1
|
Pushpakaran A, Gupta A, Katdare S, Ashtam A, Pratap V, Bharatam PV, Panda D. Enhancement of GTP hydrolysis and inhibition of polymerization of the cell division protein FtsZ by an N-heterocyclic imine derivative impede growth and biofilm formation in Streptococcus pneumoniae. Int J Biol Macromol 2025; 306:141762. [PMID: 40049472 DOI: 10.1016/j.ijbiomac.2025.141762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
FtsZ polymerizes to form a cytokinetic Z-ring at the mid-cell and coordinates the partitioning of a bacterial cell. Its crucial role in bacterial cell division and widely conserved nature makes it a promising target for antibacterial drugs. Streptococcus pneumoniae, a prevalent respiratory pathogen, is acquiring antimicrobial resistance at an alarming rate, highlighting the need for developing potent anti-pneumococcal agents. In this work, we identified the FtsZ-inhibitory property of an N- heterocyclic imine derivative, 3-methyl-2-(3-(p-tolyl)-1,3-thiazetidin-2-ylidene)amino-6-trifluoromethoxy-benzo[d]thiazolium trifluoromethanesulfonate (TTMB). TTMB inhibited the growth of S. pneumoniae, Staphylococcus aureus, Bacillus subtilis, Vibrio cholerae, Staphylococcus saprophyticus, and Mycobacterium smegmatis, indicating its broad-spectrum antibacterial activity. Further, TTMB inhibited biofilm formation by the pathogenic strain of S. pneumoniae. TTMB destroyed the Z-ring in S. pneumoniae and B. subtilis. The compound binds to purified FtsZ, increases the GTPase activity of FtsZ, and inhibits FtsZ assembly. FtsZ forms short and thin polymers and aggregates in the presence of TTMB. Importantly, TTMB exhibited low cytotoxicity to mammalian cells and did not inhibit tubulin polymerization or the activity of metabolic enzymes like alkaline phosphatase and alcohol dehydrogenase, suggesting its safety for mammalian systems. The dual-acting property of TTMB, targeting both planktonic and biofilm-forming S. pneumoniae, makes it a promising antibacterial agent.
Collapse
Affiliation(s)
- Athira Pushpakaran
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Bombay, Mumbai 400076, India
| | - Astha Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Shraddha Katdare
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Anvesh Ashtam
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Bombay, Mumbai 400076, India
| | - Vidyadhar Pratap
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Bombay, Mumbai 400076, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Bombay, Mumbai 400076, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Cui XH, Wei YC, Li XG, Qi XQ, Wu LF, Zhang WJ. N-terminus GTPase domain of the cytoskeleton protein FtsZ plays a critical role in its adaptation to high hydrostatic pressure. Front Microbiol 2024; 15:1441398. [PMID: 39220037 PMCID: PMC11362102 DOI: 10.3389/fmicb.2024.1441398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Studies in model microorganisms showed that cell division is highly vulnerable to high hydrostatic pressure (HHP). Disassembly of FtsZ filaments induced by HHP results in the failure of cell division and formation of filamentous cells in E. coli. The specific characteristics of FtsZ that allow for functional cell division in the deep-sea environments, especially in obligate piezophiles that grow exclusively under HHP condition, remain enigmatic. In this study, by using a self-developed HHP in-situ fixation apparatus, we investigated the effect of HHP on FtsZ by examining the subcellular localization of GFP-tagged FtsZ in vivo and the stability of FtsZ filament in vitro. We compared the pressure tolerance of FtsZ proteins from pressure-sensitive strain Shewanella oneidensis MR-1 (FtsZSo) and obligately piezophilic strain Shewanella benthica DB21MT-2 (FtsZSb). Our findings showed that, unlike FtsZSo, HHP hardly affected the Z-ring formation of FtsZSb, and filaments composed of FtsZSb were more stable after incubation under 50 MPa. By constructing chimeric and single amino acid mutated FtsZ proteins, we identified five residues in the N-terminal GTPase domain of FtsZSb whose mutation would impair the Z-ring formation under HHP conditions. Overall, these results demonstrate that FtsZ from the obligately piezophilic strain exhibits superior pressure tolerance than its homologue from shallow water species, both in vivo and in vitro. Differences in pressure tolerance of FtsZ are largely attributed to the N-terminal GTPase domain. This represents the first in-depth study of the adaptation of microbial cytoskeleton protein FtsZ to high hydrostatic pressure, which may provide insights into understanding the complex bioprocess of cell division under extreme environments.
