1
|
Boada Y, Flores M, Stiebritz M, Córdova M, Flores F, Vignoni A. Synthetic biology design principles enable efficient bioproduction of Heparosan with low molecular weight and low polydispersion index for the biomedical industry. Synth Biol (Oxf) 2025; 10:ysaf006. [PMID: 40396182 PMCID: PMC12091141 DOI: 10.1093/synbio/ysaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 05/22/2025] Open
Abstract
Heparosan is a natural polymer with unique chemical and biological properties, that holds great promise for biomedical applications. The molecular weight (Mw) and polydispersion index (PDI) are critical factors influencing the performance of heparosan-based materials. Achieving precise control over the synthesis process to consistently produce heparosan with low Mw and low PDI can be challenging, as it requires tight regulation of reaction conditions, enzyme activity, and precursor concentrations. We propose a novel approach utilizing synthetic biology principles to precisely control heparosan biosynthesis in bacteria. Our strategy involves designing a biomolecular controller that can regulate the expression of genes involved in heparosan biosynthesis. This controller is activated by biosensors that detect heparosan precursors, allowing for fine-tuned control of the polymerization process. Through this approach, we foresee the implementation of this synthetic device, demonstrating the potential to produce low Mw and low PDI heparosan in the probiotic E. coli Nissle 1917 as a biosafe and biosecure biofactory. This study represents a significant advancement in the field of heparosan production, offering new opportunities for the development and manufacturing of biomaterials with tailored properties for diverse biomedical applications.
Collapse
Affiliation(s)
- Yadira Boada
- Synthetic Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
- Grado en Ingeniería y Gestión Empresarial, Centro Universitario EDEM, Plaça de L’aigua, Poblados Marítimos, Valencia 46024, Spain
| | - Marcelo Flores
- Synthetic Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
- Grupos de Investigación en Cloud Computing Smart Cities and High Performance Computing, Universidad Politécnica Salesiana, Calle Vieja 12-30, Cuenca 010105, Ecuador
| | - Martin Stiebritz
- Lehrstuhl für Biotechnik, Department für Biologie, Friederich-Alexander-Universität, MVC, Henkestraße 91, Erlangen 91052, Germany
| | - Marco Córdova
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador
| | - Francisco Flores
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolquí 171103, Ecuador
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, C. Rumipamba s/n y Bourgeois, Quito 170147, Ecuador
| | - Alejandro Vignoni
- Synthetic Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| |
Collapse
|
2
|
Bhattarai M, Wang Q, Hussain Z, Tanim-Al-Hassan M, Chen H, Faik A. New insights on β-glycan synthases using in vitro GT-array (i-GT-ray) platform. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109052. [PMID: 39163652 DOI: 10.1016/j.plaphy.2024.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Cellulose and hemicellulose are the major structural β-glycan polysaccharides in cell walls of land plants. They are characterized by a backbone of β-(1,3)- and/or β-(1,4)-linked sugars such as glucose, mannose, or xylose. The backbones of these polymers are produced by processive glycosyltransferases (GTs) called synthases having multiple transmembrane domains anchoring them to the membrane. Thus, they are among the most difficult membrane proteins to test in vitro and to purify. Recently, we developed an in vitro GT-array (i-GTray) platform and showed that non-processive type II membrane GTs could be produced via cell-free system in a soluble and active form and tested in this platform. To determine whether i-GT-ray platform is adequate for the production and testing of β-glycan synthases, we tested five synthases involved in cellulose, xyloglucan, (gluco)mannan, and β-(1,3)(1,4)-mixed-linkage glucan synthesis. Our results revealed unsuspected features of these enzymes. For example, all these synthases could be produced in a soluble and active form and are active in the absence of detergent or membrane lipids, and none of them required a primer for initiation of synthesis. All synthases produced ethanol-insoluble products that were susceptible to the appropriate hydrolases (i.e., cellulase, lichenase, mannanase). Using this platform, we showed that AtCslC4 and AtXXT1 interact directly to form an active xyloglucan synthase that produced xylosylated cello-oligosaccharides (up to three xylosyl residues) when supplied with UDP-Glc and UDP-Xyl. i-GTray platform represents a simple and powerful functional genomics tool for discovery of new insights of synthase activities and can be adapted to other enzymes.
