaction monitoring, to quantify a maximum number of histone variants in a single multiplexed assay, even when histones are present in a crude extract. This strategy was developed on H2A and H2B variants, using 55 peptides corresponding to 25 different histone sequences, among which a few differ by a single amino acid. The methodology was then applied to mouse testis extracts in which almost all histone variants are expressed. It confirmed the abundance profiles of several testis-specific histones during successive stages of spermatogenesis and the existence of predicted H2A.L.1 isoforms. This methodology was also used to explore the over-expression pattern of H2A.L.1 isoforms in a mouse model of male infertility. CONCLUSIONS Our results demonstrate that targeted proteomics is a powerful method to quantify highly similar histone variants and isoforms. The developed method can be easily transposed to the study of human histone variants, whose abundance can be deregulated in various diseases.
Collapse
Affiliation(s)
- Sara El Kennani
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Annie Adrait
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Olga Permiakova
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Anne-Marie Hesse
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Côme Ialy-Radio
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Myriam Ferro
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Virginie Brun
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Julie Cocquet
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jérôme Govin
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France.
| | - Delphine Pflieger
- INSERM U1038, CEA, BIG-BGE, Univ. Grenoble Alpes, Grenoble, France. .,CNRS, FR CNRS 3425, Biosciences and Biotechnology Institute of Grenoble, Grenoble, France.
| |
Collapse
|
12
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
13
|
Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr Opin Chem Biol 2016; 33:142-50. [PMID: 27371874 DOI: 10.1016/j.cbpa.2016.06.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
Histones are a group of proteins with a high number of post-translational modifications, including methylation, acetylation, phosphorylation, and monoubiquitination, which play critical roles in every chromatin-templated activity. The quantitative analysis of these modifications using mass spectrometry (MS) has seen significant improvements over the last decade. It is now possible to perform large-scale surveys of dozens of histone marks and hundreds of their combinations on global chromatin. Here, we review the development of three MS strategies for analyzing histone modifications that have come to be known as Bottom Up, Middle Down, and Top Down. We also discuss challenges and innovative solutions for characterizing and quantifying complicated isobaric species arising from multiple modifications on the same histone molecule.
Collapse
|
14
|
Lind MV, Savolainen OI, Ross AB. The use of mass spectrometry for analysing metabolite biomarkers in epidemiology: methodological and statistical considerations for application to large numbers of biological samples. Eur J Epidemiol 2016; 31:717-33. [PMID: 27230258 DOI: 10.1007/s10654-016-0166-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022]
Abstract
Data quality is critical for epidemiology, and as scientific understanding expands, the range of data available for epidemiological studies and the types of tools used for measurement have also expanded. It is essential for the epidemiologist to have a grasp of the issues involved with different measurement tools. One tool that is increasingly being used for measuring biomarkers in epidemiological cohorts is mass spectrometry (MS), because of the high specificity and sensitivity of MS-based methods and the expanding range of biomarkers that can be measured. Further, the ability of MS to quantify many biomarkers simultaneously is advantageously compared to single biomarker methods. However, as with all methods used to measure biomarkers, there are a number of pitfalls to consider which may have an impact on results when used in epidemiology. In this review we discuss the use of MS for biomarker analyses, focusing on metabolites and their application and potential issues related to large-scale epidemiology studies, the use of MS "omics" approaches for biomarker discovery and how MS-based results can be used for increasing biological knowledge gained from epidemiological studies. Better understanding of the possibilities and possible problems related to MS-based measurements will help the epidemiologist in their discussions with analytical chemists and lead to the use of the most appropriate statistical tools for these data.
Collapse
Affiliation(s)
- Mads V Lind
- Food and Nutritional Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. .,Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 3rd Floor, 1958, Frederiksberg C, Denmark.
| | - Otto I Savolainen
- Food and Nutritional Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alastair B Ross
- Food and Nutritional Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
15
|
Sowers JL, Mirfattah B, Xu P, Tang H, Park IY, Walker C, Wu P, Laezza F, Sowers LC, Zhang K. Quantification of histone modifications by parallel-reaction monitoring: a method validation. Anal Chem 2016; 87:10006-14. [PMID: 26356480 DOI: 10.1021/acs.analchem.5b02615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abnormal epigenetic reprogramming is one of the major causes leading to irregular gene expression and regulatory pathway perturbations, in the cells, resulting in unhealthy cell development or diseases. Accurate measurements of these changes of epigenetic modifications, especially the complex histone modifications, are very important, and the methods for these measurements are not trivial. By following our previous introduction of PRM to targeting histone modifications (Tang, H.; Fang, H.; Yin, E.; Brasier, A. R.; Sowers, L. C.; Zhang, K. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer. Anal. Chem. 2014, 86 (11), 5526-34), herein we validated this method by varying the protein/trypsin ratios via serial dilutions. Our data demonstrated that PRM with SILAC histones as the internal standards allowed reproducible measurements of histone H3/H4 acetylation and methylation in the samples whose histone contents differ at least one-order of magnitude. The method was further validated by histones isolated from histone H3 K36 trimethyltransferase SETD2 knockout mouse embryonic fibroblasts (MEF) cells. Furthermore, histone acetylation and methylation in human neural stem cells (hNSC) treated with ascorbic acid phosphate (AAP) were measured by this method, revealing that H3 K36 trimethylation was significantly down-regulated by 6 days of treatment with vitamin C.
