1
|
Kim HN, Gasmi-Seabrook GMC, Uchida A, Gebregiworgis T, Marshall CB, Ikura M. Switch II Pocket Inhibitor Allosterically Freezes KRAS G12D Nucleotide-binding Site and Arrests the GTPase Cycle. J Mol Biol 2025; 437:169162. [PMID: 40268231 DOI: 10.1016/j.jmb.2025.169162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
KRAS is frequently mutated in multiple cancers, with the most common mutation being G12D. The recently developed KRASG12D inhibitor MRTX1133 binds a cryptic allosteric pocket near switch II (SII-P), similar to covalent G12C inhibitors, with remarkable picoM non-covalent affinity. Despite its advancement to clinical trials, some aspects of the molecular mechanisms-of-action remain unclear, indicating a need to uncover the mechanisms underlying MRTX1133 efficacy and potential acquired resistance, thus we characterized the biochemical and biophysical outcomes of MRTX1133 binding KRAS. Hydrogen/deuterium exchange experiments showed that MRTX1133 binding to the induced SII-P reduces the overall conformational plasticity of KRASG12D. This extends well beyond SII-P, with the nucleotide-binding regions (P-loop and G-3/4/5-box motifs) particularly exhibiting stabilization. This conformational rigidification by MRTX1133 is coupled with complete arrest of the GTPase cycle: When the compound engages KRASG12D-GDP, both intrinsic and GEF-mediated nucleotide exchange are blocked while engagement of KRASG12D-GTP blocks both intrinsic and GAP-mediated hydrolysis. MRTX1133 attenuates the interaction between activated KRASG12D and the RAS-binding domain of the effector BRAF. The binding site in Switch I remains flexible, which enables binding, albeit with ∼10-fold lower affinity, and remarkably, this interaction with BRAF reverses the compound's blockage of intrinsic GTP hydrolysis. Unlike KRASWT, GDP-loaded KRASG12D surprisingly maintains a low-affinity interaction with BRAF-RBD, but MRTX1133 can circumvent this mutant-specific abnormal interaction. Taken together, MRTX1133 allosterically 'freezes' the KRASG12D nucleotide-binding site conformation, arresting the canonical GTPase cycle of this oncogenic mutant. This provides a framework for understanding the mechanisms-of-action of SII-P-directed inhibitors and how tumours may acquire resistance.
Collapse
Affiliation(s)
- Ha-Neul Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | - Arisa Uchida
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
2
|
Sharma AK, Tonelli M, Dyba M, Gillette WK, Esposito D, Nissley DV, McCormick F, Maciag AE. NMR 1H, 13C, and 15N resonance assignments of the oncogenic Q61R variant of human NRAS in the active, GTP-bound conformation. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:195-203. [PMID: 40316884 PMCID: PMC12116848 DOI: 10.1007/s12104-025-10236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
NRASQ61R is a frequent mutation in melanoma. Hydrolysis of GTP by NRASQ61R is reported to be much slower than other KRAS and NRAS mutants. Recent structural biology efforts for KRAS and NRAS proteins have been limited to X-ray crystallography and therefore lack insight into the structure and dynamics of these proteins in solution. Here we report the 1HN, 15N, and 13C backbone and sidechain resonance assignments of the G-domain of oncogenic NRASQ61R-GTP (MW 19.3 kDa; aa 1-169) using heteronuclear, multidimensional NMR spectroscopy. NRASQ61R-GTP is a conformationally stable protein in solution. The 1H-15N correlation cross-peaks in a 2D 1H-15N HSQC spectrum collected after 48 h at 298 K remained intact and only minimal signs of peak-broadening were noted for select residues. High resolution NMR allowed unambiguous assignments of the 1H-15N correlation cross-peaks for all aa residues, except Y40, in addition to a significantly large number of aliphatic and aromatic sidechain resonances. NRASQ61R-GTP exhibits canonical secondary structural elements in the 5 (five) α-helices, 6 (six) β-strands, and associated loop regions as predicted in TALOS-N and CSI. Order parameter (RCI-S2) values predicted by TALOS-N indicate that the NRASQ61R-GTP switch (SW) regions and overall backbone are less flexible than observed in KRAS4b-GTP. The SW region rigidification was validated in heteronuclear NOE measurements. 31P NMR experiments indicate that the G-domain of NRASQ61R-GTP is in a predominant state 2 (active) conformation.
Collapse
Grants
- P41 RR002301 NCRR NIH HHS
- 75N91019D00024 NCI NIH HHS
- P41 GM136463 NIGMS NIH HHS
- S10 RR025062 NCRR NIH HHS
- S10 RR029220 NCRR NIH HHS
- S10 RR002781 NCRR NIH HHS
- P41 GM103399 NIGMS NIH HHS
- S10 RR008438 NCRR NIH HHS
- S10 RR023438 NCRR NIH HHS
- This project was funded in part with federal funds from the National Cancer Institute, National Institutes of Health Contract 75N91019D00024
- NMRFAM is supported by NIH grant P41GM136463, old number P41GM103399 (NIGMS) and P41RR002301
- NMRFAM equipment was purchased with funds from the University of Wisconsin-Madison, the NIH P41GM103399, S10RR02781, S10RR08438, S10RR023438, S10RR025062, S10RR029220), the NSF (DMB-8415048, OIA-9977486, BIR-9214394), and the USDA.