Collapse
Affiliation(s)
- Xue-Hua Cui
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Chen Wei
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, China
| | - Long-Fei Wu
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, China
- Aix Marseille University, CNRS, LCB, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, China
| |
Collapse
|
3
|
Bhondwe P, Sengar N, Bodiwala HS, Singh IP, Panda D. An adamantyl-caffeoyl-anilide exhibits broad-spectrum antibacterial activity by inhibiting FtsZ assembly and Z-ring formation. Int J Biol Macromol 2024; 259:129255. [PMID: 38199552 DOI: 10.1016/j.ijbiomac.2024.129255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Several harmful bacteria have evolved resistance to conventional antibiotics due to their extensive usage. FtsZ, a principal bacterial cell division protein, is considered as an important drug target to combat resistance. We identified a caffeoyl anilide derivative, (E)-N-(4-(3-(3,4-dihydroxyphenyl)acryloyl)phenyl)-1-adamantylamide (compound 11) as a new antimicrobial agent targeting FtsZ. Compound 11 caused cell elongation in Mycobacterium smegmatis, Bacillus subtilis, and Escherichia coli cells, indicating that it inhibits cell partitioning. Compound 11 inhibited the assembly of Mycobacterium smegmatis FtsZ (MsFtsZ), forming short and thin filaments in vitro. Interestingly, the compound increased the rate of GTP hydrolysis of MsFtsZ. Compound 11 also impeded the assembly of Mycobacterium tuberculosis FtsZ. Fluorescence and absorption spectroscopic analysis suggested that compound 11 binds to MsFtsZ and produces conformational changes in FtsZ. The docking analysis indicated that the compound binds at the interdomain cleft of MsFtsZ. Further, it caused delocalization of the Z-ring in Mycobacterium smegmatis and Bacillus subtilis without affecting DNA segregation. Notably, compound 11 did not inhibit tubulin polymerization, the eukaryotic homolog of FtsZ, suggesting its specificity on bacteria. The evidence indicated that compound 11 exerts its antibacterial effect by impeding FtsZ assembly and has the potential to be developed as a broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Prajakta Bhondwe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Neha Sengar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Hardik S Bodiwala
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
4
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
5
|
Vitamin K3 inhibits FtsZ assembly, disrupts the Z-ring in Streptococcus pneumoniae, and displays anti-pneumococcal activity. Biochem J 2022; 479:1543-1558. [PMID: 35789252 DOI: 10.1042/bcj20220077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
The respiratory pathogen, Streptococcus pneumoniae has acquired multiple-drug resistance over the years. An attractive strategy to combat pneumococcal infection is to target cell division to inhibit the proliferation of S. pneumoniae. This work presents Vitamin K3 as a potential anti-pneumococcal drug that targets FtsZ, the master coordinator of bacterial cell division. Vitamin K3 strongly inhibited S. pneumoniae proliferation with a Minimum Inhibitory Concentration (MIC) and a Minimum Bactericidal Concentration (MBC) of 6 μg/mL. Vitamin K3 disrupted the Z-ring localization in both S. pneumoniae and Bacillus subtilis within 30 minutes of treatment, while the membrane integrity and nucleoid segregation remain unchanged. Several complementary experiments showed that Vitamin K3 inhibits the assembly of purified S. pneumoniae FtsZ (SpnFtsZ) and induces conformational changes in the protein. Interestingly, Vitamin K3 interfered with GTP-binding onto FtsZ and increased the GTPase activity of FtsZ polymers. The intrinsic tryptophan fluorescence of SpnFtsZ revealed that Vitamin K3 delays the nucleation of FtsZ polymers and reduces the rate of polymerization. In the presence of a non-hydrolyzable analog of GTP, Vitamin K3 did not show inhibition of FtsZ polymerization. These results indicated that Vitamin K3 induces conformational changes in FtsZ that increase GTP hydrolysis and thereby, destabilize the FtsZ polymers. Together, our data provide evidence that Vitamin K3 derives its potent anti-pneumococcal activity by inhibiting FtsZ assembly.