Collapse
Affiliation(s)
| | | | | | | | - In Young Park
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center , Houston, Texas 77030, United States
| | - Cheryl Walker
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center , Houston, Texas 77030, United States
| | | | | | | | | |
Collapse
|
16
|
Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 2016; 8:429-45. [DOI: 10.2217/epi.15.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an overview of the applications of MS-based proteomics in various areas of chromatin biology.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, via Adamello 16, Milano, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| |
Collapse
|
17
|
Sidoli S, Yuan ZF, Lin S, Karch K, Wang X, Bhanu N, Arnaudo AM, Britton LM, Cao XJ, Gonzales-Cope M, Han Y, Liu S, Molden RC, Wein S, Afjehi-Sadat L, Garcia BA. Drawbacks in the use of unconventional hydrophobic anhydrides for histone derivatization in bottom-up proteomics PTM analysis. Proteomics 2016; 15:1459-69. [PMID: 25641854 DOI: 10.1002/pmic.201400483] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/09/2015] [Indexed: 11/09/2022]
Abstract
MS-based proteomics has become the most utilized tool to characterize histone PTMs. Since histones are highly enriched in lysine and arginine residues, lysine derivatization has been developed to prevent the generation of short peptides (<6 residues) during trypsin digestion. One of the most adopted protocols applies propionic anhydride for derivatization. However, the propionyl group is not sufficiently hydrophobic to fully retain the shortest histone peptides in RP LC, and such procedure also hampers the discovery of natural propionylation events. In this work we tested 12 commercially available anhydrides, selected based on their safety and hydrophobicity. Performance was evaluated in terms of yield of the reaction, MS/MS fragmentation efficiency, and drift in retention time using the following samples: (i) a synthetic unmodified histone H3 tail, (ii) synthetic modified histone peptides, and (iii) a histone extract from cell lysate. Results highlighted that seven of the selected anhydrides increased peptide retention time as compared to propionic, and several anhydrides such as benzoic and valeric led to high MS/MS spectra quality. However, propionic anhydride derivatization still resulted, in our opinion, as the best protocol to achieve high MS sensitivity and even ionization efficiency among the analyzed peptides.
Collapse
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vlaming H, van Leeuwen F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma 2016; 125:593-605. [PMID: 26728620 DOI: 10.1007/s00412-015-0570-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022]
Abstract
Histone modifications regulate key processes of eukaryotic genomes. Misregulation of the enzymes that place these modifications can lead to disease. An example of this is DOT1L, the enzyme that can mono-, di-, and trimethylate the nucleosome core on lysine 79 of histone H3 (H3K79). DOT1L plays a role in development and its misregulation has been implicated in several cancers, most notably leukemias caused by a rearrangement of the MLL gene. A DOT1L inhibitor is in clinical trials for these leukemias and shows promising results, yet we are only beginning to understand DOT1L's function and regulation in the cell. Here, we review what happens upstream and downstream of H3K79 methylation. H3K79 methylation levels are highest in transcribed genes, where H2B ubiquitination can promote DOT1L activity. In addition, DOT1L can be targeted to transcribed regions of the genome by several of its interaction partners. Although methylation levels strongly correlate with transcription, the mechanistic link between the two is unclear and probably context-dependent. Methylation of H3K79 may act through recruiting or repelling effector proteins, but we do not yet know which effectors mediate DOT1L's functions. Understanding DOT1L biology better will help us to understand the effects of DOT1L inhibitors and may allow the development of alternative strategies to target the DOT1L pathway.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
19
|
Anderson KW, Turko IV. Histone post-translational modifications in frontal cortex from human donors with Alzheimer's disease. Clin Proteomics 2015; 12:26. [PMID: 26435705 PMCID: PMC4591557 DOI: 10.1186/s12014-015-9098-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the sixth leading cause of death and the most costly disease in the US. Despite the enormous impact of AD, there are no treatments that delay onset or stop disease progression currently on the market. This is partly due to the complexity of the disease and the largely unknown pathogenesis of sporadic AD, which accounts for the vast majority of cases. Epigenetics has been implicated as a critical component to AD pathology and a potential "hot spot" for treatments. Histone post-translational modifications (PTMs) are a key element in epigenetic regulation of gene expression and are known to be associated with the pathology of numerous diseases. Investigation of histone PTMs can help elucidate AD pathology and identify targets for therapies. RESULTS A multiple reaction monitoring mass spectrometry assay was used to measure changes in abundance of several histone PTMs in frontal cortex from human donors affected with AD (n = 6) and age-matched, normal donors (n = 6). Of the changes observed, notable decreases in methylation of H2B residue K108 by 25 % and H4 residue R55 by 35 % were measured and are likely associated with hydrogen bonding networks important for nucleosome stability. Additionally, a 91 % increase in ubiquitination of K120 on H2B was measured as well as an apparent loss in acetylation of the region near the N-terminus of H4. Our method of quantification was also determined to be precise and robust, signifying measured changes were representative of true biological differences between donors and sample groups. CONCLUSION We are the first to report changes in methylation of H2B K108, methylation of H4 R55, and ubiquitination of H2B K120 in frontal cortex from human donors with AD. These notable PTM changes may be of great importance in elucidating the epigenetic mechanism of AD as it relates to disease pathology. Beyond the structural and functional impacts of the changes we have measured, the sites of altered PTMs may be used to identify enzymes responsible for their modulation, which could be used as prospective drug targets for highly specific AD therapies.