Collapse
Affiliation(s)
- Matrika Bhattarai
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Qi Wang
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zawar Hussain
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - Md Tanim-Al-Hassan
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hao Chen
- The Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Ahmed Faik
- From the Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
3
|
Sheng LL, Cai YM, Li Y, Huang SL, Sheng JZ. Advancements in heparosan production through metabolic engineering and improved fermentation. Carbohydr Polym 2024; 331:121881. [PMID: 38388039 DOI: 10.1016/j.carbpol.2024.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Heparin is one of the most widely used natural drugs, and has been the preferred anticoagulant and antithrombotic agent in the clinical setting for nearly a century. Heparin also shows increasing therapeutic potential for treating inflammation, cancer, and microbial and viral diseases, including COVID-19. With advancements in synthetic biology, heparin production through microbial engineering of heparosan offers a cost-effective and scalable alternative to traditional extraction from animal tissues. Heparosan serves as the starting carbon backbone for the chemoenzymatic synthesis of bioengineered heparin, possessing a chain length that is critically important for the production of heparin-based therapeutics with specific molecular weight (MW) distributions. Recent advancements in metabolic engineering of microbial cell factories have resulted in high-yield heparosan production. This review systematically analyzes the key modules involved in microbial heparosan biosynthesis and the latest metabolic engineering strategies for enhancing production, regulating MW, and optimizing the fermentation scale-up of heparosan. It also discusses future studies, remaining challenges, and prospects in the field.
Collapse
Affiliation(s)
- Li-Li Sheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Min Cai
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi Li
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Si-Ling Huang
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; The State Key Laboratory of Microbial Technology, Shandong University, Qingdao 250100, China.
| |
Collapse
|
4
|
Sun L, Chopra P, Tomris I, van der Woude R, Liu L, de Vries RP, Boons GJ. Well-Defined Heparin Mimetics Can Inhibit Binding of the Trimeric Spike of SARS-CoV-2 in a Length-Dependent Manner. JACS AU 2023; 3:1185-1195. [PMID: 37101566 PMCID: PMC10089289 DOI: 10.1021/jacsau.3c00042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The emergence of new SARS-CoV-2 variants and the dangers of long-covid necessitate the development of broad-acting therapeutics that can reduce viral burden. SARS-CoV-2 employs heparan sulfate (HS) as an initial cellular attachment factor, and therefore, there is interest in developing heparin as a therapeutic for SARS-CoV-2. Its use is, however, complicated by structural heterogeneity and the risk of causing bleeding and thrombocytopenia. Here, we describe the preparation of well-defined heparin mimetics by a controlled head-to-tail assembly of HS oligosaccharides having an alkyne or azide moiety by copper-catalyzed azide-alkyne cycloaddition (CuAAC). Alkyne- and azide-containing sulfated oligosaccharides were prepared from a common precursor by modifying an anomeric linker with 4-pentynoic acid and by enzymatic extension with an N-acetyl-glucosamine having an azide moiety at C-6 (GlcNAc6N3), respectively, followed by CuAAC. The process of enzymatic extension with GlcNAc6N3 followed by CuAAC with the desired alkyne-containing oligosaccharides could be repeated to give compounds composed of 20 and 27 monosaccharides, respectively. The heparin mimetics could inhibit the binding of the SARS-CoV-2 spike or RBD to immobilized heparin or to Vero E6 cells. The inhibitory potency increased with increasing chain length, and a compound composed of four sulfated hexasaccharides linked by triazoles had a similar potency as unfractionated heparin. Sequence analysis and HS microarray binding studies with a wide range of RBDs of variants of concern indicate that they have maintained HS-binding capabilities and selectivities. The heparin mimetics exhibit no or reduced binding to antithrombin-III and platelet factor 4, respectively, which are associated with side effects.