Collapse
|
6
|
Yoshizawa T, Fujita J, Terakado H, Ozawa M, Kuroda N, Tanaka SI, Uehara R, Matsumura H. Crystal structures of the cell-division protein FtsZ from Klebsiella pneumoniae and Escherichia coli. Acta Crystallogr F Struct Biol Commun 2020; 76:86-93. [PMID: 32039890 PMCID: PMC7010355 DOI: 10.1107/s2053230x2000076x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
FtsZ, a tubulin-like GTPase, is essential for bacterial cell division. In the presence of GTP, FtsZ polymerizes into filamentous structures, which are key to generating force in cell division. However, the structural basis for the molecular mechanism underlying FtsZ function remains to be elucidated. In this study, crystal structures of the enzymatic domains of FtsZ from Klebsiella pneumoniae (KpFtsZ) and Escherichia coli (EcFtsZ) were determined at 1.75 and 2.50 Å resolution, respectively. Both FtsZs form straight protofilaments in the crystals, and the two structures adopted relaxed (R) conformations. The T3 loop, which is involved in GTP/GDP binding and FtsZ assembly/disassembly, adopted a unique open conformation in KpFtsZ, while the T3 loop of EcFtsZ was partially disordered. The crystal structure of EcFtsZ can explain the results from previous functional analyses using EcFtsZ mutants.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruna Terakado
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Mayuki Ozawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Natsuko Kuroda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shun-ichi Tanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Ryo Uehara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
7
|
Dhaked HPS, Ray S, Battaje RR, Banerjee A, Panda D. Regulation ofStreptococcus pneumoniaeFtsZ assembly by divalent cations: paradoxical effects of Ca2+on the nucleation and bundling of FtsZ polymers. FEBS J 2019; 286:3629-3646. [DOI: 10.1111/febs.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
Affiliation(s)
| | - Shashikant Ray
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
- Department of Biotechnology Mahatma Gandhi Central University Motihari Bihar India
| | - Rachana Rao Battaje
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| | - Dulal Panda
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| |
Collapse
|
8
|
Surface Orientation and Binding Strength Modulate Shape of FtsZ on Lipid Surfaces. Int J Mol Sci 2019; 20:ijms20102545. [PMID: 31137602 PMCID: PMC6566678 DOI: 10.3390/ijms20102545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023] Open
Abstract
We have used a simple model system to test the prediction that surface attachment strength of filaments presenting a torsion would affect their shape and properties. FtsZ from E. coli containing one cysteine in position 2 was covalently attached to a lipid bilayer containing maleimide lipids either in their head group (to simulate tight attachment) or at the end of a polyethylene glycol molecule attached to the head group (to simulate loose binding). We found that filaments tightly attached grew straight, growing from both ends, until they formed a two-dimensional lattice. Further monomer additions to their sides generated a dense layer of oriented filaments that fully covered the lipid membrane. After this point the surface became unstable and the bilayer detached from the surface. Filaments with a loose binding were initially curved and later evolved into straight thicker bundles that destabilized the membrane after reaching a certain surface density. Previously described theoretical models of FtsZ filament assembly on surfaces that include lateral interactions, spontaneous curvature, torsion, anchoring to the membrane, relative geometry of the surface and the filament ‘living-polymer’ condition in the presence of guanosine triphosphate (GTP) can offer some clues about the driving forces inducing these filament rearrangements.
Collapse
|
9
|
Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS Microbiol Rev 2019; 43:73-87. [PMID: 30376053 DOI: 10.1093/femsre/fuy039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
The bacterial cytoskeletal protein FtsZ binds and hydrolyzes GTP, self-aggregates into dynamic filaments and guides the assembly of the septal ring on the inner side of the membrane at midcell. This ring constricts the cell during division and is present in most bacteria. Despite exhaustive studies undertaken in the last 25 years after its discovery, we do not yet know the mechanism by which this GTP-dependent self-aggregating protein exerts force on the underlying membrane. This paper reviews recent experiments and theoretical models proposed to explain FtsZ filament dynamic assembly and force generation. It highlights how recent observations of single filaments on reconstituted model systems and computational modeling are contributing to develop new multiscale models that stress the importance of previously overlooked elements as monomer internal flexibility, filament twist and flexible anchoring to the cell membrane. These elements contribute to understand the rich behavior of these GTP consuming dynamic filaments on surfaces. The aim of this review is 2-fold: (1) to summarize recent multiscale models and their implications to understand the molecular mechanism of FtsZ assembly and force generation and (2) to update theoreticians with recent experimental results.
Collapse
Affiliation(s)
- Pablo Mateos-Gil
- Institute of Molecular Biology and Biotechnology, FO.R.T.H, Vassilika Vouton, 70013 Heraklion, Greece
| | - Pedro Tarazona
- Condensed Matter Physics Center (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica CSIC, c/ Marie Curie 2, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Schoenemann KM, Krupka M, Rowlett VW, Distelhorst SL, Hu B, Margolin W. Gain-of-function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling. Mol Microbiol 2018; 109:676-693. [PMID: 29995995 DOI: 10.1111/mmi.14069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2018] [Indexed: 01/19/2023]
Abstract
Escherichia coli requires FtsZ, FtsA and ZipA proteins for early stages of cell division, the latter two tethering FtsZ polymers to the cytoplasmic membrane. Hypermorphic mutants of FtsA such as FtsA* (R286W) map to the FtsA self-interaction interface and can bypass the need for ZipA. Purified FtsA forms closed minirings on lipid monolayers that antagonize bundling of FtsZ protofilaments, whereas FtsA* forms smaller oligomeric arcs that enable bundling. Here, we examined three additional FtsA*-like mutant proteins for their ability to form oligomers on lipid monolayers and bundle FtsZ. Surprisingly, all three formed distinct structures ranging from mostly arcs (T249M), a mixture of minirings, arcs and straight filaments (Y139D) or short straight double filaments (G50E). All three could form filament sheets at higher concentrations with added ATP. Despite forming these diverse structures, all three mutant proteins acted like FtsA* to enable FtsZ protofilament bundling on lipid monolayers. Synthesis of the FtsA*-like proteins in vivo suppressed the toxic effects of a bundling-defective FtsZ, exacerbated effects of a hyper-bundled FtsZ, and rescued some thermosensitive cell division alleles. Together, the data suggest that conversion of FtsA minirings into any type of non-miniring oligomer can promote progression of cytokinesis through FtsZ bundling and other mechanisms.