Collapse
Affiliation(s)
- Kyle W Anderson
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850 USA ; Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA ; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 USA
| | - Illarion V Turko
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850 USA ; Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 USA
| |
Collapse
|
20
|
Olszowy P, Donnelly MR, Lee C, Ciborowski P. Profiling post-translational modifications of histones in human monocyte-derived macrophages. Proteome Sci 2015; 13:24. [PMID: 26412985 PMCID: PMC4582717 DOI: 10.1186/s12953-015-0080-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Histones and their post-translational modifications impact cellular function by acting as key regulators in the maintenance and remodeling of chromatin, thus affecting transcription regulation either positively (activation) or negatively (repression). In this study we describe a comprehensive, bottom-up proteomics approach to profiling post-translational modifications (acetylation, mono-, di- and tri-methylation, phosphorylation, biotinylation, ubiquitination, citrullination and ADP-ribosylation) in human macrophages, which are primary cells of the innate immune system. As our knowledge expands, it becomes more evident that macrophages are a heterogeneous population with potentially subtle differences in their responses to various stimuli driven by highly complex epigenetic regulatory mechanisms. METHODS To profile post-translational modifications (PTMs) of histones in macrophages we used two platforms of liquid chromatography and mass spectrometry. One platform was based on Sciex5600 TripleTof and the second one was based on VelosPro Orbitrap Elite ETD mass spectrometers. RESULTS We provide side-by-side comparison of profiling using two mass spectrometric platforms, ion trap and qTOF, coupled with the application of collisional induced and electron transfer dissociation. We show for the first time methylation of a His residue in macrophages and demonstrate differences in histone PTMs between those currently reported for macrophage cell lines and what we identified in primary cells. We have found a relatively low level of histone PTMs in differentiated but resting human primary monocyte derived macrophages. CONCLUSIONS This study is the first comprehensive profiling of histone PTMs in primary human MDM. Our study implies that epigenetic regulatory mechanisms operative in transformed cell lines and primary cells are overlapping to a limited extent. Our mass spectrometric approach provides groundwork for the investigation of how histone PTMs contribute to epigenetic regulation in primary human macrophages.
Collapse
Affiliation(s)
- Pawel Olszowy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA ; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 Street, 87-100 Torun, Poland
| | - Maire Rose Donnelly
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Chanho Lee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
21
|
Rønningen T, Shah A, Oldenburg AR, Vekterud K, Delbarre E, Moskaug JØ, Collas P. Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B. Genome Res 2015; 25:1825-35. [PMID: 26359231 PMCID: PMC4665004 DOI: 10.1101/gr.193748.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022]
Abstract
Dynamic interactions of nuclear lamins with chromatin through lamin-associated domains (LADs) contribute to spatial arrangement of the genome. Here, we provide evidence for prepatterning of differentiation-driven formation of lamin A/C LADs by domains of histone H2B modified on serine 112 by the nutrient sensor O-linked N-acetylglucosamine (H2BS112GlcNAc), which we term GADs. We demonstrate a two-step process of lamin A/C LAD formation during in vitro adipogenesis, involving spreading of lamin A/C–chromatin interactions in the transition from progenitor cell proliferation to cell-cycle arrest, and genome-scale redistribution of these interactions through a process of LAD exchange within hours of adipogenic induction. Lamin A/C LADs are found both in active and repressive chromatin contexts that can be influenced by cell differentiation status. De novo formation of adipogenic lamin A/C LADs occurs nonrandomly on GADs, which consist of megabase-size intergenic and repressive chromatin domains. Accordingly, whereas predifferentiation lamin A/C LADs are gene-rich, post-differentiation LADs harbor repressive features reminiscent of lamin B1 LADs. Release of lamin A/C from genes directly involved in glycolysis concurs with their transcriptional up-regulation after adipogenic induction, and with downstream elevations in H2BS112GlcNAc levels and O-GlcNAc cycling. Our results unveil an epigenetic prepatterning of adipogenic LADs by GADs, suggesting a coupling of developmentally regulated lamin A/C-genome interactions to a metabolically sensitive chromatin modification.