Collapse
Affiliation(s)
- Lifeng Sun
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Pradeep Chopra
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
| | - Ilhan Tomris
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lin Liu
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, The University
of Georgia, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, 3584 CG Utrecht, The Netherlands
- Chemistry
Department, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Qiao M, Ji Y, Linhardt RJ, Zhang X, Huang H. Fabricating Bimetal Organic Material Capsules with a Commodious Microenvironment and Synergistic Effect for Glycosyltransferase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26034-26043. [PMID: 35578904 DOI: 10.1021/acsami.2c04644] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) are rarely applied as solid supports in the enzymatic synthesis of oligosaccharides and polysaccharides, as glycosyltransferases are readily inactivated by traditional MOFs due to the poor compatibility and the limited mass transfer for complex carbohydrates in MOFs. Here, on the basis of the synthetic methods of zeolitic imidazolate framework-90 (ZIF-90), we prepared bimetal organic material (BMOM) microreactors that successfully encapsulated Pasteurella multocida heparosan synthase 2 (PmHS2), a critical glycosyltransferase in the enzymatic synthesis of heparin and heparan sulfate. The second metal ion introduced can increase the mesopores in the BMOM, stabilize the active pocket of glycosyltransferase, and facilitate the deprotonation of critical amino acid residues, Asp and Glu of PmHS2, to initiate the catalyzation. On the basis of this bimetallic microreactor, heparosan disaccharide, oligosaccharide, and polysaccharide are successfully prepared in quantitative yield, providing a viable BMOM-based immobilization strategy to simulate the physiological microenvironment for glycosyltransferase.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
6
|
Engle KA, Amos RA, Yang JY, Glushka J, Atmodjo M, Tan L, Huang C, Moremen KW, Mohnen D. Multiple Arabidopsis galacturonosyltransferases synthesize polymeric homogalacturonan by oligosaccharide acceptor-dependent or de novo synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1441-1456. [PMID: 34908202 PMCID: PMC8976717 DOI: 10.1111/tpj.15640] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/31/2023]
Abstract
Homogalacturonan (HG), the most abundant pectic glycan, functions as a cell wall structural and signaling molecule essential for plant growth, development and response to pathogens. HG exists as a component of pectic homoglycans, heteroglycans and glycoconjugates. HG is synthesized by members of the GALACTURONOSYLTRANSFERASE (GAUT) family. UDP-GalA-dependent homogalacturonan:galacturonosyltransferase (HG:GalAT) activity has previously been demonstrated for GAUTs 1, 4 and 11, as well as the GAUT1:GAUT7 complex. Here, we show that GAUTs 10, 13 and 14 are also HG:GalATs and that GAUTs 1, 10, 11, 13, 14 and 1:7 synthesize polymeric HG in vitro. Comparison of the in vitro HG:GalAT specific activities of the heterologously-expressed proteins demonstrates GAUTs 10 and 11 with the lowest, GAUT1 and GAUT13 with moderate, and GAUT14 and the GAUT1:GAUT7 complex with the highest HG:GalAT activity. GAUT13 and GAUT14 are also shown to de novo synthesize (initiate) HG synthesis in the absence of exogenous HG acceptors, an activity previously demonstrated for GAUT1:GAUT7. The rate of de novo HG synthesis by GAUT13 and GAUT14 is similar to their acceptor dependent HG synthesis, in contrast to GAUT1:GAUT7 for which de novo synthesis occurred at much lower rates than acceptor-dependent synthesis. The results suggest a unique role for de novo HG synthesis by GAUTs 13 and 14. The reducing end of GAUT13-de novo-synthesized HG has covalently attached UDP, indicating that UDP-GalA serves as both a donor and acceptor substrate during de novo HG synthesis. The functional significance of unique GAUT HG:GalAT catalytic properties in the synthesis of different pectin glycan or glycoconjugate structures is discussed.