Collapse
Affiliation(s)
- Kara M Schoenemann
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Steven L Distelhorst
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| |
Collapse
|
11
|
Escherichia coli ZipA Organizes FtsZ Polymers into Dynamic Ring-Like Protofilament Structures. mBio 2018; 9:mBio.01008-18. [PMID: 29921670 PMCID: PMC6016244 DOI: 10.1128/mbio.01008-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZipA is an essential cell division protein in Escherichia coli. Together with FtsA, ZipA tethers dynamic polymers of FtsZ to the cytoplasmic membrane, and these polymers are required to guide synthesis of the cell division septum. This dynamic behavior of FtsZ has been reconstituted on planar lipid surfaces in vitro, visible as GTP-dependent chiral vortices several hundred nanometers in diameter, when anchored by FtsA or when fused to an artificial membrane binding domain. However, these dynamics largely vanish when ZipA is used to tether FtsZ polymers to lipids at high surface densities. This, along with some in vitro studies in solution, has led to the prevailing notion that ZipA reduces FtsZ dynamics by enhancing bundling of FtsZ filaments. Here, we show that this is not the case. When lower, more physiological levels of the soluble, cytoplasmic domain of ZipA (sZipA) were attached to lipids, FtsZ assembled into highly dynamic vortices similar to those assembled with FtsA or other membrane anchors. Notably, at either high or low surface densities, ZipA did not stimulate lateral interactions between FtsZ protofilaments. We also used E. coli mutants that are either deficient or proficient in FtsZ bundling to provide evidence that ZipA does not directly promote bundling of FtsZ filaments in vivo. Together, our results suggest that ZipA does not dampen FtsZ dynamics as previously thought, and instead may act as a passive membrane attachment for FtsZ filaments as they treadmill. Bacterial cells use a membrane-attached ring of proteins to mark and guide formation of a division septum at midcell that forms a wall separating the two daughter cells and allows cells to divide. The key protein in this ring is FtsZ, a homolog of tubulin that forms dynamic polymers. Here, we use electron microscopy and confocal fluorescence imaging to show that one of the proteins required to attach FtsZ polymers to the membrane during E. coli cell division, ZipA, can promote dynamic swirls of FtsZ on a lipid surface in vitro. Importantly, these swirls are observed only when ZipA is present at low, physiologically relevant surface densities. Although ZipA has been thought to enhance bundling of FtsZ polymers, we find little evidence for bundling in vitro. In addition, we present several lines of in vivo evidence indicating that ZipA does not act to directly bundle FtsZ polymers.
Collapse
|
12
|
Guan F, Yu J, Yu J, Liu Y, Li Y, Feng XH, Huang KC, Chang Z, Ye S. Lateral interactions between protofilaments of the bacterial tubulin homolog FtsZ are essential for cell division. eLife 2018; 7:35578. [PMID: 29889022 PMCID: PMC6050046 DOI: 10.7554/elife.35578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/10/2018] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic tubulin homolog FtsZ polymerizes into protofilaments, which further assemble into higher-order structures at future division sites to form the Z-ring, a dynamic structure essential for bacterial cell division. The precise nature of interactions between FtsZ protofilaments that organize the Z-ring and their physiological significance remain enigmatic. In this study, we solved two crystallographic structures of a pair of FtsZ protofilaments, and demonstrated that they assemble in an antiparallel manner through the formation of two different inter-protofilament lateral interfaces. Our in vivo photocrosslinking studies confirmed that such lateral interactions occur in living cells, and disruption of the lateral interactions rendered cells unable to divide. The inherently weak lateral interactions enable FtsZ protofilaments to self-organize into a dynamic Z-ring. These results have fundamental implications for our understanding of bacterial cell division and for developing antibiotics that target this key process.