Collapse
Affiliation(s)
- Torunn Rønningen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Akshay Shah
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Anja R Oldenburg
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, 0317 Oslo, Norway
| | - Kristin Vekterud
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Erwan Delbarre
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Jan Øivind Moskaug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, 0317 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, 0317 Oslo, Norway
| |
Collapse
|
22
|
Ebhardt HA, Root A, Sander C, Aebersold R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 2015; 15:3193-208. [PMID: 26097198 PMCID: PMC4758406 DOI: 10.1002/pmic.201500004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/27/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023]
Abstract
Biological systems are composed of numerous components of which proteins are of particularly high functional significance. Network models are useful abstractions for studying these components in context. Network representations display molecules as nodes and their interactions as edges. Because they are difficult to directly measure, functional edges are frequently inferred from suitably structured datasets consisting of the accurate and consistent quantification of network nodes under a multitude of perturbed conditions. For the precise quantification of a finite list of proteins across a wide range of samples, targeted proteomics exemplified by selected/multiple reaction monitoring (SRM, MRM) mass spectrometry has proven useful and has been applied to a variety of questions in systems biology and clinical studies. Here, we survey the literature of studies using SRM-MS in systems biology and clinical proteomics. Systems biology studies frequently examine fundamental questions in network biology, whereas clinical studies frequently focus on biomarker discovery and validation in a variety of diseases including cardiovascular disease and cancer. Targeted proteomics promises to advance our understanding of biological networks and the phenotypic significance of specific network states and to advance biomarkers into clinical use.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Alex Root
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Karkashon S, Raghupathy R, Bhatia H, Dutta A, Hess S, Higgs J, Tifft CJ, Little JA. Intermediaries of branched chain amino acid metabolism induce fetal hemoglobin, and repress SOX6 and BCL11A, in definitive erythroid cells. Blood Cells Mol Dis 2015; 55:161-7. [PMID: 26142333 DOI: 10.1016/j.bcmd.2015.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/19/2023]
Abstract
High levels of fetal hemoglobin (HbF) can ameliorate human β-globin gene disorders. The short chain fatty acid butyrate is the paradigmatic metabolic intermediary that induces HbF. Inherited disorders of branched-chain amino acid (BCAA) metabolism have been associated with supranormal HbF levels beyond infancy, e.g., propionic acidemia (PA) and methylmalonic acidemia (MMA). We tested intermediaries of BCAA metabolism for their effects on definitive erythropoiesis. Like butyrate, the elevated BCAA intermediaries isovalerate, isobutyrate, and propionate, induce fetal globin gene expression in murine EryD in vitro, are associated with bulk histone H3 hyperacylation, and repress the transcription of key gamma globin regulatory factors, notably BCL11A and SOX6. Metabolic intermediaries that are elevated in Maple Syrup Urine Disease (MSUD) affect none of these processes. Percent HbF and gamma (γ) chain isoforms were also measured in non-anemic, therapeutically optimized subjects with MSUD (Group I, n=6) or with Isovaleric Acidemia (IVA), MMA, or PA (Group II, n=5). Mean HbF was 0.24 ± 0.15% in Group I and 0.87 ± 0.13% in Group II (p=.01); only the Gγ isoform was detected. We conclude that a family of biochemically related intermediaries of branched chain amino acid metabolism induces fetal hemoglobin during definitive erythropoiesis, with mechanisms that mirror those so far identified for butyrate.
Collapse
Affiliation(s)
- Shay Karkashon
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Radha Raghupathy
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Himanshu Bhatia
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Amrita Dutta
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States
| | - Sonja Hess
- California Institute of Technology, Beckman Institute, Proteome Exploration Laboratory, 1200 E California Blvd, MC139-74, Pasadena, CA 91125, United States
| | - Jaimie Higgs
- Division of Genetics and Metabolism, Center for Hospital-based Specialties, Children's National Medical Center, 111 Michigan Ave. N.W., Washington, DC 20010-2970, United States
| | - Cynthia J Tifft
- Division of Genetics and Metabolism, Center for Hospital-based Specialties, Children's National Medical Center, 111 Michigan Ave. N.W., Washington, DC 20010-2970, United States
| | - Jane A Little
- Division of Hematology, Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, 1300 Morris Park Blvd., Bronx, NY 10461, United States.
| |
Collapse
|
24
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
25
|
Proteomics beyond large-scale protein expression analysis. Curr Opin Biotechnol 2015; 34:162-70. [PMID: 25636126 DOI: 10.1016/j.copbio.2015.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 11/21/2022]
Abstract
Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies.
Collapse
|
26
|
D'Orso I. Mechanisms of eukaryotic transcription: A meeting report. Transcription 2014. [DOI: 10.4161/trns.27094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Zhang F, Paramasivam M, Cai Q, Dai X, Wang P, Lin K, Song J, Seidman MM, Wang Y. Arsenite binds to the RING finger domains of RNF20-RNF40 histone E3 ubiquitin ligase and inhibits DNA double-strand break repair. J Am Chem Soc 2014; 136:12884-7. [PMID: 25170678 PMCID: PMC4183597 DOI: 10.1021/ja507863d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Arsenic is a widespread environmental
contaminant. However, the
exact molecular mechanisms underlying the carcinogenic effects of
arsenic remain incompletely understood. Core histones can be ubiquitinated
by RING finger E3 ubiquitin ligases, among which the RNF20-RNF40 heterodimer
catalyzes the ubiquitination of histone H2B at lysine 120. This ubiquitination
event is important for the formation of open and biochemically accessible
chromatin fiber that is conducive for DNA repair. Herein, we found
that arsenite could bind directly to the RING finger domains of RNF20
and RNF40 in vitro and in cells, and treatment with
arsenite resulted in substantially impaired H2B ubiquitination in
multiple cell lines. Exposure to arsenite also diminished the recruitment
of BRCA1 and RAD51 to laser-induced DNA double-strand break (DSB)
sites, compromised DNA DSB repair in human cells, and rendered cells
sensitive toward a radiomimetic agent, neocarzinostatin. Together,
the results from the present study revealed, for the first time, that
arsenite may exert its carcinogenic effect by targeting cysteine residues
in the RING finger domains of histone E3 ubiquitin ligase, thereby
altering histone epigenetic mark and compromising DNA DSB repair.
