1
|
Paganelli A, Didona D, Scala E. Cytokine Networks in Lichen Sclerosus: A Roadmap for Diagnosis and Treatment? Int J Mol Sci 2025; 26:4315. [PMID: 40362551 PMCID: PMC12072692 DOI: 10.3390/ijms26094315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Lichen sclerosus (LS) is a chronic inflammatory skin disorder primarily affecting the anogenital region, leading to symptoms such as itching, pain, and sexual dysfunction, all of which significantly impact patients' quality of life. Due to the non-specific nature of its early symptoms, diagnosis is often delayed. This review examines the cytokine networks involved in LS, with a focus on immune activation, the role of T-helper (Th)1 cells, and the interaction between inflammatory mediators and the extracellular matrix, particularly in fibrosis. By providing an updated understanding of LS immunopathogenesis, this review highlights key mediators involved in disease progression and offers insights into personalized treatment strategies that may improve patient outcomes. Additionally, current therapeutic approaches and future directions in LS management are discussed.
Collapse
Affiliation(s)
- Alessia Paganelli
- Dermatology Unit, IDI-IRCCS Istituto Dermopatico dell’Immacolata, 00167 Rome, Italy;
| | - Dario Didona
- Rare Diseases Unit, IDI-IRCCS Istituto Dermopatico dell’Immacolata, 00167 Rome, Italy
| | - Emanuele Scala
- Laboratory of Experimental Immunology, IDI-IRCCS Istituto Dermopatico dell’Immacolata, 00167 Rome, Italy
| |
Collapse
|
2
|
Kim JE, Ko W, Jin S, Woo JN, Jung Y, Bae I, Choe HK, Seo D, Hille B, Suh BC. Activation of TMEM16E scramblase induces ligand independent growth factor receptor signaling and macropinocytosis for membrane repair. Commun Biol 2025; 8:35. [PMID: 39794444 PMCID: PMC11724107 DOI: 10.1038/s42003-025-07465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The calcium-dependent phospholipid scramblase TMEM16E mediates ion transport and lipid translocation across the plasma membrane. TMEM16E also contributes to protection of membrane structure by facilitating cellular repair signaling. Our research reveals that TMEM16E activation promotes macropinocytosis, essential for maintaining plasma membrane integrity. This scramblase externalizes phosphatidylserine, typically linked to resting growth factor receptors. We demonstrate that TMEM16E can interact with and signal through growth factor receptors, including epidermal growth factor receptor, even without ligands. This interaction stimulates downstream phosphoinositide 3-kinase and facilitates macropinocytosis and internalization of annexin V bound to the membrane, a process sensitive to amiloride inhibition. Although TMEM16E is internalized during this process, it returns to the plasma membrane. TMEM16E- driven macropinocytosis is proposed to restore membrane integrity after perturbation, potentially explaining pathologies in conditions like muscular dystrophies, where TMEM16E functionality is compromised, highlighting its critical role in muscle cell survival.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Woori Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Siwoo Jin
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jin-Nyeong Woo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yuna Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Inah Bae
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Han-Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Bertil Hille
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
3
|
Yi J, Byun Y, Kang SS, Shim KM, Jang K, Lee JY. Enhanced Chondrogenic Differentiation of Electrically Primed Human Mesenchymal Stem Cells for the Regeneration of Osteochondral Defects. Biomater Res 2024; 28:0109. [PMID: 39697183 PMCID: PMC11654951 DOI: 10.34133/bmr.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/12/2024] [Accepted: 10/26/2024] [Indexed: 12/20/2024] Open
Abstract
Background: Mesenchymal stem cells (MSCs) offer a promising avenue for cartilage regeneration; however, their therapeutic efficacy requires substantial improvement. Cell priming using electrical stimulation (ES) is a promising approach to augmenting the therapeutic potential of MSCs and has shown potential for various regenerative applications. This study aimed to promote the ES-mediated chondrogenic differentiation of human MSCs and facilitate the repair of injured articular cartilage. Methods: MSCs were subjected to ES under various conditions (e.g., voltage, frequency, and number of repetitions) to enhance their capability of chondrogenesis and cartilage regeneration. Chondrogenic differentiation of electrically primed MSCs (epMSCs) was assessed based on gene expression and sulfated glycosaminoglycan production, and epMSCs with hyaluronic acid were transplanted into a rat osteochondral defect model. Transcriptomic analysis was performed to determine changes in gene expression by ES. Results: epMSCs exhibited significantly increased chondrogenic gene expression and sulfated glycosaminoglycan production compared with those in unstimulated controls. Macroscopic and histological results showed that in vivo epMSC transplantation considerably enhanced cartilage regeneration. Furthermore, ES markedly altered the expression of numerous genes of MSCs, including those associated with the extracellular matrix, the Wnt signaling pathway, and cartilage development. Conclusion: ES can effectively prime MSCs to improve articular cartilage repair, offering a promising strategy for enhancing the efficacy of various MSC-based therapies.