Collapse
Affiliation(s)
- Fenghui Guan
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Jiayu Yu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Yu
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Yang Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ying Li
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Zengyi Chang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Ye
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| |
Collapse
|
13
|
Krupka M, Margolin W. Unite to divide: Oligomerization of tubulin and actin homologs regulates initiation of bacterial cell division. F1000Res 2018; 7:235. [PMID: 29560258 PMCID: PMC5832921 DOI: 10.12688/f1000research.13504.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 01/05/2023] Open
Abstract
To generate two cells from one, bacteria such as
Escherichia coli use a complex of membrane-embedded proteins called the divisome that synthesize the division septum. The initial stage of cytokinesis requires a tubulin homolog, FtsZ, which forms polymers that treadmill around the cell circumference. The attachment of these polymers to the cytoplasmic membrane requires an actin homolog, FtsA, which also forms dynamic polymers that directly bind to FtsZ. Recent evidence indicates that FtsA and FtsZ regulate each other’s oligomeric state in
E. coli to control the progression of cytokinesis, including the recruitment of septum synthesis proteins. In this review, we focus on recent advances in our understanding of protein-protein association between FtsZ and FtsA in the initial stages of divisome function, mainly in the well-characterized
E. coli system.
Collapse
Affiliation(s)
- Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, USA
| |
Collapse
|
14
|
Krupka M, Rowlett VW, Morado D, Vitrac H, Schoenemann K, Liu J, Margolin W. Escherichia coli FtsA forms lipid-bound minirings that antagonize lateral interactions between FtsZ protofilaments. Nat Commun 2017; 8:15957. [PMID: 28695917 PMCID: PMC5508204 DOI: 10.1038/ncomms15957] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/15/2017] [Indexed: 01/19/2023] Open
Abstract
Most bacteria divide using a protein machine called the divisome that spans the cytoplasmic membrane. Key divisome proteins on the membrane’s cytoplasmic side include tubulin-like FtsZ, which forms GTP-dependent protofilaments, and actin-like FtsA, which tethers FtsZ to the membrane. Here we present genetic evidence that in Escherichia coli, FtsA antagonizes FtsZ protofilament bundling in vivo. We then show that purified FtsA does not form straight polymers on lipid monolayers as expected, but instead assembles into dodecameric minirings, often in hexameric arrays. When coassembled with FtsZ on lipid monolayers, these FtsA minirings appear to guide FtsZ to form long, often parallel, but unbundled protofilaments, whereas a mutant of FtsZ (FtsZ*) with stronger lateral interactions remains bundled. In contrast, a hypermorphic mutant of FtsA (FtsA*) forms mainly arcs instead of minirings and enhances lateral interactions between FtsZ protofilaments. Based on these results, we propose that FtsA antagonizes lateral interactions between FtsZ protofilaments, and that the oligomeric state of FtsA may influence FtsZ higher-order structure and divisome function. The actin-like protein FtsA and the tubulin-like protein FtsZ play crucial roles during cell division in most bacteria. Here, the authors show that FtsA forms minirings on lipid monolayers, and present evidence supporting that its oligomeric state modulates the bundling of FtsZ protofilaments.
Collapse
Affiliation(s)
- Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Dustin Morado
- Department of Pathology and Laboratory Medicine, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Heidi Vitrac
- Department of Biochemistry and Molecular Biology, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Kara Schoenemann
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Márquez IF, Mateos-Gil P, Shin JY, Lagos R, Monasterio O, Vélez M. Mutations on FtsZ lateral helix H3 that disrupt cell viability hamper reorganization of polymers on lipid surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28642045 DOI: 10.1016/j.bbamem.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
FtsZ filaments localize at the middle of the bacterial cell and participate in the formation of a contractile ring responsible for cell division. Previous studies demonstrated that the highly conserved negative charge of glutamate 83 and the positive charge of arginine 85 located in the lateral helix H3 bend of Escherichia coli FtsZ are required for in vivo cell division. In order to understand how these lateral mutations impair the formation of a contractile ring,we extend previous in vitro characterization of these mutants in solution to study their behavior on lipid modified surfaces. We study their interaction with ZipAand look at their reorganization on the surface. We found that the dynamic bundling capacity of the mutant proteins is deficient, and this impairment increases the more the composition and spatial arrangement of the reconstituted system resembles the situation inside the cell: mutant proteins completely fail to reorganize to form higher order aggregates when bound to an E.coli lipid surface through oriented ZipA.We conclude that these surface lateral point mutations affect the dynamic reorganization of FtsZ filaments into bundles on the cell membrane, suggesting that this event is relevant for generating force and completing bacterial division.