Our results also suggest arsenite as a general inhibitor for RING
finger E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemistry, §Environmental Toxicology Graduate Program, and ∥Department of Biochemistry, University of California , Riverside, California 92521, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ramirez-Correa GA, Martinez-Ferrando MI, Zhang P, Murphy AM. Targeted proteomics of myofilament phosphorylation and other protein posttranslational modifications. Proteomics Clin Appl 2014; 8:543-53. [DOI: 10.1002/prca.201400034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Genaro A. Ramirez-Correa
- Department of Pediatrics/Division of Cardiology; Johns Hopkins University School of Medicine; Baltimore MD USA
| | | | - Pingbo Zhang
- The Hopkins Bayview Proteomics Center; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Anne M. Murphy
- Department of Pediatrics/Division of Cardiology; Johns Hopkins University School of Medicine; Baltimore MD USA
| |
Collapse
|
29
|
Lin S, Wein S, Gonzales-Cope M, Otte GL, Yuan ZF, Afjehi-Sadat L, Maile T, Berger SL, Rush J, Lill JR, Arnott D, Garcia BA. Stable-isotope-labeled histone peptide library for histone post-translational modification and variant quantification by mass spectrometry. Mol Cell Proteomics 2014; 13:2450-66. [PMID: 25000943 DOI: 10.1074/mcp.o113.036459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the uncorrected data. The peptide library and detection efficiencies presented here may serve as a resource to facilitate studies in the epigenetics and proteomics fields.
Collapse
Affiliation(s)
- Shu Lin
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Samuel Wein
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michelle Gonzales-Cope
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; §Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Gabriel L Otte
- ¶Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zuo-Fei Yuan
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Leila Afjehi-Sadat
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tobias Maile
- ‖Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080
| | - Shelley L Berger
- ¶Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - John Rush
- **Cell Signaling Technology Inc., Danvers, Massachusetts 01923
| | - Jennie R Lill
- ‖Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080
| | - David Arnott
- ‖Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080
| | - Benjamin A Garcia
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
30
|
Tang H, Fang H, Yin E, Brasier AR, Sowers LC, Zhang K. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer. Anal Chem 2014; 86:5526-34. [PMID: 24823915 DOI: 10.1021/ac500972x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Histone acetylation and methylation play an important role in the regulation of gene expression. Irregular patterns of histone global acetylation and methylation have frequently been seen in various diseases. Quantitative analysis of these patterns is of high value for the evaluation of disease development and of outcomes from therapeutic treatment. Targeting histone acetylation and methylation by selected reaction monitoring (SRM) is one of the current quantitative methods. Here, we reported the use of the multiplexed parallel reaction monitoring (PRM) method on the QExactive mass spectrometer to target previously known lysine acetylation and methylation sites of histone H3 and H4 for the purpose of establishing precursor-product pairs for SRM. 55 modified peptides among which 29 were H3 K27/K36 modified peptides were detected from 24 targeted precursor ions included in the inclusion list. The identification was carried out directly from the trypsin digests of core histones that were separated without derivatization on a homemade capillary column packed with Waters YMC ODS-AQ reversed phase materials. Besides documenting the higher-energy c-trap dissociation (HCD) MS(2) spectra of previously known histone H3/H4 acetylated and methylated tryptic peptides, we identified novel H3 K18 methylation, H3 K27 monomethyl/acetyl duel modifications, H2B K23 acetylation, and H4 K20 acetylation in mammalian histones. The information gained from these experiments sets the foundation for quantification of histone modifications by targeted mass spectrometry methods directly from core histone samples.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pharmacology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Zhang G, Pradhan S. Mammalian epigenetic mechanisms. IUBMB Life 2014; 66:240-56. [PMID: 24706538 DOI: 10.1002/iub.1264] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 12/31/2022]
Abstract
The mammalian genome is packaged into chromatin that is further compacted into three-dimensional structures consisting of distinct functional domains. The higher order structure of chromatin is in part dictated by enzymatic DNA methylation and histone modifications to establish epigenetic layers controlling gene expression and cellular functions, without altering the underlying DNA sequences. Apart from DNA and histone modifications, non-coding RNAs can also regulate the dynamics of the mammalian gene expression and various physiological functions including cell division, differentiation, and apoptosis. Aberrant epigenetic signatures are associated with abnormal developmental processes and diseases such as cancer. In this review, we will discuss the different layers of epigenetic regulation, including writer enzymes for DNA methylation, histone modifications, non-coding RNA, and chromatin conformation. We will highlight the combinatorial role of these structural and chemical modifications along with their partners in various cellular processes in mammalian cells. We will also address the cis and trans interacting "reader" proteins that recognize these modifications and "eraser" enzymes that remove these marks. Furthermore, an attempt will be made to discuss the interplay between various epigenetic writers, readers, and erasures in the establishment of mammalian epigenetic mechanisms.