Collapse
Affiliation(s)
- Jongdarm Yi
- School of Materials Science and Engineering,
Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yujin Byun
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 FOUR Program,
Chonnam National University, Gwangju 61186, Republic of Korea
- Biomaterial R&BD Center,
Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong Soo Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 FOUR Program,
Chonnam National University, Gwangju 61186, Republic of Korea
- Biomaterial R&BD Center,
Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyung Mi Shim
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 FOUR Program,
Chonnam National University, Gwangju 61186, Republic of Korea
- Biomaterial R&BD Center,
Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kwangsik Jang
- Department of Veterinary Surgery, College of Veterinary Medicine and BK21 FOUR Program,
Chonnam National University, Gwangju 61186, Republic of Korea
- Biomaterial R&BD Center,
Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering,
Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
5
|
Nakayama M, Marchi H, Dmitrieva AM, Chakraborty A, Merl-Pham J, Hennen E, Le Gleut R, Ruppert C, Guenther A, Kahnert K, Behr J, Hilgendorff A, Hauck SM, Adler H, Staab-Weijnitz CA. Quantitative proteomics of differentiated primary bronchial epithelial cells from chronic obstructive pulmonary disease and control identifies potential novel host factors post-influenza A virus infection. Front Microbiol 2023; 13:957830. [PMID: 36713229 PMCID: PMC9875134 DOI: 10.3389/fmicb.2022.957830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) collectively refers to chronic and progressive lung diseases that cause irreversible limitations in airflow. Patients with COPD are at high risk for severe respiratory symptoms upon influenza virus infection. Airway epithelial cells provide the first-line antiviral defense, but whether or not their susceptibility and response to influenza virus infection changes in COPD have not been elucidated. Therefore, this study aimed to compare the susceptibility of COPD- and control-derived airway epithelium to the influenza virus and assess protein changes during influenza virus infection by quantitative proteomics. Materials and methods The presence of human- and avian-type influenza A virus receptor was assessed in control and COPD lung sections as well as in fully differentiated primary human bronchial epithelial cells (phBECs) by lectin- or antibody-based histochemical staining. PhBECs were from COPD lungs, including cells from moderate- and severe-stage diseases, and from age-, sex-, smoking, and history-matched control lung specimens. Protein profiles pre- and post-influenza virus infection in vitro were directly compared using quantitative proteomics, and selected findings were validated by qRT-PCR and immunoblotting. Results The human-type influenza receptor was more abundant in human airways than the avian-type influenza receptor, a property that was retained in vitro when differentiating phBECs at the air-liquid interface. Proteomics of phBECs pre- and post-influenza A virus infection with A/Puerto Rico/8/34 (PR8) revealed no significant differences between COPD and control phBECs in terms of flu receptor expression, cell type composition, virus replication, or protein profile pre- and post-infection. Independent of health state, a robust antiviral response to influenza virus infection was observed, as well as upregulation of several novel influenza virus-regulated proteins, including PLSCR1, HLA-F, CMTR1, DTX3L, and SHFL. Conclusion COPD- and control-derived phBECs did not differ in cell type composition, susceptibility to influenza virus infection, and proteomes pre- and post-infection. Finally, we identified novel influenza A virus-regulated proteins in bronchial epithelial cells that might serve as potential targets to modulate the pathogenicity of infection and acute exacerbations.
Collapse
Affiliation(s)
- Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany,Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Anna M. Dmitrieva
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ashesh Chakraborty
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Kathrin Kahnert
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,*Correspondence: Heiko Adler,
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Claudia A. Staab-Weijnitz, ; https://orcid.org/0000-0002-1211-7834
| |
Collapse
|
6
|
Lichen Sclerosus: A Current Landscape of Autoimmune and Genetic Interplay. Diagnostics (Basel) 2022; 12:diagnostics12123070. [PMID: 36553077 PMCID: PMC9777366 DOI: 10.3390/diagnostics12123070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Lichen sclerosus (LS) is an acquired chronic inflammatory dermatosis predominantly affecting the anogenital area with recalcitrant itching and soreness. Progressive or persistent LS may cause urinary and sexual disturbances and an increased risk of local skin malignancy with a prevalence of up to 11%. Investigations on lipoid proteinosis, an autosomal recessive genodermatosis caused by loss-of-function mutations in the extracellular matrix protein 1 (ECM1) gene, led to the discovery of a humoral autoimmune response to the identical molecule in LS, providing evidence for an autoimmune and genetic counterpart targeting ECM1. This paper provides an overview of the fundamental importance and current issue of better understanding the immunopathology attributed to ECM1 in LS. Furthermore, we highlight the pleiotropic action of ECM1 in homeostatic and structural maintenance of skin biology as well as in a variety of human disorders possibly associated with impaired or gained ECM1 function, including the inflammatory bowel disease ulcerative colitis, Th2 cell-dependent airway allergies, T-cell and B-cell activation, and the demyelinating central nervous system disease multiple sclerosis, to facilitate sharing the concept as a plausible therapeutic target of this attractive molecule.
Collapse
|
7
|
Noh SH, Kim YJ, Lee MG. Autophagy-Related Pathways in Vesicular Unconventional Protein Secretion. Front Cell Dev Biol 2022; 10:892450. [PMID: 35774225 PMCID: PMC9237382 DOI: 10.3389/fcell.2022.892450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular proteins directed to the plasma membrane or released into the extracellular space can undergo a number of different pathways. Whereas the molecular mechanisms that underlie conventional ER-to-Golgi trafficking are well established, those associated with the unconventional protein secretion (UPS) pathways remain largely elusive. A pathway with an emerging role in UPS is autophagy. Although originally known as a degradative process for maintaining intracellular homeostasis, recent studies suggest that autophagy has diverse biological roles besides its disposal function and that it is mechanistically involved in the UPS of various secretory cargos including both leaderless soluble and Golgi-bypassing transmembrane proteins. Here, we summarize current knowledge of the autophagy-related UPS pathways, describing and comparing diverse features in the autophagy-related UPS cargos and autophagy machineries utilized in UPS. Additionally, we also suggest potential directions that further research in this field can take.