Collapse
Affiliation(s)
- Ileana F Márquez
- Instituto de Catálisis y Petroleoquímica, c/Marie Curie 2, Cantoblanco, Madrid 28049, Spain
| | - Pablo Mateos-Gil
- Instituto de Catálisis y Petroleoquímica, c/Marie Curie 2, Cantoblanco, Madrid 28049, Spain
| | - Jae Yen Shin
- Departamento de Biología, Facultad de Ciencias, Casilla 653, Santiago 1, Chile
| | - Rosalba Lagos
- Departamento de Biología, Facultad de Ciencias, Casilla 653, Santiago 1, Chile
| | - Octavio Monasterio
- Departamento de Biología, Facultad de Ciencias, Casilla 653, Santiago 1, Chile
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica, c/Marie Curie 2, Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
16
|
Groundwater PW, Narlawar R, Liao VWY, Bhattacharya A, Srivastava S, Kunal K, Doddareddy M, Oza PM, Mamidi R, Marrs ECL, Perry JD, Hibbs DE, Panda D. A Carbocyclic Curcumin Inhibits Proliferation of Gram-Positive Bacteria by Targeting FtsZ. Biochemistry 2017; 56:514-524. [DOI: 10.1021/acs.biochem.6b00879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Paul W. Groundwater
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Rajeshwar Narlawar
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Vivian Wan Yu Liao
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Anusri Bhattacharya
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shalini Srivastava
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kishore Kunal
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Munikumar Doddareddy
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Pratik M. Oza
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Ramesh Mamidi
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Emma C. L. Marrs
- Microbiology
Department, Freeman Hospital, High Heaton, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - John D. Perry
- Microbiology
Department, Freeman Hospital, High Heaton, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - David E. Hibbs
- Faculty
of Pharmacy, The University of Sydney, Pharmacy and Bank Building, Science
Road, Sydney, NSW 2006, Australia
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
17
|
Probing for Binding Regions of the FtsZ Protein Surface through Site-Directed Insertions: Discovery of Fully Functional FtsZ-Fluorescent Proteins. J Bacteriol 2016; 199:JB.00553-16. [PMID: 27795325 DOI: 10.1128/jb.00553-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/04/2016] [Indexed: 11/20/2022] Open
Abstract
FtsZ, a bacterial tubulin homologue, is a cytoskeletal protein that assembles into protofilaments that are one subunit thick. These protofilaments assemble further to form a "Z ring" at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane and also serves as a scaffold to recruit cell wall remodeling proteins for complete cell division in vivo One model of the Z ring proposes that protofilaments associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of Escherichia coli FtsZ by inserting either small peptides or whole fluorescent proteins (FPs). Among the four lateral surfaces on FtsZ protofilaments, we obtained inserts on the front and back surfaces that were functional for cell division. We concluded that these faces are not sites of essential interactions. Inserts at two sites, G124 and R174, located on the left and right surfaces, completely blocked function, and these sites were identified as possible sites for essential lateral interactions. However, the insert at R174 did not interfere with association of protofilaments into sheets and bundles in vitro Another goal was to find a location within FtsZ that supported insertion of FP reporter proteins while allowing the FtsZ-FPs to function as the sole source of FtsZ. We discovered one internal site, G55-Q56, where several different FPs could be inserted without impairing function. These FtsZ-FPs may provide advances for imaging Z-ring structure by superresolution techniques. IMPORTANCE One model for the Z-ring structure proposes that protofilaments are assembled into ribbons by lateral bonds between FtsZ subunits. Our study excluded the involvement of the front and back faces of the protofilament in essential interactions in vivo but pointed to two potential lateral bond sites, on the right and left sides. We also identified an FtsZ loop where various fluorescent proteins could be inserted without blocking function; these FtsZ-FPs functioned as the sole source of FtsZ. This advance provides improved tools for all fluorescence imaging of the Z ring and may be especially important for superresolution imaging.
Collapse
|
18
|
Dhaked HPS, Bhattacharya A, Yadav S, Dantu SC, Kumar A, Panda D. Mutation of Arg191 in FtsZ Impairs Cytokinetic Abscission of Bacillus subtilis Cells. Biochemistry 2016; 55:5754-5763. [DOI: 10.1021/acs.biochem.6b00493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hemendra Pal Singh Dhaked
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anusri Bhattacharya
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Saroj Yadav
- IITB-Monash
Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sarath Chandra Dantu
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ashutosh Kumar
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dulal Panda
- Department
of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
19
|
Busiek KK, Margolin W. Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 2016; 25:R243-R254. [PMID: 25784047 DOI: 10.1016/j.cub.2015.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.