Collapse
|
33
|
Markoutsa S, Bahr U, Papasotiriou DG, Häfner AK, Karas M, Sorg BL. Sulfo-NHS-SS-biotin derivatization: A versatile tool for MALDI mass analysis of PTMs in lysine-rich proteins. Proteomics 2014; 14:659-67. [DOI: 10.1002/pmic.201300309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/11/2013] [Accepted: 12/20/2013] [Indexed: 01/09/2023]
Affiliation(s)
| | - Ute Bahr
- Institute of Pharmaceutical Chemistry; Goethe-University; Frankfurt Germany
| | | | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry; Goethe-University; Frankfurt Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry; Goethe-University; Frankfurt Germany
| | - Bernd L. Sorg
- Institute of Pharmaceutical Chemistry; Goethe-University; Frankfurt Germany
| |
Collapse
|
34
|
Dillinger S, Garea AV, Deutzmann R, Németh A. Analysis of histone posttranslational modifications from nucleolus-associated chromatin by mass spectrometry. Methods Mol Biol 2014; 1094:277-93. [PMID: 24162996 DOI: 10.1007/978-1-62703-706-8_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chromatin is unevenly distributed within the eukaryote nucleus and it contributes to the formation of morphologically and functionally distinct substructures, called chromatin domains and nuclear bodies. Here we describe an approach to assess specific chromatin features, the histone posttranslational modifications (PTMs), of the largest nuclear sub-compartment, the nucleolus. In this chapter, methods for the isolation of nucleolus-associated chromatin from native or formaldehyde-fixed cells and the effect of experimental procedures on the outcome of mass spectrometry analysis of histone PTMs are compared.
Collapse
Affiliation(s)
- Stefan Dillinger
- Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
35
|
Mass Spectrometric Analysis of Post-translational Modifications (PTMs) and Protein–Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:205-35. [DOI: 10.1007/978-3-319-06068-2_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Maury JJP, Ng D, Bi X, Bardor M, Choo ABH. Multiple Reaction Monitoring Mass Spectrometry for the Discovery and Quantification of O-GlcNAc-Modified Proteins. Anal Chem 2013; 86:395-402. [DOI: 10.1021/ac401821d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Julien Jean Pierre Maury
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department
of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| | - Daniel Ng
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Xuezhi Bi
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Muriel Bardor
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Université de Rouen, Laboratoire Glycobiologie et Matrice
Extracellulaire Végétale (Glyco-MEV) EA 4358, Institut
de Recherche et d’Innovation Biomédicale (IRIB), Faculté
des Sciences et Techniques, 76821 Mont-Saint-Aignan Cédex, France
| | - Andre Boon-Hwa Choo
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department
of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| |
Collapse
|
37
|
Cecere G, Hoersch S, Jensen MB, Dixit S, Grishok A. The ZFP-1(AF10)/DOT-1 complex opposes H2B ubiquitination to reduce Pol II transcription. Mol Cell 2013; 50:894-907. [PMID: 23806335 DOI: 10.1016/j.molcel.2013.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 03/04/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The inhibition of transcriptional elongation plays an important role in gene regulation in metazoans, including C. elegans. Here, we combine genomic and biochemical approaches to dissect a role of ZFP-1, the C. elegans AF10 homolog, in transcriptional control. We show that ZFP-1 and its interacting partner DOT-1.1 have a global role in negatively modulating the level of polymerase II (Pol II) transcription on essential widely expressed genes. Moreover, the ZFP-1/DOT-1.1 complex contributes to progressive Pol II pausing on essential genes during development and to rapid Pol II pausing during stress response. The slowing down of Pol II transcription by ZFP-1/DOT-1.1 is associated with an increase in H3K79 methylation and a decrease in H2B monoubiquitination, which promotes transcription. We propose a model wherein the recruitment of ZFP-1/DOT-1.1 and deposition of H3K79 methylation at highly expressed genes initiates a negative feedback mechanism for the modulation of their expression.