- National Institutes of Health (NIH)
Collapse
Affiliation(s)
- Alok K Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 8560 Progress Drive, Post Office Box B, Frederick, MD, 21701, USA.
| | - Marco Tonelli
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marcin Dyba
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 8560 Progress Drive, Post Office Box B, Frederick, MD, 21701, USA
| | - William K Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 8560 Progress Drive, Post Office Box B, Frederick, MD, 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 8560 Progress Drive, Post Office Box B, Frederick, MD, 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 8560 Progress Drive, Post Office Box B, Frederick, MD, 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 8560 Progress Drive, Post Office Box B, Frederick, MD, 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Anna E Maciag
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 8560 Progress Drive, Post Office Box B, Frederick, MD, 21701, USA
| |
Collapse
|
3
|
Alshahrani M, Parikh V, Foley B, Hu G, Verkhivker G. Probing binding and allosteric mechanisms of the KRAS interactions with monobodies and affimer proteins: ensemble-based mutational profiling and thermodynamic analysis of binding energetics and allostery reveal diversity of functional hotspots and cryptic pockets linked by conserved communication network. Phys Chem Chem Phys 2025; 27:11242-11263. [PMID: 40384021 DOI: 10.1039/d5cp00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
KRAS, a historically "undruggable" oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. Revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the "undruggable" reputation of KRAS.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Vedant Parikh
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Brandon Foley
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Guang Hu
- Department of Bioinformatics and Computational Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215213, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
4
|
Geng C, Zeng J, Deng X, Xia F, Xu X. Molecular Dynamics Investigation into the Stability of KRas and CRaf Multimeric Complexes. J Phys Chem B 2025; 129:3306-3316. [PMID: 40126127 DOI: 10.1021/acs.jpcb.4c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In the Ras/Raf/MAPK signaling pathway, Ras and Raf proteins interact synergistically to form a tetrameric complex. NMR experiments have demonstrated that Ras dimerizes in solution and binds stably to Raf, forming Ras·Raf complexes. In this study, we constructed the ternary and quaternary complexes of KRas and CRaf based on crystal structures, denoted as (KRas)2·CRaf and (KRas)2·(CRaf)2, respectively. Molecular dynamics (MD) simulations were performed to investigate the stability of these complexes, while hydrogen bonds as well as salt bridges formed at the protein-protein interaction interfaces were analyzed based on simulation trajectories. The results revealed that the KRas·CRaf complex is more stable in explicit solvent compared with the KRas dimer. Formation of the stable quaternary complex (KRas)2·(CRaf)2 might be attributed to the association of two binary KRas·CRaf complexes. Additionally, MD simulations of the KRasG12D·CRaf complex revealed a stable and extended binding site at the KRas-CRaf interaction interface. This binding site was identified as a potential therapeutic target to block abnormal signal transmission in the pathway.
Collapse
Affiliation(s)
- Chongli Geng
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen University, 361003 Xiamen, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Maciag AE, Stice JP, Wang B, Sharma AK, Chan AH, Lin K, Singh D, Dyba M, Yang Y, Setoodeh S, Smith BP, Ju JH, Jeknic S, Rabara D, Zhang Z, Larsen EK, Esposito D, Denson JP, Ranieri M, Meynardie M, Mehdizadeh S, Alexander PA, Abreu Blanco M, Turner DM, Xu R, Lightstone FC, Wong KK, Stephen AG, Wang K, Simanshu DK, Sinkevicius KW, Nissley DV, Wallace E, McCormick F, Beltran PJ. Discovery of BBO-8520, a First-In-Class Direct and Covalent Dual Inhibitor of GTP-Bound (ON) and GDP-Bound (OFF) KRASG12C. Cancer Discov 2025; 15:578-594. [PMID: 39642212 PMCID: PMC11873722 DOI: 10.1158/2159-8290.cd-24-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024]
Abstract
Approved inhibitors of KRASG12C prevent oncogenic activation by sequestering the inactive, GDP-bound (OFF) form rather than directly binding and inhibiting the active, GTP-bound (ON) form. This approach provides no direct target coverage of the active protein. Expectedly, adaptive resistance to KRASG12C (OFF)-only inhibitors is observed in association with increased expression and activity of KRASG12C(ON). To provide optimal KRASG12C target coverage, we have developed BBO-8520, a first-in-class, direct dual inhibitor of KRASG12C(ON) and (OFF) forms. BBO-8520 binds in the Switch-II/Helix3 pocket, covalently modifies the target cysteine, and disables effector binding to KRASG12C(ON). BBO-8520 exhibits potent signaling inhibition in growth factor-activated states, in which current (OFF)-only inhibitors demonstrate little measurable activity. In vivo, BBO-8520 demonstrates rapid target engagement and inhibition of signaling, resulting in durable tumor regression in multiple models, including those resistant to KRASG12C(OFF)-only inhibitors. BBO-8520 is in phase 1 clinical trials in patients with KRASG12C non-small cell lung cancer. Significance: BBO-8520 is a first-in-class direct, small molecule covalent dual inhibitor that engages KRASG12C in the active (ON) and inactive (OFF) conformations. BBO-8520 represents a novel mechanism of action that allows for optimal target coverage and delays the emergence of adaptive resistance seen with (OFF)-only inhibitors in the clinic. See related commentary by Zhou and Westover, p. 455.