Collapse
Affiliation(s)
- Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ye Jin Kim
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Cha SJ, Kim MS, Na CH, Jacobs-Lorena M. Plasmodium sporozoite phospholipid scramblase interacts with mammalian carbamoyl-phosphate synthetase 1 to infect hepatocytes. Nat Commun 2021; 12:6773. [PMID: 34799567 PMCID: PMC8604956 DOI: 10.1038/s41467-021-27109-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
After inoculation by the bite of an infected mosquito, Plasmodium sporozoites enter the blood stream and infect the liver, where each infected cell produces thousands of merozoites. These in turn, infect red blood cells and cause malaria symptoms. To initiate a productive infection, sporozoites must exit the circulation by traversing the blood lining of the liver vessels after which they infect hepatocytes with unique specificity. We screened a phage display library for peptides that structurally mimic (mimotope) a sporozoite ligand for hepatocyte recognition. We identified HP1 (hepatocyte-binding peptide 1) that mimics a ~50 kDa sporozoite ligand (identified as phospholipid scramblase). Further, we show that HP1 interacts with a ~160 kDa hepatocyte membrane putative receptor (identified as carbamoyl-phosphate synthetase 1). Importantly, immunization of mice with the HP1 peptide partially protects them from infection by the rodent parasite P. berghei. Moreover, an antibody to the HP1 mimotope inhibits human parasite P. falciparum infection of human hepatocytes in culture. The sporozoite ligand for hepatocyte invasion is a potential novel pre-erythrocytic vaccine candidate. After transmission of Plasmodium sporozoites from infected mosquitoes, parasites first infect hepatocytes. Here, Cha et al. identify a sporozoite ligand (phospholipid scramblase) and the hepatocytic receptor (carbamoyl-phosphate synthetase 1) as relevant for hepatocyte invasion and show that an antibody to hepatocyte-binding peptide 1 (HP1), which structurally mimics the sporozoite ligand, partially protects mice from infection.
Collapse
Affiliation(s)
- Sung-Jae Cha
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, 615N. Wolfe St., Baltimore, MD, 21205, USA.
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marcelo Jacobs-Lorena
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, 615N. Wolfe St., Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Utsunomiya N, Utsunomiya A, Chino T, Hasegawa M, Oyama N. Gene silencing of extracellular matrix protein 1 (ECM1) results in phenotypic alterations of dermal fibroblasts reminiscent of clinical features of lichen sclerosus. J Dermatol Sci 2020; 100:99-109. [PMID: 33046330 DOI: 10.1016/j.jdermsci.2020.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lichen sclerosus (LS) is an acquired inflammatory mucocutaneous disease affecting the anogenital area, characterized histologically by hyalinosis and thickened vessel walls in the dermis. The presence of serum autoantibodies against extracellular matrix protein 1 (ECM1) in LS patients may suggest its involvement in disease pathogenesis. OBJECTIVE To examine if reduced ECM1 production by dermal fibroblasts contributes to the pathogenic features of LS. METHODS Gene expression in ECM1 knockdown human dermal fibroblasts was analyzed by cDNA microarray. Functional enrichment for genes involved in cellular functions was conducted. Protein expression was analyzed by ELISA and confocal laser scanning microscopy using LS skin. RESULTS Microarray analysis identified 3035 differentially expressed genes in ECM1 knockdown cells, wherein 1471 were upregulated genes related exclusively to cell adhesion, proliferation, apoptosis, intracellular signaling, and extracellular matrix organization. Further narrowing with criteria specific for localization and function of ECM1 identified 48 upregulated genes identified to have structural, fibrogenic, and carcinogenic properties. Of these, laminin-332 and collagen-IV displayed altered immunolabeling within the basement membrane zone (BMZ) and dermal vessels in LS skin, similar to that of collagen-VII, which exhibited unchanged transcription levels in ECM1-knockdown fibroblasts. Collagen-VII bound to recombinant ECM1 in a solid-phase immunoassay and colocalized with ECM1 in the skin BMZ. Further, ECM1-knockdown fibroblasts exhibited a marked delay in cell migration and gel contraction. CONCLUSION In the absence of ECM1 expression in fibroblasts there is selective dysregulation and disassembly of structural and extracellular matrix molecules, which may result in microstructural abnormalities reminiscent of LS.