Collapse
Affiliation(s)
- Kristen A. Engle
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Melani Atmodjo
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Chin Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
7
|
Deng JQ, Lu Z, Liu J, Zhao Y, Hou XB, Guo XP, Jiang WJ, Wang FS, Sheng JZ. Heparosan oligosaccharide synthesis using engineered single-function glycosyltransferases. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 24-fold increase in GlcNAc-transferase ability through KfiA screening and engineering. An approach for heparosan oligosaccharide synthesis relying on single-function glycosyltransferases.
Collapse
Affiliation(s)
- Jian-Qun Deng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhen Lu
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Juan Liu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yan Zhao
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Xu-Ben Hou
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xue-Ping Guo
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Wen-Jie Jiang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
9
|
Na L, Yu H, McArthur JB, Ghosh T, Asbell T, Chen X. Engineer P. multocida Heparosan Synthase 2 (PmHS2) for Size-Controlled Synthesis of Longer Heparosan Oligosaccharides. ACS Catal 2020; 10:6113-6118. [PMID: 33520345 PMCID: PMC7842274 DOI: 10.1021/acscatal.0c01231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pasteurella multocida heparosan synthase 2 (PmHS2) is a dual-function polysaccharide synthase having both α1-4-N-acetylglucosaminyltransferase (α1-4-GlcNAcT) and β1-4-glucuronyltransferase (β1-4-GlcAT) activities located in two separate catalytic domains. We found that removing PmHS2 N-terminal 80-amino acid residues improved enzyme stability and expression level while retaining its substrate promiscuity. We also identified the reverse glycosylation activities of PmHS2 which complicated its application in size-controlled synthesis of oligosaccharides longer than hexasaccharide. Engineered Δ80PmHS2 single-function-glycosyltransferase mutants Δ80PmHS2_D291N (α1-4-GlcNAcT lacking both forward and reverse β1-4-GlcAT activities) and Δ80PmHS2_D569N (β1-4-GlcAT lacking both forward and reverse α1-4-GlcNAcT activities) were designed and showed to minimize side product formation. They were successfully used in a sequential one-pot multienzyme (OPME) platform for size-controlled high-yield production of oligosaccharides up to decasaccharide. The study draws attention to the consideration of reverse glycosylation activities of glycosyltransferases, including polysaccharide synthases, when applying them in the synthesis of oligosaccharides and polysaccharides. The mutagenesis strategy has the potential to be extended to other multifunctional polysaccharide synthases with reverse glycosylation activities to generate catalysts with improved synthetic efficiency.
Collapse
Affiliation(s)
| | | | - John B. McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Tamashree Ghosh
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Thomas Asbell
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
10
|
Concise chemoenzymatic synthesis of heparan sulfate analogues as potent BACE-1 inhibitors. Carbohydr Polym 2019; 217:232-239. [PMID: 31079681 DOI: 10.1016/j.carbpol.2019.04.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 01/15/2023]
Abstract
Heparan sulfate (HS) and heparin, representative members of the glycosaminoglycans, possess distinct biological functions in terms of their specific interactions with hundreds of binding proteins. However, the structural properties of HS and heparin are complex due to their variable repeating motifs, different chain lengths and sulfation patterns. A concise chemoenzymatic approach has been developed to obtain well-defined low molecular weight (LMW) HS analogues. Pasteurella multocida heparosan synthase-2 (PmHS2) was utilized to fabricate the HS backbones with controllable chain lengths ranging from 14mer to 26mer. Moreover, regioselective and overall sulfation were conducted by chemical approach. The persulfated HS analogues exhibited more potent beta-site amyloid precursor protein (APP)-cleaving enzyme-1 (BACE-1) inhibitory activity than heparin and enoxaparin, and enhanced BACE-1 inhibitions were also found with the increasing molecular size of the HS analogues. This approach supplies the promising LMW HS analogues for the potential development of novel anti-Alzheimer's drugs.