Collapse
Affiliation(s)
- Anna E. Maciag
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - James P. Stice
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Bin Wang
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Alok K. Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Albert H. Chan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Ken Lin
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Devansh Singh
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Marcin Dyba
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Yue Yang
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Saman Setoodeh
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Brian P. Smith
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Jin Hyun Ju
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Stevan Jeknic
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Zuhui Zhang
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Erik K. Larsen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - John-Paul Denson
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Michela Ranieri
- Perlmutter Cancer Center, New York University, New York, New York
| | - Mary Meynardie
- Perlmutter Cancer Center, New York University, New York, New York
| | - Sadaf Mehdizadeh
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Patrick A. Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Maria Abreu Blanco
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - David M. Turner
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Rui Xu
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Felice C. Lightstone
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Kwok-Kin Wong
- Perlmutter Cancer Center, New York University, New York, New York
| | - Andrew G. Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Keshi Wang
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Dwight V. Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Eli Wallace
- BridgeBio Oncology Therapeutics, South San Francisco, California
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Pedro J. Beltran
- BridgeBio Oncology Therapeutics, South San Francisco, California
| |
Collapse
|
6
|
Ma L, Lin Y. Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells. Nat Chem Biol 2025; 21:451-463. [PMID: 39753704 DOI: 10.1038/s41589-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/31/2024] [Indexed: 01/31/2025]
Abstract
Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells. This system generates a large, continuously diversified library of replicative RNAs through replicase-limited mode of replication and inducible mutagenesis. Using REPLACE, we engineered fluorescent proteins and transcription factors. Notably, cells equipped with REPLACE can undergo Darwinian adaptation, allowing them to evolve in response to both cell-extrinsic and cell-intrinsic challenges. Collectively, this work establishes a powerful platform for advancing mammalian synthetic biology and cell engineering applications through directed evolution.
Collapse
Affiliation(s)
- Liang Ma
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Peking University, Chengdu, China.
| |
Collapse
|
7
|
Hu Z, Martí J. Atomic-level mechanisms of abnormal activation in NRAS oncogenes from two-dimensional free energy landscapes. NANOSCALE 2025; 17:4047-4057. [PMID: 39775302 DOI: 10.1039/d4nr03372h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The NRAS-mutant subset of melanoma is one of the most aggressive and lethal types associated with poor overall survival. Unfortunately, a low understanding of the NRAS-mutant dynamic behavior has led to the lack of clinically approved therapeutic agents able to directly target NRAS oncogenes. In this work, accurate local structures of NRAS and its mutants have been fully explored through the corresponding free energy surfaces obtained by microsecond scale well-tempered metadynamics simulations. Free energy calculations are crucial to reveal the precise mechanisms of Q61 mutations at the atomic level. Considering specific atom-atom distances d and angles ϕ as appropriate reaction coordinates we have obtained free energy surfaces revealing local and global minima together with their main transition states, unveiling the mechanisms of abnormal NRAS activation from the atomic-level and quantitatively analyzing the corresponding stable states. This will help in advancing our understanding of the basic mechanisms of NRAS mutations, offering new opportunities for the design of potential inhibitors.
Collapse
Affiliation(s)
- Zheyao Hu
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B5-209 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia, Spain.
| | - Jordi Martí
- Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B5-209 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Lin Y, Zheng Y. Structural Dynamics of Rho GTPases. J Mol Biol 2025; 437:168919. [PMID: 39708912 PMCID: PMC11757035 DOI: 10.1016/j.jmb.2024.168919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rho family GTPases are a part of the Ras superfamily and are signaling hubs for many cellular processes. While the detailed understanding of Ras structure and function has led to tremendous progress in oncogenic Ras-targeted drug discovery, studies of the related Rho GTPases are still catching up as the recurrent cancer-related Rho GTPase mutations have only been discovered in the last decade. Like that of Ras, an in-depth understanding of the structural basis of how Rho GTPases and their mutants behave as key oncogenic drivers benefits the development of clinically effective therapies. Recent studies of structure dynamics in Rho GTPase structure-function relationship have added new twists to the conventional wisdom of Rho GTPase signaling mechanism.
Collapse
Affiliation(s)
- Yuan Lin
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Bernal Astrain G, Strakhova R, Jo CH, Teszner E, Killoran RC, Smith MJ. The small GTPase MRAS is a broken switch. Nat Commun 2025; 16:647. [PMID: 39809765 PMCID: PMC11733253 DOI: 10.1038/s41467-025-55967-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer. The exchange defect is unaffected by inclusion of the GEF SOS1 and is conserved in a distal ortholog from nematodes. Synthetic activating mutations widely used to study the function of MRAS in a presumed GTP-loaded state do not increase exchange, but instead drive effector binding due to sampling of an activated conformation in the GDP-loaded state. This includes nucleation of the SHOC2-PP1Cα holophosphatase complex. Acquisition of NMR spectra from isotopically labeled MRAS in live cells validated the GTPase remains fully GDP-loaded, even a supposed activated mutant. These data show that RAS GTPases, including those most similar to KRAS, have disparate biochemical activities and challenge current dogma on MRAS, suggesting previous data may need reinterpretation.