Collapse
Affiliation(s)
- Natsuko Utsunomiya
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Utsunomiya
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takenao Chino
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Noritaka Oyama
- Department of Dermatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| |
Collapse
|
10
|
Kim J, Gee HY, Lee MG. Unconventional protein secretion – new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci 2018; 131:131/12/jcs213686. [DOI: 10.1242/jcs.213686] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Most secretory proteins travel through a well-documented conventional secretion pathway involving the endoplasmic reticulum (ER) and the Golgi complex. However, recently, it has been shown that a significant number of proteins reach the plasma membrane or extracellular space via unconventional routes. Unconventional protein secretion (UPS) can be divided into two types: (i) the extracellular secretion of cytosolic proteins that do not bear a signal peptide (i.e. leaderless proteins) and (ii) the cell-surface trafficking of signal-peptide-containing transmembrane proteins via a route that bypasses the Golgi. Understanding the UPS pathways is not only important for elucidating the mechanisms of intracellular trafficking pathways but also has important ramifications for human health, because many of the proteins that are unconventionally secreted by mammalian cells and microorganisms are associated with human diseases, ranging from common inflammatory diseases to the lethal genetic disease of cystic fibrosis. Therefore, it is timely and appropriate to summarize and analyze the mechanisms of UPS involvement in disease pathogenesis, as they may be of use for the development of new therapeutic approaches. In this Review, we discuss the intracellular trafficking pathways of UPS cargos, particularly those related to human diseases. We also outline the disease mechanisms and the therapeutic potentials of new strategies for treating UPS-associated diseases.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
11
|
Gee HY, Kim J, Lee MG. Unconventional secretion of transmembrane proteins. Semin Cell Dev Biol 2018; 83:59-66. [PMID: 29580969 DOI: 10.1016/j.semcdb.2018.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Over the past 20 years it has become evident that eukaryotic cells utilize both conventional and unconventional pathways to deliver proteins to their target sites. Most proteins with a signal peptide and/or a transmembrane domain are conventionally transported through the endoplasmic reticulum to the Golgi apparatus and then to the plasma membrane. However, an increasing number of both soluble cargos (Type I, II, and III) and integral membrane proteins (Type IV) have been found to reach the plasma membrane via unconventional protein secretion (UPS) pathways that bypass the Golgi apparatus under certain conditions, such as cellular stress or development. Well-known examples of transmembrane proteins that undergo Type IV UPS pathways are position-specific antigen subunit alpha 1 integrin, cystic fibrosis transmembrane conductance regulator, myeloproliferative leukemia virus oncogene, and pendrin. Although we collectively refer to all Golgi-bypassing routes as UPS, individual trafficking pathways are diverse compared to the conventional pathways, and the molecular mechanisms of UPS pathways are not yet completely defined. This review summarizes the intracellular trafficking pathways of UPS cargo proteins, particularly those with transmembrane domains, and discusses the molecular machinery involved in the UPS of transmembrane proteins.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
He S, Wang H, Liu R, He M, Che T, Jin L, Deng L, Tian S, Li Y, Lu H, Li X, Jiang Z, Li D, Li M. mRNA N6-methyladenosine methylation of postnatal liver development in pig. PLoS One 2017; 12:e0173421. [PMID: 28267806 PMCID: PMC5340393 DOI: 10.1371/journal.pone.0173421] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
N6-methyladenosine (m6A) is a ubiquitous reversible epigenetic RNA modification that plays an important role in the regulation of post-transcriptional protein coding gene expression. Liver is a vital organ and plays a major role in metabolism with numerous functions. Information concerning the dynamic patterns of mRNA m6A methylation during postnatal development of liver has been long overdue and elucidation of this information will benefit for further deciphering a multitude of functional outcomes of mRNA m6A methylation. Here, we profile transcriptome-wide m6A in porcine liver at three developmental stages: newborn (0 day), suckling (21 days) and adult (2 years). About 33% of transcribed genes were modified by m6A, with 1.33 to 1.42 m6A peaks per modified gene. m6A was distributed predominantly around stop codons. The consensus motif sequence RRm6ACH was observed in 78.90% of m6A peaks. A negative correlation (average Pearson's r = -0.45, P < 10-16) was found between levels of m6A methylation and gene expression. Functional enrichment analysis of genes consistently modified by m6A methylation at all three stages showed genes relevant to important functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. Genes with higher m6A methylation and lower expression levels at any particular stage were associated with the biological processes required for or unique to that stage. We suggest that differential m6A methylation may be important for the regulation of nutrient metabolism in porcine liver.
Collapse
Affiliation(s)
- Shen He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Rui Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tiandong Che
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lamei Deng
- Novogene Bioinformatics Institute, Beijing, China
| | - Shilin Tian
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- Novogene Bioinformatics Institute, Beijing, China
| | - Yan Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Hongfeng Lu
- Novogene Bioinformatics Institute, Beijing, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, China
- * E-mail: (ML); (DL); (ZJ)
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail: (ML); (DL); (ZJ)
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail: (ML); (DL); (ZJ)
| |
Collapse
|
13
|
Son SM, Cha MY, Choi H, Kang S, Choi H, Lee MS, Park SA, Mook-Jung I. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy 2016; 12:784-800. [PMID: 26963025 DOI: 10.1080/15548627.2016.1159375] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology.