Collapse
|
11
|
Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 2019; 9:20180069. [PMID: 30842872 DOI: 10.1098/rsfs.2018.0069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Combined with chemical synthesis, the use of glycoenzyme biocatalysts has shown great synthetic potential over recent decades owing to their remarkable versatility in terms of substrates and regio- and stereoselectivity that allow structurally controlled synthesis of carbohydrates and glycoconjugates. Nonetheless, the lack of appropriate enzymatic tools with requisite properties in the natural diversity has hampered extensive exploration of enzyme-based synthetic routes to access relevant bioactive oligosaccharides, such as cell-surface glycans or prebiotics. With the remarkable progress in enzyme engineering, it has become possible to improve catalytic efficiency and physico-chemical properties of enzymes but also considerably extend the repertoire of accessible catalytic reactions and tailor novel substrate specificities. In this review, we intend to give a brief overview of the advantageous use of engineered glycoenzymes, sometimes in combination with chemical steps, for the synthesis of natural bioactive oligosaccharides or their precursors. The focus will be on examples resulting from the three main classes of glycoenzymes specialized in carbohydrate synthesis: glycosyltransferases, glycoside hydrolases and glycoside phosphorylases.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Régis Fauré
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Magali Remaud-Siméon
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Claire Moulis
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| | - Isabelle André
- Laboratoire d'Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 135, avenue de Rangueil, 31077 Toulouse cedex 04, France
| |
Collapse
|
12
|
McManus JB, Yang H, Wilson L, Kubicki JD, Tien M. Initiation, Elongation, and Termination of Bacterial Cellulose Synthesis. ACS OMEGA 2018; 3:2690-2698. [PMID: 30023847 PMCID: PMC6044951 DOI: 10.1021/acsomega.7b01808] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/19/2018] [Indexed: 05/30/2023]
Abstract
Cellulose is the major component of the plant cell wall and composed of β-linked glucose units. Use of cellulose is greatly impacted by its physical properties, which are dominated by the number of individual cellulose strand within each fiber and the average length of each strand. Our work described herein provides a complete mechanism for cellulose synthase accounting for its processivity and mechanism of initiation. Using ionic liquids and gel permeation chromatography, we obtain kinetic constants for initiation, elongation, and termination (release of the cellulose strand from the enzyme) for two bacterial cellulose synthases (Gluconacetobacter hansenii and Rhodobacter sphaeroides). Our results show that initiation of synthesis is primer-independent. After initiation, the enzyme undergoes multiple cycles of elongation until the strand is released. The rate of elongation is much faster than that of steady-state turnover. Elongation requires cyclic addition of glucose (from uridine diphosphate-glucose) and then strand translocation by one glucose unit. Translocations greater than one glucose unit result in termination requiring reinitiation. The rate of the strand release, relative to the rate of elongation, determines the processivity of the enzyme. This mechanism and the measured rate constants were supported by kinetic simulation. With the experimentally determined rate constants, we are able to simulate steady-state kinetics and mimic the size distribution of the product. Thus, our results provide for the first time a mechanism for cellulose synthase that accounts for initiation, elongation, and termination.