Collapse
Affiliation(s)
- Gabriela Bernal Astrain
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Regina Strakhova
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Emma Teszner
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Programmes de biologie moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Programmes de biologie moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
10
|
Rennella E, Henry C, Dickson CJ, Georgescauld F, Wales TE, Erdmann D, Cotesta S, Maira M, Sedrani R, Brachmann SM, Ostermann N, Engen JR, Kay LE, Beyer KS, Wilcken R, Jahnke W. Dynamic conformational equilibria in the active states of KRAS and NRAS. RSC Chem Biol 2025; 6:106-118. [PMID: 39664928 PMCID: PMC11629925 DOI: 10.1039/d4cb00233d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
The design of potent RAS inhibitors benefits from a molecular understanding of the dynamics in KRAS and NRAS and their oncogenic mutants. Here we characterize switch-1 dynamics in GTP-state KRAS and NRAS by 31P NMR, by 15N relaxation dispersion NMR, hydrogen-deuterium exchange mass spectrometry (HDX-MS), and molecular dynamics simulations. In GMPPNP-bound KRAS and NRAS, we see the co-existence of two conformational states, corresponding to an "inactive" state-1 and an "active" state-2, as previously reported. The KRAS oncogenic mutations G12D, G12C and G12V only slightly affect this equilibrium towards the "inactive" state-1, with rank order wt < G12C < G12D < G12V. In contrast, the NRAS Q61R oncogenic mutation shifts the equilibrium fully towards the "active" state-2. Our molecular dynamics simulations explain this by the observation of a transient hydrogen bond between the Arg61 side chain and the Thr35 backbone carbonyl oxygen. NMR relaxation dispersion experiments with GTP-bound KRAS Q61R confirm a drastic decrease in the population of state-1, but still detect a small residual population (1.8%) of this conformer. HDX-MS indicates that higher populations of state-1 correspond to increased hydrogen-deuterium exchange rates in some regions and increased flexibility, whereas low state-1 populations are associated with KRAS rigidification. We elucidated the mechanism of action of a potent KRAS G12D inhibitor, MRTX1133. Binding of this inhibitor to the switch-2 pocket causes a complete shift of KRAS G12D towards the "inactive" conformation and prevents binding of effector RAS-binding domain (RBD) at physiological concentrations, by signaling through an allosteric network.
Collapse
Affiliation(s)
- Enrico Rennella
- University of Toronto, Department of Biochemistry Toronto Canada
| | | | | | - Florian Georgescauld
- Northeastern University, Department of Chemistry and Chemical Biology Boston MA USA
| | - Thomas E Wales
- Northeastern University, Department of Chemistry and Chemical Biology Boston MA USA
| | | | | | | | | | | | | | - John R Engen
- Northeastern University, Department of Chemistry and Chemical Biology Boston MA USA
| | - Lewis E Kay
- University of Toronto, Department of Biochemistry Toronto Canada
| | - Kim S Beyer
- Novartis Biomedical Research Basel Switzerland
| | | | | |
Collapse
|
11
|
Hu F, Zhang Y, Li P, Wu R, Xia F. Development of Accurate Force Fields for Mg 2+ and Triphosphate Interactions in ATP·Mg 2+ and GTP·Mg 2+ Complexes. J Chem Theory Comput 2024; 20:10553-10563. [PMID: 39571117 DOI: 10.1021/acs.jctc.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
In cells, adenosine triphosphate (ATP) and guanosine triphosphate (GTP) molecules typically form tricoordinated or bicoordinated ATP·Mg2+ or GTP·Mg2+ complexes with Mg2+ ions and bind to proteins, participating in and regulating many important cellular functions. The accuracy of their force field parameters plays a crucial role in studying the function-related conformations of ATP·Mg2+ or GTP·Mg2+ using molecular dynamics (MD) simulations. The parameters developed based on the methyl triphosphate model in existing AMBER force fields cannot accurately describe the conformational distribution of tricoordinated or bicoordinated ATP·Mg2+ or GTP·Mg2+ complexes in solution. In this study, we develop force field parameters for the triphosphate group based on the new ribosyl triphosphate model, considering the dihedral coupling effect, accurate van der Waals (vdW) interactions, and the influence of strongly polarized charges on conformational balance. The new force fields can accurately describe the conformational balance of tricoordinated and bicoordinated ATP·Mg2+ or GTP·Mg2+ conformations in solution and can be applied to simulate biological systems containing ATP·Mg2+ or GTP·Mg2+ complexes.
Collapse
Affiliation(s)
- Fangchen Hu
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| | - Yuwei Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, Illinois 60660, United States
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China
| |
Collapse
|
12
|
Jani V, Sonavane U, Joshi R. Insight into structural dynamics involved in activation mechanism of full length KRAS wild type and P-loop mutants. Heliyon 2024; 10:e36161. [PMID: 39247361 PMCID: PMC11379609 DOI: 10.1016/j.heliyon.2024.e36161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
KRAS protein is known to be frequently mutated in various cancers. The most common mutations being at position 12, 13 and 61. The positions 12 and 13 form part of the phosphate binding region (P-loop) of KRAS. Owing to mutation, the protein remains in continuous active state and affects the normal cellular process. Understanding the structural changes owing to mutations in GDP-bound (inactive state) and GTP-bound (active state) may help in the design of better therapeutics. To understand the structural flexibility due to the mutations specifically located at P-loop regions (G12D, G12V and G13D), extensive molecular dynamics simulations (24 μs) have been carried for both inactive (GDP-bound) and active (GTP-bound) structures for the wild type and these mutants. The study revealed that the local structural changes at the site of mutations allosterically guide changes in distant regions of the protein through hydrogen bond and hydrophobic signalling network. The dynamic cross correlation analysis and the comparison of the correlated motions among different systems manifested that changes in SW-I, SW-II, α3 and the loop preceding α3 affects the interactions of GDP/GTP with different regions of the protein thereby affecting its hydrolysis. Further, the Markov state modelling analysis confirmed that the mutations, especially G13D imparts rigidity to structure compared to wild type and thus limiting its conformational state in either intermediate state or active state. The study suggests that along with SW-I and SW-II regions, the loop region preceding the α3 helix and α3 helix are also involved in affecting the hydrolysis of nucleotides and may be considered while designing therapeutics against KRAS.