Collapse
Affiliation(s)
- Sung Min Son
- a Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea.,b Neuroscience Research Institute, Seoul National University College of Medicine , Seoul , Korea
| | - Moon-Yong Cha
- a Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea
| | - Heesun Choi
- a Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea
| | - Seokjo Kang
- a Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea
| | - Hyunjung Choi
- a Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea
| | - Myung-Shik Lee
- c Department of Medicine , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Sun Ah Park
- d Department of Neurology , Soonchunhyang University Bucheon Hospital , Bucheon , Korea
| | - Inhee Mook-Jung
- a Department of Biochemistry & Biomedical Sciences , Seoul National University College of Medicine , Seoul , Korea.,b Neuroscience Research Institute, Seoul National University College of Medicine , Seoul , Korea
| |
Collapse
|
14
|
Herate C, Ramdani G, Grant NJ, Marion S, Gasman S, Niedergang F, Benichou S, Bouchet J. Phospholipid Scramblase 1 Modulates FcR-Mediated Phagocytosis in Differentiated Macrophages. PLoS One 2016; 11:e0145617. [PMID: 26745724 PMCID: PMC4712888 DOI: 10.1371/journal.pone.0145617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
Abstract
Phospholipid Scramblase 1 (PLSCR1) was initially characterized as a type II transmembrane protein involved in bilayer movements of phospholipids across the plasma membrane leading to the cell surface exposure of phosphatidylserine, but other cellular functions have been ascribed to this protein in signaling processes and in the nucleus. In the present study, expression and functions of PLSCR1 were explored in specialized phagocytic cells of the monocyte/macrophage lineage. The expression of PLSCR1 was found to be markedly increased in monocyte-derived macrophages compared to undifferentiated primary monocytes. Surprisingly, this 3-fold increase in PLSCR1 expression correlated with an apparent modification in the membrane topology of the protein at the cell surface of differentiated macrophages. While depletion of PLSCR1 in the monocytic THP-1 cell-line with specific shRNA did not inhibit the constitutive cell surface exposure of phosphatidylserine observed in differentiated macrophages, a net increase in the FcR-mediated phagocytic activity was measured in PLSCR1-depleted THP-1 cells and in bone marrow-derived macrophages from PLSCR1 knock-out mice. Reciprocally, phagocytosis was down-regulated in cells overexpressing PLSCR1. Since endogenous PLSCR1 was recruited both in phagocytic cups and in phagosomes, our results reveal a specific role for induced PLSCR1 expression in the modulation of the phagocytic process in differentiated macrophages.
Collapse
Affiliation(s)
- Cecile Herate
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Ghania Ramdani
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Nancy J. Grant
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR3212, and Université de Strasbourg, Strasbourg, France
| | - Sabrina Marion
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Stephane Gasman
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR3212, and Université de Strasbourg, Strasbourg, France
| | - Florence Niedergang
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
- * E-mail:
| | - Jerome Bouchet
- Inserm U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France
| |
Collapse
|
15
|
Niu X, Chang W, Liu R, Hou R, Li J, Wang C, Li X, Zhang K. mRNA and protein expression of the angiogenesis-related genes EDIL3, AMOT and ECM1 in mesenchymal stem cells in psoriatic dermis. Clin Exp Dermatol 2015; 41:533-40. [PMID: 26644074 DOI: 10.1111/ced.12783] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Dermal microvasculature expansion and angiogenesis are prominent in psoriasis. Our previous microarray study showed that the angiogenesis-related genes EDIL3 (epidermal growth factor-like repeats and discoidin I-like domains 3), AMOT (angiomotin) and ECM1 (extracellular matrix protein 1), had high expression levels in dermal mesenchymal stem cells (DMSCs) from psoriatic skin lesions. AIM To investigate the mRNA and protein expressions of EDIL3, AMOT and ECM1 in DMSCs derived from psoriatic skin in order to better determine the molecular mechanisms of angiogenesis in the skin. METHODS DMSCs from 12 patients with psoriasis and 14 healthy controls (HCs) were cultured to passage 3, and identified by morphology, immunophenotype and multipotential differentiation. The mRNA and protein expressions of EDIL3, AMOT, and ECM1 in the DMSCs were determined using real-time reverse transcription PCR and western blotting. RESULTS DMSCs displayed spindle-like morphology and surface protein expression, and were able to differentiate into osteoblasts, chondrocytes and adipocytes. mRNA expression analysis showed that EDIL3, AMOT and ECM1 were expressed at 2.54-fold, 2.11-fold, and 1.90-fold higher levels, respectively, in psoriatic DMSCs compared with HC DMSCs (all P < 0.05). Protein analysis showed significantly (all P < 0.01) higher concentrations of EDIL3, AMOT and ECM1in the psoriasis group than in the HC group. CONCLUSIONS Our data demonstrate for the first time that expression of EDIL3, AMOT and ECM1 is altered in DMSCs in psoriasis, suggesting that EDIL3, AMOT and ECM1 are involved in the excessive angiogenesis and vasodilation observed in psoriasis.