Collapse
Affiliation(s)
- John B. McManus
- Department
of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hui Yang
- Department
of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Liza Wilson
- Department
of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - James D. Kubicki
- Department
of Geological Sciences, University of Texas
at El Paso, El Paso, Texas 79968, United
States
| | - Ming Tien
- Department
of Biochemistry and Molecular Biology and Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Chen X, Chen R, Yu X, Tang D, Yao W, Gao X. Metabolic engineering of Bacillus subtilis for biosynthesis of heparosan using heparosan synthase from Pasteurella multocida, PmHS1. Bioprocess Biosyst Eng 2017; 40:675-681. [DOI: 10.1007/s00449-016-1732-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/25/2016] [Indexed: 01/27/2023]
|
14
|
Zhao X, Chen Z, Gu G, Guo Z. Recent advances in the research of bacterial glucuronosyltransferases. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1205597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Liston SD, Clarke BR, Greenfield LK, Richards MR, Lowary TL, Whitfield C. Domain interactions control complex formation and polymerase specificity in the biosynthesis of the Escherichia coli O9a antigen. J Biol Chem 2014; 290:1075-85. [PMID: 25422321 DOI: 10.1074/jbc.m114.622480] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for bacterial glycan synthesis and export by an ATP-binding cassette transporter-dependent pathway. The O9a O-PS possesses a tetrasaccharide repeat unit comprising two α-(1→2)- and two α-(1→3)-linked mannose residues and is extended on a polyisoprenoid lipid carrier by the action of a polymerase (WbdA) containing two glycosyltransferase active sites. The N-terminal domain of WbdA possesses α-(1→2)-mannosyltransferase activity, and we demonstrate in this study that the C-terminal domain is an α-(1→3)-mannosyltransferase. Previous studies established that the size of the O9a polysaccharide is determined by the chain-terminating dual kinase/methyltransferase (WbdD) that is tethered to the membrane and recruits WbdA into an active enzyme complex by protein-protein interactions. Here, we used bacterial two-hybrid analysis to identify a surface-exposed α-helix in the C-terminal mannosyltransferase domain of WbdA as the site of interaction with WbdD. However, the C-terminal domain was unable to interact with WbdD in the absence of its N-terminal partner. Through deletion analysis, we demonstrated that the α-(1→2)-mannosyltransferase activity of the N-terminal domain is regulated by the activity of the C-terminal α-(1→3)-mannosyltransferase. In mutants where the C-terminal catalytic site was deleted but the WbdD-interaction site remained, the N-terminal mannosyltransferase became an unrestricted polymerase, creating a novel polymer comprising only α-(1→2)-linked mannose residues. The WbdD protein therefore orchestrates critical localization and coordination of activities involved in chain extension and termination. Complex domain interactions are needed to position the polymerase components appropriately for assembly into a functional complex located at the cytoplasmic membrane.
Collapse
Affiliation(s)
- Sean D Liston
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Bradley R Clarke
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Laura K Greenfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| | - Michele R Richards
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1 and
| |
Collapse
|
16
|
Chandarajoti K, Xu Y, Sparkenbaugh E, Key NS, Pawlinski R, Liu J. De novo synthesis of a narrow size distribution low-molecular-weight heparin. Glycobiology 2014; 24:476-86. [PMID: 24626379 DOI: 10.1093/glycob/cwu016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Heparin, a commonly used anticoagulant drug, is a mixture of highly sulfated polysaccharides with various molecular weights (MWs). The unique sulfation pattern dictates the anticoagulant activity of heparin. Commercial heparins are categorized into three forms according to their average MW: unfractionated heparin (UFH, MWavg 14,000), low-MW heparin (LMWH, MWavg 3500-6500) and the synthetic pentasaccharide (fondaparinux, MW 1508.3). UFH is isolated from porcine intestine while LMWH is derived from UFH by various methods of depolymerization, which generate a wide range of oligosaccharide chain lengths. Different degradation methods result in structurally distinct LMWH products, displaying different pharmacological and pharmacokinetic properties. In this report, we utilized a chemoenzymatic method to synthesize LMWH with the emphasis on controlling the size distribution of the oligosaccharides. A tetrasaccharide primer and a controlled enzyme-based polymerization were employed to build a narrow size oligosaccharide backbone. The oligosaccharide backbones were further modified by a series of sulfation and epimerization steps in order to obtain a full anticoagulation activity. Determination of the anticoagulation activity in vitro and ex vivo indicated that the synthetic LMWH has higher potency than enoxaparin, a commercial LMWH drug in clinical usage.