Collapse
Affiliation(s)
- Vinod Jani
- Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune, India
| | - Uddhavesh Sonavane
- Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune, India
| | - Rajendra Joshi
- Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune, India
| |
Collapse
|
13
|
Jungholm O, Trkulja C, Moche M, Srinivasa SP, Christakopoulou MN, Davidson M, Reymer A, Jardemark K, Fogaça RL, Ashok A, Jeffries G, Ampah-Korsah H, Strandback E, Andréll J, Nyman T, Nouairia G, Orwar O. Novel druggable space in human KRAS G13D discovered using structural bioinformatics and a P-loop targeting monoclonal antibody. Sci Rep 2024; 14:19656. [PMID: 39179604 PMCID: PMC11344056 DOI: 10.1038/s41598-024-70217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
KRAS belongs to a family of small GTPases that act as binary switches upstream of several signalling cascades, controlling proliferation and survival of cells. Mutations in KRAS drive oncogenesis, especially in pancreatic, lung, and colorectal cancers (CRC). Although historic attempts at targeting mutant KRAS with small molecule inhibitors have proven challenging, there are recent successes with the G12C, and G12D mutations. However, clinically important RAS mutations such as G12V, G13D, Q61L, and A146T, remain elusive drug targets, and insights to their structural landscape is of critical importance to develop novel, and effective therapeutic concepts. We present a fully open, P-loop exposing conformer of KRAS G13D by X-ray crystallography at 1.4-2.4 Å resolution in Mg2+-free phosphate and malonate buffers. The G13D conformer has the switch-I region displaced in an upright position leaving the catalytic core fully exposed. To prove that this state is druggable, we developed a P-loop-targeting monoclonal antibody (mAb). The mAb displayed high-affinity binding to G13D and was shown using high resolution fluorescence microscopy to be spontaneously taken up by G13D-mutated HCT 116 cells (human CRC derived) by macropinocytosis. The mAb inhibited KRAS signalling in phosphoproteomic and genomic studies. Taken together, the data propose novel druggable space of G13D that is reachable in the cellular context. It is our hope that these findings will stimulate attempts to drug this fully open state G13D conformer using mAbs or other modalities.
Collapse
Affiliation(s)
- Oscar Jungholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Carolina Trkulja
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Fluicell AB, Flöjelbergsgatan 8C, 431 37, Mölndal, Sweden
| | - Martin Moche
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sreesha P Srinivasa
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| | | | - Max Davidson
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
| | - Anna Reymer
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | | | - Gavin Jeffries
- Fluicell AB, Flöjelbergsgatan 8C, 431 37, Mölndal, Sweden
| | - Henry Ampah-Korsah
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Emilia Strandback
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Juni Andréll
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tomas Nyman
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ghada Nouairia
- Department of Medicine Huddinge, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Owe Orwar
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
14
|
Lin Y, Ramelot TA, Senyuz S, Gursoy A, Jang H, Nussinov R, Keskin O, Zheng Y. Tumor-derived RHOA mutants interact with effectors in the GDP-bound state. Nat Commun 2024; 15:7176. [PMID: 39169042 PMCID: PMC11339415 DOI: 10.1038/s41467-024-51445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
RHOA mutations are found at diverse residues in various cancer types, implying mutation- and cell-specific mechanisms of tumorigenesis. Here, we focus on the underlying mechanisms of two gain-of-function RHOA mutations, A161P and A161V, identified in adult T-cell leukemia/lymphoma. We find that RHOAA161P and RHOAA161V are both fast-cycling mutants with increased guanine nucleotide dissociation/association rates compared with RHOAWT and show reduced GTP-hydrolysis activity. Crystal structures reveal an altered nucleotide association in RHOAA161P and an open nucleotide pocket in RHOAA161V. Both mutations perturb the dynamic properties of RHOA switch regions and shift the conformational landscape important for RHOA activity, as shown by 31P NMR and molecular dynamics simulations. Interestingly, RHOAA161P and RHOAA161V can interact with effectors in the GDP-bound state. 1H-15N HSQC NMR spectra support the existence of an active population in RHOAA161V-GDP. The distinct interaction mechanisms resulting from the mutations likely favor an RHOAWT-like "ON" conformation, endowing GDP-bound state effector binding activity.