Collapse
Affiliation(s)
- X Niu
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - W Chang
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - R Liu
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - R Hou
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - J Li
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - C Wang
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - X Li
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| | - K Zhang
- Institute of Dermatology, Taiyuan City Central Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Kodigepalli KM, Bowers K, Sharp A, Nanjundan M. Roles and regulation of phospholipid scramblases. FEBS Lett 2014; 589:3-14. [PMID: 25479087 DOI: 10.1016/j.febslet.2014.11.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
Phospholipid scramblase activity is involved in the collapse of phospholipid (PL) asymmetry at the plasma membrane leading to externalization of phosphatidylserine. This activity is crucial for initiation of the blood coagulation cascade and for recognition/elimination of apoptotic cells by macrophages. Efforts to identify gene products associated with this activity led to the characterization of PL scramblase (PLSCR) and XKR family members which contribute to phosphatidylserine exposure in response to apoptotic stimuli. Meanwhile, TMEM16 family members were identified to externalize phosphatidylserine in response to elevated calcium in Scott syndrome platelets, which is critical for activation of the coagulation cascade. Herein, we report their mechanisms of gene regulation, molecular functions independent of their scrambling activity, and their potential roles in pathogenic conditions.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Kiah Bowers
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Arielle Sharp
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
17
|
Francis VG, Padmanabhan P, Gummadi SN. Snail interacts with hPLSCR1 promoter and down regulates its expression in IMR-32. Biochem Biophys Res Commun 2014; 450:172-7. [PMID: 24878522 DOI: 10.1016/j.bbrc.2014.05.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
Human phospholipid scramblase 1 (hPLSCR1) is a proapoptotic protein whose expression is deregulated in a variety of cancers cells. However till date the transcription regulation of hPLSCR1 is unknown. Transcriptional regulation of hPLSCR1 was studied by cloning the 5'-flanking region of hPLSCR1. Luciferase assays revealed that -1525 to -1244 region of hPLSCR1 was found to regulate its promoter activity. A putative Snail transcription factor (TF) binding site was found within the regulatory region of the promoter. Snail binding was found to down regulate the expression of hPLSCR1 both at the transcriptional and translational levels. Snail knock down using Snail-shRNA confirmed that down regulation of hPLSCR1 by Snail was specific. Point mutation studies confirm that the predicted Snail TF binds to -1123 to -1117 site. ChIP assay further confirms the physical interaction of Snail with hPLSCR1 promoter. This is the first report showing the transcriptional regulation of hPLSCR1 expression by Snail TF and its possible implications in cancer progression.
Collapse
Affiliation(s)
- Vincent Gerard Francis
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Purnima Padmanabhan
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
18
|
Slone EA, Fleming SD. Membrane lipid interactions in intestinal ischemia/reperfusion-induced Injury. Clin Immunol 2014; 153:228-40. [PMID: 24814240 DOI: 10.1016/j.clim.2014.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 01/02/2023]
Abstract
Ischemia, lack of blood flow, and reperfusion, return of blood flow, are a common phenomenon affecting millions of Americans each year. Roughly 30,000 Americans per year experience intestinal ischemia-reperfusion (IR), which is associated with a high mortality rate. Previous studies of the intestine established a role for neutrophils, eicosanoids, the complement system and naturally occurring antibodies in IR-induced pathology. Furthermore, data indicate involvement of a lipid or lipid-like moiety in mediating IR-induced damage. It has been proposed that antibodies recognize exposure of neo-antigens, triggering action of the complement cascade. While it is evident that the pathophysiology of IR-induced injury is complex and multi-factorial, we focus this review on the involvement of eicosanoids, phospholipids and neo-antigens in the early pathogenesis. Lipid changes occurring in response to IR, neo-antigens exposed and the role of a phospholipid transporter, phospholipid scramblase 1 will be discussed.
Collapse
Affiliation(s)
- Emily Archer Slone
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
19
|
Membrane binding of human phospholipid scramblase 1 cytoplasmic domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1785-92. [PMID: 24680654 DOI: 10.1016/j.bbamem.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 02/08/2023]
Abstract
Human phospholipid scramblase 1 (SCR) consists of a large cytoplasmic domain and a small presumed transmembrane domain near the C-terminal end of the protein. Previous studies with the SCRΔ mutant lacking the C-terminal portion (last 28 aa) revealed the importance of this C-terminal moiety for protein function and calcium-binding affinity. The present contribution is intended to elucidate the effect of the transmembrane domain suppression on SCRΔ binding to model membranes (lipid monolayers and bilayers) and on SCRΔ reconstitution in proteoliposomes. In all cases the protein cytoplasmic domain showed a great affinity for lipid membranes, and behaved in most aspects as an intrinsic membrane protein. Assays have been performed in the presence of phosphatidylserine, presumably important for the SCR cytoplasmic domain to be electrostatically anchored to the plasma membrane inner surface. The fusion protein maltose binding protein-SCR has also been studied as an intermediate case of a molecule that can insert into the bilayer hydrophobic core, yet it is stable in detergent-free buffers. Although the intracellular location of SCR has been the object of debate, the present data support the view of SCR as an integral membrane protein, in which not only the transmembrane domain but also the cytoplasmic moiety play a role in membrane docking of the protein.
Collapse
|
20
|
Rayala S, Francis VG, Sivagnanam U, Gummadi SN. N-terminal proline-rich domain is required for scrambling activity of human phospholipid scramblases. J Biol Chem 2014; 289:13206-18. [PMID: 24648509 DOI: 10.1074/jbc.m113.522953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human phospholipid scramblase 1 (hPLSCR1), a type II integral class membrane protein, is known to mediate bidirectional scrambling of phospholipids in a Ca(2+)-dependent manner. hPLSCR2, a homolog of hPLSCR1 that lacks N-terminal proline-rich domain (PRD), did not show scramblase activity. We attribute this absence of scramblase activity of hPLSCR2 to the lack of N-terminal PRD. Hence to investigate the above hypothesis, we added the PRD of hPLSCR1 to hPLSCR2 (PRD-hPLSCR2) and checked whether scramblase activity was restored. Functional assays showed that the addition of PRD to hPLSCR2 restored scrambling activity, and deletion of PRD in hPLSCR1 (ΔPRD-hPLSCR1) resulted in a lack of activity. These results suggest that PRD is crucial for the function of the protein. The effects of the PRD deletion in hPLSCR1 and the addition of PRD to hPLSCR2 were characterized using various spectroscopic techniques. Our results clearly showed that hPLSCR1 and PRD-hPLSCR2 showed Ca(2+)-dependent aggregation and scrambling activity, whereas hPLSCR2 and ΔPRD-hPLSCR1 did not show aggregation and activity. Thus we conclude that scramblases exhibit Ca(2+)-dependent scrambling activity by aggregation of protein. Our results provide a possible mechanism for phospholipid scrambling mediated by PLSCRs and the importance of PRD in its function and cellular localization.