Collapse
Affiliation(s)
- Kimberly K Busiek
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
20
|
Haeusser DP, Margolin W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 2016; 14:305-19. [PMID: 27040757 DOI: 10.1038/nrmicro.2016.26] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria must divide to increase in number and colonize their niche. Binary fission is the most widespread means of bacterial cell division, but even this relatively simple mechanism has many variations on a theme. In most bacteria, the tubulin homologue FtsZ assembles into a ring structure, termed the Z ring, at the site of cytokinesis and recruits additional proteins to form a large protein machine - the divisome - that spans the membrane. In this Review, we discuss current insights into the regulation of the assembly of the Z ring and how the divisome drives membrane invagination and septal cell wall growth while flexibly responding to various cellular inputs.
Collapse
Affiliation(s)
- Daniel P Haeusser
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA.,Biology Department, Canisius College, 2001 Main Street, Buffalo, New York 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
21
|
Bhattacharya A, Ray S, Singh D, Dhaked HPS, Panda D. ZapC promotes assembly and stability of FtsZ filaments by binding at a different site on FtsZ than ZipA. Int J Biol Macromol 2015; 81:435-42. [DOI: 10.1016/j.ijbiomac.2015.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 12/27/2022]
|
22
|
Haeusser DP, Rowlett VW, Margolin W. A mutation in Escherichia coli ftsZ bypasses the requirement for the essential division gene zipA and confers resistance to FtsZ assembly inhibitors by stabilizing protofilament bundling. Mol Microbiol 2015; 97:988-1005. [PMID: 26046682 DOI: 10.1111/mmi.13081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
The earliest step in Escherichia coli cell division consists of the assembly of FtsZ protein into a proto-ring structure, tethered to the cytoplasmic membrane by FtsA and ZipA. The proto-ring then recruits additional cell division proteins to form the divisome. Previously we described an ftsZ allele, ftsZL169R , which maps to the side of the FtsZ subunit and confers resistance to FtsZ assembly inhibitory factors including Kil of bacteriophage λ. Here we further characterize this allele and its mechanism of resistance. We found that FtsZL169R permits the bypass of the normally essential ZipA, a property previously observed for FtsA gain-of-function mutants such as FtsA* or increased levels of the FtsA-interacting protein FtsN. Similar to FtsA*, FtsZL169R also can partially suppress thermosensitive mutants of ftsQ or ftsK, which encode additional divisome proteins, and confers strong resistance to excess levels of FtsA, which normally inhibit FtsZ ring function. Additional genetic and biochemical assays provide further evidence that FtsZL169R enhances FtsZ protofilament bundling, thereby conferring resistance to assembly inhibitors and bypassing the normal requirement for ZipA. This work highlights the importance of FtsZ protofilament bundling during cell division and its likely role in regulating additional divisome activities.
Collapse
Affiliation(s)
- Daniel P Haeusser
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| |
Collapse
|
23
|
Singh D, Bhattacharya A, Rai A, Dhaked HPS, Awasthi D, Ojima I, Panda D. SB-RA-2001 inhibits bacterial proliferation by targeting FtsZ assembly. Biochemistry 2014; 53:2979-92. [PMID: 24749867 PMCID: PMC4020581 DOI: 10.1021/bi401356y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
FtsZ
has been recognized as a promising antimicrobial drug target
because of its vital role in bacterial cell division. In this work,
we found that a taxane SB-RA-2001 inhibited the proliferation of Bacillus subtilis 168 and Mycobacterium smegmatis cells with minimal inhibitory concentrations of 38 and 60 μM,
respectively. Cell lengths of these microorganisms increased remarkably
in the presence of SB-RA-2001, indicating that it inhibits bacterial
cytokinesis. SB-RA-2001 perturbed the formation of the FtsZ ring in B. subtilis 168 cells and also affected the localization
of the late cell division protein, DivIVA, at the midcell position.
Flow cytometric analysis of the SB-RA-2001-treated cells indicated
that the compound did not affect the duplication of DNA in B. subtilis 168 cells. Further, SB-RA-2001 treatment did
not affect the localization of the chromosomal partitioning protein,
Spo0J, along the two ends of the nucleoids and also had no discernible
effect on the nucleoid segregation in B. subtilis 168 cells. The agent also did not appear to perturb the membrane
potential of B. subtilis 168 cells. In vitro, SB-RA-2001 bound to FtsZ with modest affinity, promoted the assembly
and bundling of FtsZ protofilaments, and reduced the GTPase activity
of FtsZ. GTP did not inhibit the binding of SB-RA-2001 to FtsZ, suggesting
that it does not bind to the GTP binding site on FtsZ. A computational
analysis indicated that SB-RA-2001 binds to FtsZ in the cleft region
between the C-terminal domain and helix H7, and the binding site of
SB-RA-2001 on FtsZ resembled that of PC190723, a well-characterized
inhibitor of FtsZ. The findings collectively suggested that SB-RA-2001
inhibits bacterial proliferation by targeting the assembly dynamics
of FtsZ, and this can be exploited further to develop potent FtsZ-targeted
antimicrobials.