Collapse
Affiliation(s)
- Yuan Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Theresa A Ramelot
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Simge Senyuz
- Computational Sciences and Engineering, Koc University, Rumelifeneri Yolu, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc Univeristy, Rumelifeneri Yolu, Istanbul, Turkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc Univeristy, Rumelifeneri Yolu, Istanbul, Turkey
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Salamh S, Sayyed-Ahmad A. Investigating the effects of cysteine-118 oxidation on G12D KRas structure and dynamics: insights from MD simulations. J Biomol Struct Dyn 2024; 42:6968-6981. [PMID: 37480262 DOI: 10.1080/07391102.2023.2238080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Mutations of Ras proteins are believed to be among the most prominent causes of cancer. There is increasing evidence that the activity of Ras may be controlled by the redox state of cysteine residues located within the NKCD motif. This redox signaling is critical to both physiological and pathological processes and occurs when C118 is oxidized in a reversible manner. In this study, we used atomistic molecular dynamics simulations and Markov state models to investigate the structural and conformational effects of C118 oxidation on the oncogenic mutant KRas(G12D). While both mutants share common features and exhibit some distinct conformational states and fluctuations, we have found that the oxidized variant KRas(G12D/C118SOH) is more dynamic than the unoxidized counterpart, particularly in the switch II region. Additionally, C118 oxidation is found to alter the structure of the nucleotide-binding site and the switch regions as well as perturb the conformational equilibrium between Ras active and inactive states. These conformational preferences may alter the affinity to different effectors, resulting in selective downstream activation. Our results are anticipated to help future drug development efforts aimed at KRAS-related anticancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shimaa Salamh
- Department of Physics, Birzeit University, Birzeit, Palestine
| | | |
Collapse
|
16
|
Ghosh S, Bhuniya T, Dey A, Koley M, Roy P, Bera A, Gol D, Chowdhury A, Chowdhury R, Sen S. An Updated Review on KRAS Mutation in Lung Cancer (NSCLC) and Its Effects on Human Health. Appl Biochem Biotechnol 2024; 196:4661-4678. [PMID: 37897621 DOI: 10.1007/s12010-023-04748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The largest cause of cancer-related fatalities worldwide is lung cancer. In its early stages, lung cancer often exhibits no signs or symptoms. Its signs and symptoms often appear when the condition is advanced. The Kirsten rat sarcoma virus oncogene homolog is one of the most frequently mutated oncogenes found in non-small cell lung cancer. Patients who have these mutations may do worse than those who do not, in terms of survival. To understand the nuances in order to choose the best treatment options for each patient, including combination therapy and potential resistance mechanisms, given the quick development of pharmaceuticals, it is necessary to know the factors that might contribute to this disease. It has been observed that single nucleotide polymorphisms altering let-7 micro-RNA might impact cancer propensity. On the other hand, gefitinib fails to stop the oncogenic protein from directly interacting with phosphoinositide3-kinase, which may explain its resistance towards cancer cells. Additionally, Atorvastatin may be able to overpower gefitinib resistance in these cancer cells that have this mutation regardless of the presence of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha. De novo lipogenesis is also regulated by this virus. To overcome these effects, several targeted therapies have been proposed. One such therapy is to use inhibitors of focal adhesion kinases. When this is inhibited, viral oncogene mutant cancers are effectively stopped because it functions downstream of the virus. Mutant oncoproteins like epidermal growth factor receptor may depend on Heat Shock protein90 chaperones more frequently than they do on natural counterparts that make it more attractive therapeutic target for this virus. Inhibition of the phosphoinositide 3-kinase pathway is frequent in lung cancer, and fabrication of inhibitors against this pathway can also be an effective therapeutic strategy. Blocking programmed cell death ligand1 is another therapy that may help T cells to recognize and eliminate cancerous cells. This homolog is a challenging therapeutic target due to its complex structural makeup and myriad biological characteristics. Thanks to the unrelenting efforts of medical research, with the use of some inhibitors, immunotherapy, and other combination methods, this problem is currently expected to be overcome.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, Tamil Nadu, 600036, India.
| | - Tiyasa Bhuniya
- Department of Biotechnology, NIT Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal, 713209, India
| | - Anuvab Dey
- Department of Biological Sciences and Bioengineering, North Guwahati, Assam, IIT Guwahati, Assam-781039, India
| | - Madhurima Koley
- Department of Chemistry and Chemical Biology, IIT(ISM), Dhanbad, 826004, India
| | - Preeti Roy
- Department of Biotechnology, Indian Institute of Technology, Mandi, India
| | - Aishi Bera
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Debarshi Gol
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Ankita Chowdhury
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| | - Shinjini Sen
- Department of Biotechnology, Heritage, Institute of Technology, Kolkata, West Bengal, 700107, India
| |
Collapse
|
17
|
Girard E, Lopes P, Spoerner M, Dhaussy AC, Prangé T, Kalbitzer HR, Colloc'h N. High Pressure Promotes Binding of the Allosteric Inhibitor Zn 2+-Cyclen in Crystals of Activated H-Ras. Chemistry 2024; 30:e202400304. [PMID: 38647362 DOI: 10.1002/chem.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
In this work, we experimentally investigate the potency of high pressure to drive a protein toward an excited state where an inhibitor targeted for this state can bind. Ras proteins are small GTPases cycling between active GTP-bound and inactive GDP-bound states. Various states of GTP-bound Ras in active conformation coexist in solution, amongst them, state 2 which binds to effectors, and state 1, weakly populated at ambient conditions, which has a low affinity for effectors. Zn2+-cyclen is an allosteric inhibitor of Ras protein, designed to bind specifically to the state 1. In H-Ras(wt).Mg2+.GppNHp crystals soaked with Zn2+-cyclen, no binding could be observed, as expected in the state 2 conformation which is the dominant state at ambient pressure. Interestingly, Zn2+-cyclen binding is observed at 500 MPa pressure, close to the nucleotide, in Ras protein that is driven by pressure to a state 1 conformer. The unknown binding mode of Zn2+-cyclen to H-Ras can thus be fully characterized in atomic details. As a more general conjunction from our study, high pressure x-ray crystallography turns out to be a powerful method to induce transitions allowing drug binding in proteins that are in low-populated conformations at ambient conditions, enabling the design of specific inhibitors.