Collapse
Affiliation(s)
- Sarika Rayala
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | | | |
Collapse
|
21
|
The C-terminal transmembrane domain of human phospholipid scramblase 1 is essential for the protein flip-flop activity and Ca²⁺-binding. J Membr Biol 2013; 247:155-65. [PMID: 24343571 DOI: 10.1007/s00232-013-9619-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
Human phospholipid scramblase 1 (SCR) is a 318 amino acid protein that was originally described as catalyzing phospholipid transbilayer (flip-flop) motion in plasma membranes in a Ca²⁺-dependent, ATP-independent way. Further studies have suggested an intranuclear role for this protein in addition. A putative transmembrane domain located at the C terminus (aa 291-309) has been related to the flip-flop catalysis. In order to clarify the role of the C-terminal region of SCR, a mutant was produced (SCRΔ) in which the last 28 amino acid residues were lacking, including the α-helix. SCRΔ had lost the scramblase activity and its affinity for Ca²⁺ was decreased by one order of magnitude. Fluorescence and IR spectroscopic studies revealed that the C-terminal region of SCR was essential for the proper folding of the protein. Moreover, it was found that Ca²⁺ exerted an overall destabilizing effect on SCR, which might facilitate its binding to membranes.
Collapse
|
22
|
Francis VG, Mohammed AM, Aradhyam GK, Gummadi SN. The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity. FEBS J 2013; 280:2855-69. [PMID: 23590222 DOI: 10.1111/febs.12289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/12/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
Abstract
Human phospholipid scramblase 1 (hPLSCR1) belongs to the ATP-independent class of phospholipid translocators which possess a single EF-hand-like Ca(2+)-binding motif and also a C-terminal helix (CTH). The CTH domain of hPLSCR1 was believed to be a putative single transmembrane helix at the C-terminus. Recent homology modeling studies by Bateman et al. predicted that the hydrophobic nature of this helix is due to its packing in the core of the protein domain and proposed that this is not a true transmembrane helix [Bateman A, Finn RD, Sims PJ, Wiedmer T, Biegert A & Johannes S. Bioinformatics 2008, 25, 159]. To determine the exact function of the CTH of hPLSCR1, we deleted the CTH domain and determined: (a) whether CTH plays any role beyond membrane anchorage, (b) the functional consequences of CTH deletion, and (c) any conformational changes associated with CTH in a lipid environment. In vitro reconstitution studies confirm that the predicted CTH is required for membrane insertion and scrambling activity. CTH deletion caused a 50% decrease in binding affinity of Ca(2+) for ∆CTH-hPLSCR1 (K(a) = 115 μM) compared with hPLSCR1 (K(a) = 249 μM). Far UV-CD studies revealed that the CTH peptide adopts α-helicity only in the presence of SDS micelles and negatively charged vesicles, indicating that electrostatic interactions are required for insertion of the peptide. CTH peptide-quenching studies confirm that the predicted CTH inserts into the membrane and its ability to interact with the membrane depends on the presence of charge interactions. TOXCAT assay revealed that CTH of hPLSCR1 does not oligomerize in the membrane. We conclude that CTH is required for membrane insertion and Ca(2+) coordination and also plays an important role in the functional conformation of hPLSCR1.
Collapse
Affiliation(s)
- Vincent G Francis
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | | | | | |
Collapse
|
23
|
Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the foundation of epidermal integrity--BM functions and diverse roles of bridging molecules nidogen and perlecan. BIOMED RESEARCH INTERNATIONAL 2013; 2013:179784. [PMID: 23586018 PMCID: PMC3618921 DOI: 10.1155/2013/179784] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellular matrix (ECM) of the dermis underneath. Both compartments are connected by the basement membrane (BM), composed of a set of distinct glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding not only (i) the dermoepidermal interface but also (ii) the resident microvasculature, primarily focusing on the per se nonscaffold forming components perlecan and nidogen-1 and nidogen-2. Depletion or functional deficiencies of any BM component are lethal at some stage of development or around birth, though BM defects vary between organs and tissues. Lethality problems were overcome by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D) cocultures of normal or defective cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further "minor" local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively, orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-specific, or functional context.