Collapse
Affiliation(s)
- Germano Cecere
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
38
|
Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61:186-218. [PMID: 23623823 PMCID: PMC3891841 DOI: 10.1016/j.ymeth.2013.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- George E Craft
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Anshu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
- Yale/NIDA Neuroproteomics Center, Yale University School of Medicine, New Haven, CT, 06508
| |
Collapse
|
39
|
Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 2013; 92:80-109. [PMID: 23603109 DOI: 10.1016/j.jprot.2013.03.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12840 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
40
|
Mass spectrometry-based proteomics for the analysis of chromatin structure and dynamics. Int J Mol Sci 2013; 14:5402-31. [PMID: 23466885 PMCID: PMC3634404 DOI: 10.3390/ijms14035402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 02/20/2013] [Indexed: 12/22/2022] Open
Abstract
Chromatin is a highly structured nucleoprotein complex made of histone proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity is regulated by different associated proteins, post-translational modifications on histones (hPTMs) and DNA methylation, which act in a concerted manner to enforce a specific "chromatin landscape", with a regulatory effect on gene expression. Mass Spectrometry (MS) has emerged as a powerful analytical strategy to detect histone PTMs, revealing interplays between neighbouring PTMs and enabling screens for their readers in a comprehensive and quantitative fashion. Here we provide an overview of the recent achievements of state-of-the-art mass spectrometry-based proteomics for the detailed qualitative and quantitative characterization of histone post-translational modifications, histone variants, and global interactomes at specific chromatin regions. This synopsis emphasizes how the advances in high resolution MS, from "Bottom Up" to "Top Down" analysis, together with the uptake of quantitative proteomics methods by chromatin biologists, have made MS a well-established method in the epigenetics field, enabling the acquisition of original information, highly complementary to that offered by more conventional, antibody-based, assays.
Collapse
|
41
|
Afjehi-Sadat L, Garcia BA. Comprehending dynamic protein methylation with mass spectrometry. Curr Opin Chem Biol 2013; 17:12-9. [PMID: 23333572 DOI: 10.1016/j.cbpa.2012.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/23/2012] [Accepted: 12/30/2012] [Indexed: 01/08/2023]
Abstract
Protein methylation is a post-translational modification (PTM) which modulates cellular and biological processes including transcription, RNA processing, protein interactions and protein dynamics. Methylation, catalyzed by highly specific methyltransferase enzymes, occurs on several amino acids including arginine, lysine, histidine and dicarboxylic amino acids like glutamate. Mass spectrometry (MS)-based techniques continue to be the methods of choice for the study of protein PTMs. These approaches are powerful and sensitive tools that have been used to identify, quantify and characterize protein methylation. In addition, metabolic labeling strategies can be coupled to MS detection in order to measure dynamic and differential in vivo protein methylation rates. In this review, different applications of mass spectrometry technologies and methods to study protein methylation are discussed.
Collapse
Affiliation(s)
- Leila Afjehi-Sadat
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, 1009C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
42
|
Wetie AGN, Sokolowska I, Woods AG, Darie CC. Identification of Post-Translational Modifications by Mass Spectrometry. Aust J Chem 2013. [DOI: 10.1071/ch13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.
Collapse
|
43
|
Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W. Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics 2012; 12:1261-8. [PMID: 22577027 DOI: 10.1002/pmic.201200010] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epigenetic remodeling of chromatin histone proteins by acetylation has been the subject of recent investigations searching for biomarkers indicative of late onset cognitive loss. Histone acetylations affect the regulation of gene transcription, and the loss of learning induced deacetylation at specific histone sites may represent biomarkers for memory loss and Alzheimer's disease (AD). Selected-reaction-monitoring (SRM) has recently been advanced to quantitate peptides and proteins in complex biological systems. In this paper, we provide evidence that SRM-based targeted proteomics can reliably quantify specific histone acetylations in both AD and control brain by identifying the patterns of H3 K18/K23 acetylations Results of targeted proteomics assays have been validated by Western blot (WB) analysis. As compared with LC-MS/MS-TMT (tandem-mass-tagging) and WB methods, the targeted proteomics method has shown higher throughput, and therefore promised to be more suitable for clinical applications. With this methodology, we find that histone acetylation is significantly lower in AD temporal lobe than found in aged controls. Targeted proteomics warrants increased application for studying epigenetics of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc Natl Acad Sci U S A 2012; 109:13549-54. [PMID: 22869745 DOI: 10.1073/pnas.1205707109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a targeted method to quantify all combinations of methylation on an H3 peptide containing lysines 27 and 36 (H3K27-K36). By using stable isotopes that separately label the histone backbone and its methylations, we tracked the rates of methylation and demethylation in myeloma cells expressing high vs. low levels of the methyltransferase MMSET/WHSC1/NSD2. Following quantification of 99 labeled H3K27-K36 methylation states across time, a kinetic model converged to yield 44 effective rate constants qualifying each methylation and demethylation step as a function of the methylation state on the neighboring lysine. We call this approach MS-based measurement and modeling of histone methylation kinetics (M4K). M4K revealed that, when dimethylation states are reached on H3K27 or H3K36, rates of further methylation on the other site are reduced as much as 100-fold. Overall, cells with high MMSET have as much as 33-fold increases in the effective rate constants for formation of H3K36 mono- and dimethylation. At H3K27, cells with high MMSET have elevated formation of K27me1, but even higher increases in the effective rate constants for its reversal by demethylation. These quantitative studies lay bare a bidirectional antagonism between H3K27 and H3K36 that controls the writing and erasing of these methylation marks. Additionally, the integrated kinetic model was used to correctly predict observed abundances of H3K27-K36 methylation states within 5% of that actually established in perturbed cells. Such predictive power for how histone methylations are established should have major value as this family of methyltransferases matures as drug targets.