Collapse
Affiliation(s)
- Eric Girard
- CEA, CNRS, IBS, Univ. Grenoble Alpes, Grenoble, France
| | - Pedro Lopes
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Michael Spoerner
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | | | - Thierry Prangé
- CiTCoM, CNRS, Faculté de Pharmacie, Université de Paris-Cité, Paris, France
| | - Hans Robert Kalbitzer
- Institute for Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Nathalie Colloc'h
- ISTCT UMR6030, Centre Cyceron, CNRS - Université de Caen Normandie - Normandie Université, Caen, France
| |
Collapse
|
18
|
Hu F, Wang Y, Zeng J, Deng X, Xia F, Xu X. Unveiling the State Transition Mechanisms of Ras Proteins through Enhanced Sampling and QM/MM Simulations. J Phys Chem B 2024; 128:1418-1427. [PMID: 38323538 DOI: 10.1021/acs.jpcb.3c07666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In cells, wild-type RasGTP complexes exist in two distinct states: active State 2 and inactive State 1. These complexes regulate their functions by transitioning between the two states. However, the mechanisms underlying this state transition have not been clearly elucidated. To address this, we conducted a detailed simulation study to characterize the energetics of the stable states involved in the state transitions of the HRasGTP complex, specifically from State 2 to State 1. This was achieved by employing multiscale quantum mechanics/molecular mechanics and enhanced sampling molecular dynamics methods. Based on the simulation results, we constructed the two-dimensional free energy landscapes that provide crucial information about the conformational changes of the HRasGTP complex from State 2 to State 1. Furthermore, we also explored the conformational changes from the intermediate state to the product state during guanosine triphosphate hydrolysis. This study on the conformational changes involved in the HRas state transitions serves as a valuable reference for understanding the corresponding events of both KRas and NRas as well.
Collapse
Affiliation(s)
- Fangchen Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yiqiu Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Sharma AK, Pei J, Yang Y, Dyba M, Smith B, Rabara D, Larsen EK, Lightstone FC, Esposito D, Stephen AG, Wang B, Beltran PJ, Wallace E, Nissley DV, McCormick F, Maciag AE. Revealing the mechanism of action of a first-in-class covalent inhibitor of KRASG12C (ON) and other functional properties of oncogenic KRAS by 31P NMR. J Biol Chem 2024; 300:105650. [PMID: 38237681 PMCID: PMC10877953 DOI: 10.1016/j.jbc.2024.105650] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024] Open
Abstract
Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use 31P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(β,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1-state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1-RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.
Collapse
Affiliation(s)
- Alok K Sharma
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA.
| | - Jun Pei
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Yue Yang
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Marcin Dyba
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Brian Smith
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Erik K Larsen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Felice C Lightstone
- Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Bin Wang
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Pedro J Beltran
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Eli Wallace
- BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA; BridgeBio Oncology Therapeutics, BridgeBio Pharma, Inc, Palo Alto, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Anna E Maciag
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland, USA.
| |
Collapse
|
20
|
Chakrabarti M, Tan YS, Balius TE. Considerations Around Structure-Based Drug Discovery for KRAS Using DOCK. Methods Mol Biol 2024; 2797:67-90. [PMID: 38570453 DOI: 10.1007/978-1-0716-3822-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Molecular docking is a popular computational tool in drug discovery. Leveraging structural information, docking software predicts binding poses of small molecules to cavities on the surfaces of proteins. Virtual screening for ligand discovery is a useful application of docking software. In this chapter, using the enigmatic KRAS protein as an example system, we endeavor to teach the reader about best practices for performing molecular docking with UCSF DOCK. We discuss methods for virtual screening and docking molecules on KRAS. We present the following six points to optimize our docking setup for prosecuting a virtual screen: protein structure choice, pocket selection, optimization of the scoring function, modification of sampling spheres and sampling procedures, choosing an appropriate portion of chemical space to dock, and the choice of which top scoring molecules to pick for purchase.
Collapse
Affiliation(s)
- Mayukh Chakrabarti
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Y Stanley Tan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Trent E Balius
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
21
|
Patrick J, Pettersson P, Mäler L. Lipid- and substrate-induced conformational and dynamic changes in a glycosyltransferase involved in E. coli LPS synthesis revealed by 19F and 31P NMR. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184209. [PMID: 37558175 DOI: 10.1016/j.bbamem.2023.184209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
WaaG is a glycosyltransferase (GT) involved in the synthesis of the bacterial cell wall, and in Escherichia coli it catalyzes the transfer of a glucose moiety from the donor substrate UDP-glucose onto the nascent lipopolysaccharide (LPS) molecule which when completed constitutes the major component of the bacterium's outermost defenses. Similar to other GTs of the GT-B fold, having two Rossman-like domains connected by a short linker, WaaG is believed to undergo complex inter-domain motions as part of its function to accommodate the nascent LPS and UDP-glucose in the catalytic site located in the cleft between the two domains. As the nascent LPS is bulky and membrane-bound, WaaG is a peripheral membrane protein, adding to the complexity of studying the enzyme in a biologically relevant environment. Using specific 5-fluoro-Trp labelling of native and inserted tryptophans and 19F NMR we herein studied the dynamic interactions of WaaG with lipids using bicelles, and with the donor substrate. Line-shape changes when bicelles are added to WaaG show that the dynamic behavior is altered when binding to the model membrane, while a chemical shift change indicates an altered environment around a tryptophan located in the C-terminal domain of WaaG upon interaction with UDP-glucose or UDP. A lipid-bound paramagnetic probe was used to confirm that the membrane interaction is mediated by a loop region located in the N-terminal domain. Furthermore, the hydrolysis of the donor substrate by WaaG was quantified by 31P NMR.