Collapse
Affiliation(s)
- Dirk Breitkreutz
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | | | | | | |
Collapse
|
24
|
ALG-2-interacting Tubby-like protein superfamily member PLSCR3 is secreted by an exosomal pathway and taken up by recipient cultured cells. Biosci Rep 2013; 33:e00026. [PMID: 23350699 PMCID: PMC3590573 DOI: 10.1042/bsr20120123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PLSCRs (phospholipid scramblases) are palmitoylated membrane-associating proteins. Regardless of the given names, their physiological functions are not clear and thought to be unrelated to phospholipid scrambling activities observed in vitro. Using a previously established cell line of HEK-293 (human embryonic kidney-293) cells constitutively expressing human Scr3 (PLSCR3) that interacts with ALG-2 (apoptosis-linked gene 2) Ca2+-dependently, we found that Scr3 was secreted into the culture medium. Secretion of Scr3 was suppressed by 2-BP (2-bromopalmitate, a palmitoylation inhibitor) and by GW4869 (an inhibitor of ceramide synthesis). Secreted Scr3 was recovered in exosomal fractions by sucrose density gradient centrifugation. Palmitoylation sites and the N-terminal Pro-rich region were necessary for efficient secretion, but ABSs (ALG-2-binding sites) were dispensable. Overexpression of GFP (green fluorescent protein)-fused VPS4BE235Q, a dominant negative mutant of an AAA (ATPase associated with various cellular activities) ATPase with a defect in disassembling ESCRT (endosomal sorting complex required for transport)-III subunits, significantly reduced secretion of Scr3. Immunofluorescence microscopic analyses showed that Scr3 was largely localized to enlarged endosomes induced by overexpression of a GFP-fused constitutive active mutant of Rab5A (GFP–Rab5AQ79L). Secreted Scr3 was taken up by HeLa cells, suggesting that Scr3 functions as a cell-to-cell transferable modulator carried by exosomes in a paracrine manner.
Collapse
|
25
|
Kirov A, Al-Hashimi H, Solomon P, Mazur C, Thorpe PE, Sims PJ, Tarantini F, Kumar TKS, Prudovsky I. Phosphatidylserine externalization and membrane blebbing are involved in the nonclassical export of FGF1. J Cell Biochem 2012; 113:956-66. [PMID: 22034063 DOI: 10.1002/jcb.23425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms of nonclassical export of signal peptide-less proteins remain insufficiently understood. Here, we demonstrate that stress-induced unconventional export of FGF1, a potent and ubiquitously expressed mitogenic and proangiogenic protein, is associated with and dependent on the formation of membrane blebs and localized cell surface exposure of phosphatidylserine (PS). In addition, we found that the differentiation of promonocytic cells results in massive FGF1 release, which also correlates with membrane blebbing and exposure of PS. These findings indicate that the externalization of acidic phospholipids could be used as a pharmacological target to regulate the availability of FGF1 in the organism.
Collapse
Affiliation(s)
- Aleksandr Kirov
- Maine Medical Center Research Institute, Scarborough, Maine Medical Center, ME 04074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang J, Zhu X, Liu J, Ding X, Han M, Hu W, Wang X, Zhou Z, Wang S. Inhibition of Hepatitis B virus replication by phospholipid scramblase 1 in vitro and in vivo. Antiviral Res 2012; 94:9-17. [PMID: 22342889 DOI: 10.1016/j.antiviral.2012.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/20/2012] [Accepted: 01/30/2012] [Indexed: 01/03/2023]
Abstract
Human Phospholipid scramblase 1 (PLSCR1) is an α/β interferon-inducible protein that mediates antiviral activity against RNA viruses including vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMCV). In the present study, we investigated the antiviral activity of PLSCR1 protein against HBV (Hepatitis B virus). Firstly, PLSCR1 mRNA and protein expression was found to be downregulated in HepG2 cells after HBV infection. Then by performing co-transient-transfection experiments in cells and hydrodynamics-based transfection experiments in mice using a HBV expression plasmid and a PLSCR1 expression plasmid, we found that PLSCR1 inhibited HBV replication in vitro and in vivo through a significant reduction in the synthesis of viral proteins, DNA replicative intermediates and HBV RNAs. We also demonstrated that the antiviral action of PLSCR1 against HBV occurs, partly at least, by activating the Jak/Stat pathway. In conclusion, our results suggest that the expression of PLSCR1 is involved in HBV replication and that PLSCR1 has antiviral activity against HBV.
Collapse
Affiliation(s)
- Jing Yang
- Beijing Institute of Radiation Medicine, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Giuliani F, Grieve A, Rabouille C. Unconventional secretion: a stress on GRASP. Curr Opin Cell Biol 2011; 23:498-504. [DOI: 10.1016/j.ceb.2011.04.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/14/2011] [Accepted: 04/18/2011] [Indexed: 01/02/2023]
|
28
|
Glebov K, Schütze S, Walter J. Functional relevance of a novel SlyX motif in non-conventional secretion of insulin-degrading enzyme. J Biol Chem 2011; 286:22711-5. [PMID: 21576244 DOI: 10.1074/jbc.c110.217893] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a Zn(2+) metalloprotease with a characteristic inverted catalytic motif. IDE is ubiquitously expressed and degrades peptide substrates including insulin, endorphin, and the amyloid-β peptide. Although IDE is mainly expressed in the cytosol, it can also be found on the cell surface and in secreted form in extracellular fluids. As IDE lacks a characteristic signal sequence that targets the protein to the classical secretory pathway, release of the enzyme involves non-conventional mechanisms. However, functional domains of IDE involved in its secretion remain elusive. By bioinformatical, biochemical, and cell biological methods, we identified a novel amino acid motif ((853)EKPPHY(858)) close to the C terminus of IDE and characterized its function in the non-conventional secretion of the protein. Because of its close homology to an amino acid sequence found in bacterial proteins belonging to the SlyX family, we propose to call it the SlyX motif. Mutagenesis revealed that deletion of this motif strongly decreased the release of IDE, whereas deletion of a potential microbody-targeting signal at the extreme C terminus had little effect on secretion. The combined data indicate that the non-conventional secretion of IDE is regulated by the newly identified SlyX motif.
Collapse
|