Collapse
Affiliation(s)
- Dipty Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai 400076, India
| | | | | | | | | | | | | |
Collapse
|
24
|
Jindal B, Panda D. Understanding FtsZ assembly: cues from the behavior of its N- and C-terminal domains. Biochemistry 2013; 52:7071-81. [PMID: 24007276 DOI: 10.1021/bi400129j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FtsZ polymerizes to form a cytokinetic ring at the center of a bacterial cell, which engineers bacterial cell division. FtsZ consists of N-terminal and C-terminal core domains followed by a C-terminal spacer and a conserved C-terminal tail region. Though it has been reported that both N- and C-domains can fold independently, the assembly behaviors of the N- and C-domains are not clear. In this study, we created five truncated constructs of Bacillus subtilis FtsZ, two N-domain and three C-domain constructs, and expressed and purified them. We determined their assembly properties and their effect on the assembly of full-length FtsZ to gain insight into the mechanism of FtsZ polymerization. We found that the N-domain of B. subtilis FtsZ can polymerize on its own in a GTP-dependent manner. Further, we obtained evidence indicating that the N-domain could bind to GTP but could not hydrolyze GTP by itself. In addition, the N-domain was found to inhibit the assembly of full-length FtsZ. Interestingly, the N-domain was found to enhance the GTPase activity of full-length FtsZ. An analysis of the effects of the N- and C-domains on FtsZ assembly indicated that the assembly of FtsZ might be directional. The work has provided new insight into the assembly characteristics of FtsZ domains and the mechanism of FtsZ polymerization.
Collapse
Affiliation(s)
- Bhavya Jindal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Mumbai 400076, India
| | | |
Collapse
|
25
|
Bhattacharya A, Jindal B, Singh P, Datta A, Panda D. Plumbagin inhibits cytokinesis inBacillus subtilisby inhibiting FtsZ assembly - a mechanistic study of its antibacterial activity. FEBS J 2013; 280:4585-99. [DOI: 10.1111/febs.12429] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Anusri Bhattacharya
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Bhavya Jindal
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Parminder Singh
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Anindya Datta
- Department of Chemistry; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
26
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Ray S, Kumar A, Panda D. GTP regulates the interaction between MciZ and FtsZ: a possible role of MciZ in bacterial cell division. Biochemistry 2012; 52:392-401. [PMID: 23237472 DOI: 10.1021/bi301237m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MciZ, a peptide with 40 amino acid residues, has been shown to be expressed during bacterial sporulation, to inhibit Z-ring formation in bacteria, and to inhibit the assembly of FtsZ in vitro. Here, MciZ was found to bind to FtsZ in vitro with a dissociation constant of 0.3 ± 0.1 μM. Guanosine nucleotides inhibited the binding of MciZ to FtsZ; however, GTP inhibited the binding of MciZ to FtsZ more strongly than GDP. In addition, MciZ inhibited the binding of 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-GTP, a fluorescent analogue of GTP, to FtsZ. The results indicated that MciZ shares its binding site on FtsZ with GTP. Furthermore, M19I, an N-terminal 19-residue peptide (MKVHRMPKGVVLVGKAWEI) of MciZ, inhibited the assembly and GTPase activity of FtsZ in vitro. The results suggested that GTP plays an important role in the regulation of the interaction between FtsZ and MciZ and that M19I may be used as a lead peptide to design peptide inhibitors of FtsZ assembly.
Collapse
Affiliation(s)
- Shashikant Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | |
Collapse
|
28
|
Singh P, Jindal B, Surolia A, Panda D. A rhodanine derivative CCR-11 inhibits bacterial proliferation by inhibiting the assembly and GTPase activity of FtsZ. Biochemistry 2012; 51:5434-42. [PMID: 22703373 DOI: 10.1021/bi201813u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 μM. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 [(E)-2-thioxo-5-({[3-(trifluoromethyl)phenyl]furan-2-yl}methylene)thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 ± 0.3 μM. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen-oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC(50)) of 1.2 ± 0.2 μM and a minimal inhibitory concentration of 3 μM. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC(50) value of 18.1 ± 0.2 μM (∼15 × IC(50) of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.
Collapse
Affiliation(s)
- Parminder Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | |
Collapse
|
29
|
Cationic lipid enhances assembly of bacterial cell division protein FtsZ: a possible role of bacterial membrane in FtsZ assembly dynamics. Int J Biol Macromol 2011; 49:737-41. [PMID: 21782843 DOI: 10.1016/j.ijbiomac.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 02/04/2023]
Abstract
The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.
Collapse
|