Collapse
Affiliation(s)
- Kasemsiri Chandarajoti
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Rm 303, Beard Hall
| | | | | | | | | | | |
Collapse
|
17
|
Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA. Appl Microbiol Biotechnol 2013; 98:1127-34. [DOI: 10.1007/s00253-013-4947-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 02/05/2023]
|
18
|
Production methods for heparosan, a precursor of heparin and heparan sulfate. Carbohydr Polym 2013; 93:38-47. [DOI: 10.1016/j.carbpol.2012.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/17/2012] [Accepted: 04/17/2012] [Indexed: 11/23/2022]
|
19
|
Greenfield LK, Richards MR, Vinogradov E, Wakarchuk WW, Lowary TL, Whitfield C. Domain organization of the polymerizing mannosyltransferases involved in synthesis of the Escherichia coli O8 and O9a lipopolysaccharide O-antigens. J Biol Chem 2012; 287:38135-49. [PMID: 22989876 PMCID: PMC3488083 DOI: 10.1074/jbc.m112.412577] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/16/2012] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli O9a and O8 polymannose O-polysaccharides (O-PSs) serve as model systems for the biosynthesis of bacterial polysaccharides by ATP-binding cassette transporter-dependent pathways. Both O-PSs contain a conserved primer-adaptor domain at the reducing terminus and a serotype-specific repeat unit domain. The repeat unit domain is polymerized by the serotype-specific WbdA mannosyltransferase. In serotype O9a, WbdA is a bifunctional α-(1→2)-, α-(1→3)-mannosyltransferase, and its counterpart in serotype O8 is trifunctional (α-(1→2), α-(1→3), and β-(1→2)). Little is known about the detailed structures or mechanisms of action of the WbdA polymerases, and here we establish that they are multidomain enzymes. WbdA(O9a) contains two separable and functionally active domains, whereas WbdA(O8) possesses three. In WbdC(O9a) and WbdB(O9a), substitution of the first Glu of the EX(7)E motif had detrimental effects on the enzyme activity, whereas substitution of the second had no significant effect on activity in vivo. Mutation of the Glu residues in the EX(7)E motif of the N-terminal WbdA(O9a) domain resulted in WbdA variants unable to synthesize O-PS. In contrast, mutation of the Glu residues in the motif of the C-terminal WbdA(O9a) domain generated an enzyme capable of synthesizing an altered O-PS repeat unit consisting of only α-(1→2) linkages. In vitro assays with synthetic acceptors unequivocally confirmed that the N-terminal domain of WbdA(O9a) possesses α-(1→2)-mannosyltransferase activity. Together, these studies form a framework for detailed structure-function studies on individual domains and a strategy applicable for dissection and analysis of other multidomain glycosyltransferases.
Collapse
Affiliation(s)
- Laura K. Greenfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1
| | - Michele R. Richards
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, and
| | - Evgeny Vinogradov
- the Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Warren W. Wakarchuk
- the Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Todd L. Lowary
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, and
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1
| |
Collapse
|
20
|
Otto NJ, Green DE, Masuko S, Mayer A, Tanner ME, Linhardt RJ, DeAngelis PL. Structure/function analysis of Pasteurella multocida heparosan synthases: toward defining enzyme specificity and engineering novel catalysts. J Biol Chem 2012; 287:7203-12. [PMID: 22235128 DOI: 10.1074/jbc.m111.311704] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pasteurella multocida heparosan synthases, PmHS1 and PmHS2, are homologous (∼65% identical) bifunctional glycosyltransferase proteins found in Type D Pasteurella. These unique enzymes are able to generate the glycosaminoglycan heparosan by polymerizing sugars to form repeating disaccharide units from the donor molecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc). Although these isozymes both generate heparosan, the catalytic phenotypes of these isozymes are quite different. Specifically, during in vitro synthesis, PmHS2 is better able to generate polysaccharide in the absence of exogenous acceptor (de novo synthesis) than PmHS1. Additionally, each of these enzymes is able to generate polysaccharide using unnatural sugar analogs in vitro, but they exhibit differences in the substitution patterns of the analogs they will employ. A series of chimeric enzymes has been generated consisting of various portions of both of the Pasteurella heparosan synthases in a single polypeptide chain. In vitro radiochemical sugar incorporation assays using these purified chimeric enzymes have shown that most of the constructs are enzymatically active, and some possess novel characteristics including the ability to produce nearly monodisperse polysaccharides with an expanded range of sugar analogs. Comparison of the kinetic properties and the sequences of the wild-type enzymes with the chimeric enzymes has enabled us to identify regions that may be responsible for some aspects of both donor binding specificity and acceptor usage. In combination with previous work, these approaches have enabled us to better understand the structure/function relationship of this unique family of glycosyltransferases.