Collapse
|
45
|
Brunner AM, Tweedie-Cullen RY, Mansuy IM. Epigenetic modifications of the neuroproteome. Proteomics 2012; 12:2404-20. [PMID: 22696459 DOI: 10.1002/pmic.201100672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/12/2012] [Accepted: 04/12/2012] [Indexed: 01/17/2023]
Abstract
In the central nervous system, epigenetic processes are involved in a multitude of brain functions ranging from the development and differentiation of the nervous system through to higher-order cognitive processes such as learning and memory. This review summarises the current state of the art for the proteomic analysis of the epigenetic regulation of gene expression, in particular the PTM of histones, in the brain and cellular model systems. It describes the MS technologies that have helped the identification and analysis of histones, histone variants and PTMs in the brain. Strategies for the isolation of histones that allow the qualitative analysis of PTMs and their combinatorial patterns are introduced, methods for the relative and absolute quantification of histone PTMs are described, and future challenges are discussed.
Collapse
Affiliation(s)
- Andrea M Brunner
- Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
46
|
Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics 2012; 75:3419-33. [PMID: 22234360 DOI: 10.1016/j.jprot.2011.12.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
47
|
Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 2012; 9:555-66. [PMID: 22669653 DOI: 10.1038/nmeth.2015] [Citation(s) in RCA: 960] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that is emerging in the field of proteomics as a complement to untargeted shotgun methods. SRM is particularly useful when predetermined sets of proteins, such as those constituting cellular networks or sets of candidate biomarkers, need to be measured across multiple samples in a consistent, reproducible and quantitatively precise manner. Here we describe how SRM is applied in proteomics, review recent advances, present selected applications and provide a perspective on the future of this powerful technology.
Collapse
Affiliation(s)
- Paola Picotti
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland.
| | | |
Collapse
|
48
|
Maiolica A, Jünger MA, Ezkurdia I, Aebersold R. Targeted proteome investigation via selected reaction monitoring mass spectrometry. J Proteomics 2012; 75:3495-513. [PMID: 22579752 DOI: 10.1016/j.jprot.2012.04.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 12/20/2022]
Abstract
Due to the enormous complexity of proteomes which constitute the entirety of protein species expressed by a certain cell or tissue, proteome-wide studies performed in discovery mode are still limited in their ability to reproducibly identify and quantify all proteins present in complex biological samples. Therefore, the targeted analysis of informative subsets of the proteome has been beneficial to generate reproducible data sets across multiple samples. Here we review the repertoire of antibody- and mass spectrometry (MS) -based analytical tools which is currently available for the directed analysis of predefined sets of proteins. The topics of emphasis for this review are Selected Reaction Monitoring (SRM) mass spectrometry, emerging tools to control error rates in targeted proteomic experiments, and some representative examples of applications. The ability to cost- and time-efficiently generate specific and quantitative assays for large numbers of proteins and posttranslational modifications has the potential to greatly expand the range of targeted proteomic coverage in biological studies. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Alessio Maiolica
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | | | | | | |
Collapse
|
49
|
Britton LMP, Gonzales-Cope M, Zee BM, Garcia BA. Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics 2012; 8:631-43. [PMID: 21999833 DOI: 10.1586/epr.11.47] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone post-translational modifications (PTMs) comprise one of the most intricate nuclear signaling networks that govern gene expression in a long-term and dynamic fashion. These PTMs are considered to be 'epigenetic' or heritable from one cell generation to the next and help establish genomic expression patterns. While much of the analyses of histones have historically been performed using site-specific antibodies, these methods are replete with technical obstacles (i.e., cross-reactivity and epitope occlusion). Mass spectrometry-based proteomics has begun to play a significant role in the interrogation of histone PTMs, revealing many new aspects of these modifications that cannot be easily determined with standard biological approaches. Here, we review the accomplishments of mass spectrometry in the histone field, and outline the future roadblocks that must be overcome for mass spectrometry-based proteomics to become the method of choice for chromatin biologists.
Collapse
Affiliation(s)
- Laura-Mae P Britton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
50
|
Arnaudo AM, Molden RC, Garcia BA. Revealing histone variant induced changes via quantitative proteomics. Crit Rev Biochem Mol Biol 2011; 46:284-94. [PMID: 21526979 DOI: 10.3109/10409238.2011.577052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone variants are isoforms of linker and core histone proteins that differ in their amino acid sequences. These variants have distinct genomic locations and posttranslational modifications, thus increasing the complexity of the chromatin architecture. Biological studies of histone variants indicate that they play a role in many processes including transcription, DNA damage response, and the cell cycle. The small differences in amino acid sequence and the diverse posttranslational modification states that exist between histone variants make traditional analysis using immunoassay methods challenging. In recent years, a number of mass spectrometric techniques have been developed to identify and quantify histones at the whole protein or peptide levels. In this review, we discuss the biology of histone variants and methods to characterize them using mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Anna M Arnaudo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|