Collapse
Affiliation(s)
- Nigel J Otto
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Chavaroche AAE, van den Broek LAM, Boeriu C, Eggink G. Synthesis of heparosan oligosaccharides by Pasteurella multocida PmHS2 single-action transferases. Appl Microbiol Biotechnol 2011; 95:1199-210. [PMID: 22198719 PMCID: PMC3418500 DOI: 10.1007/s00253-011-3813-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 12/15/2022]
Abstract
Pasteurella multocida heparosan synthase PmHS2 is a dual action glycosyltransferase that catalyzes the polymerization of heparosan polymers in a non-processive manner. The two PmHS2 single-action transferases, obtained previously by site-directed mutagenesis, have been immobilized on Ni(II)-nitrilotriacetic acid agarose during the purification step. A detailed study of the polymerization process in the presence of non-equal amounts of PmHS2 single-action transferases revealed that the glucuronyl transferase (PmHS2-GlcUA(+)) is the limiting catalyst in the polymerization process. Using experimental design, it was determined that the N-acetylglucosaminyl transferase (PmHS2-GlcNAc(+)) plays an important role in the control of heparosan chain elongation depending on the number of heparosan chains and the UDP-sugar concentrations present in the reaction mixture. Furthermore, for the first time, the synthesis of heparosan oligosaccharides alternately using PmHS2-GlcUA(+) and PmHS2-GlcNAc(+) is reported. It was shown that the synthesis of heparosan oligosaccharides by PmHS2 single-action transferases do not require the presence of template molecules in the reaction mixture.
Collapse
Affiliation(s)
- Anaïs A E Chavaroche
- Bioprocess Engineering Group, Wageningen University and Research Center, P.O. Box 8129, 6700 EV, Wageningen, the Netherlands
| | | | | | | |
Collapse
|
22
|
Becker HF, Piffeteau A, Thellend A. Saccharomyces cerevisiae chitin biosynthesis activation by N-acetylchitooses depends on size and structure of chito-oligosaccharides. BMC Res Notes 2011; 4:454. [PMID: 22032207 PMCID: PMC3221556 DOI: 10.1186/1756-0500-4-454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/27/2011] [Indexed: 11/21/2022] Open
Abstract
Background To explore chitin synthesis initiation, the effect of addition of exogenous oligosaccharides on in vitro chitin synthesis was studied. Oligosaccharides of various natures and lengths were added to a chitin synthase assay performed on a Saccharomyces cerevisiae membrane fraction. Findings N-acetylchito-tetra, -penta and -octaoses resulted in 11 to 25% [14C]-GlcNAc incorporation into [14C]-chitin, corresponding to an increase in the initial velocity. The activation appeared specific to N-acetylchitooses as it was not observed with oligosaccharides in other series, such as beta-(1,4), beta-(1,3) or alpha-(1,6) glucooligosaccharides. Conclusions The effect induced by the N-acetylchitooses was a saturable phenomenon and did not interfere with free GlcNAc and trypsin which are two known activators of yeast chitin synthase activity in vitro. The magnitude of the activation was dependent on both oligosaccharide concentration and oligosaccharide size.
Collapse
Affiliation(s)
- Hubert F Becker
- Laboratoire d'Optique et Biosciences, INSERM U696, CNRS UMR7645, Ecole Polytechnique, 91128 Palaiseau, France.
| | | | | |
Collapse
|