Collapse
Affiliation(s)
- Joan Patrick
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pontus Pettersson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Chemistry, Umeå University, Umeå, Sweden.
| |
Collapse
|
22
|
Hansen AL, Xiang X, Yuan C, Bruschweiler-Li L, Brüschweiler R. Excited-state observation of active K-Ras reveals differential structural dynamics of wild-type versus oncogenic G12D and G12C mutants. Nat Struct Mol Biol 2023; 30:1446-1455. [PMID: 37640864 PMCID: PMC10584678 DOI: 10.1038/s41594-023-01070-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023]
Abstract
Despite the prominent role of the K-Ras protein in many different types of human cancer, major gaps in atomic-level information severely limit our understanding of its functions in health and disease. Here, we report the quantitative backbone structural dynamics of K-Ras by solution nuclear magnetic resonance spectroscopy of the active state of wild-type K-Ras bound to guanosine triphosphate (GTP) nucleotide and two of its oncogenic P-loop mutants, G12D and G12C, using a new nanoparticle-assisted spin relaxation method, relaxation dispersion and chemical exchange saturation transfer experiments covering the entire range of timescales from picoseconds to milliseconds. Our combined experiments allow detection and analysis of the functionally critical Switch I and Switch II regions, which have previously remained largely unobservable by X-ray crystallography and nuclear magnetic resonance spectroscopy. Our data reveal cooperative transitions of K-Ras·GTP to a highly dynamic excited state that closely resembles the partially disordered K-Ras·GDP state. These results advance our understanding of differential GTPase activities and signaling properties of the wild type versus mutants and may thus guide new strategies for the development of therapeutics.
Collapse
Affiliation(s)
- Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Xinyao Xiang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA.
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Dandekar B, Ahalawat N, Sinha S, Mondal J. Markov State Models Reconcile Conformational Plasticity of GTPase with Its Substrate Binding Event. JACS AU 2023; 3:1728-1741. [PMID: 37388689 PMCID: PMC10302740 DOI: 10.1021/jacsau.3c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023]
Abstract
Ras GTPase is an enzyme that catalyzes the hydrolysis of guanosine triphosphate (GTP) and plays an important role in controlling crucial cellular signaling pathways. However, this enzyme has always been believed to be undruggable due to its strong binding affinity with its native substrate GTP. To understand the potential origin of high GTPase/GTP recognition, here we reconstruct the complete process of GTP binding to Ras GTPase via building Markov state models (MSMs) using a 0.1 ms long all-atom molecular dynamics (MD) simulation. The kinetic network model, derived from the MSM, identifies multiple pathways of GTP en route to its binding pocket. While the substrate stalls onto a set of non-native metastable GTPase/GTP encounter complexes, the MSM accurately discovers the native pose of GTP at its designated catalytic site in crystallographic precision. However, the series of events exhibit signatures of conformational plasticity in which the protein remains trapped in multiple non-native conformations even when GTP has already located itself in its native binding site. The investigation demonstrates mechanistic relays pertaining to simultaneous fluctuations of switch 1 and switch 2 residues which remain most instrumental in maneuvering the GTP-binding process. Scanning of the crystallographic database reveals close resemblance between observed non-native GTP binding poses and precedent crystal structures of substrate-bound GTPase, suggesting potential roles of these binding-competent intermediates in allosteric regulation of the recognition process.
Collapse
Affiliation(s)
| | - Navjeet Ahalawat
- Department
of Bioinformatics and Computational Biology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004 Haryana, India
| | - Suman Sinha
- Institute
of Pharmaceutical Research, GLA University, Mathura, 281406 Uttar Pradesh, India
| | - Jagannath Mondal
- Tata
Institute of Fundamental Research, Hyderabad, Telangana 500046, India
| |
Collapse
|
24
|
Ikari M, Yagi H, Kasai T, Inomata K, Ito M, Higuchi K, Matsuda N, Ito Y, Kigawa T. Direct Observation of Membrane-Associated H-Ras in the Native Cellular Environment by In-Cell 19F-NMR Spectroscopy. JACS AU 2023; 3:1658-1669. [PMID: 37388687 PMCID: PMC10302746 DOI: 10.1021/jacsau.3c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
Ras acts as a molecular switch to control intracellular signaling on the plasma membrane (PM). Elucidating how Ras associates with PM in the native cellular environment is crucial for understanding its control mechanism. Here, we used in-cell nuclear magnetic resonance (NMR) spectroscopy combined with site-specific 19F-labeling to explore the membrane-associated states of H-Ras in living cells. The site-specific incorporation of p-trifluoromethoxyphenylalanine (OCF3Phe) at three different sites of H-Ras, i.e., Tyr32 in switch I, Tyr96 interacting with switch II, and Tyr157 on helix α5, allowed the characterization of their conformational states depending on the nucleotide-bound states and an oncogenic mutational state. Exogenously delivered 19F-labeled H-Ras protein containing a C-terminal hypervariable region was assimilated via endogenous membrane-trafficking, enabling proper association with the cell membrane compartments. Despite poor sensitivity of the in-cell NMR spectra of membrane-associated H-Ras, the Bayesian spectral deconvolution identified distinct signal components on three 19F-labeled sites, thus offering the conformational multiplicity of H-Ras on the PM. Our study may be helpful in elucidating the atomic-scale picture of membrane-associated proteins in living cells.
Collapse
Affiliation(s)
- Masaomi Ikari
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Hiromasa Yagi
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Takuma Kasai
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- PRESTO/Japan
Science and Technology Agency, Saitama 332-0012, Japan
| | - Kohsuke Inomata
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- PRESTO/Japan
Science and Technology Agency, Saitama 332-0012, Japan
| | - Masahiro Ito
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Kae Higuchi
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Natsuko Matsuda
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- SI Innovation
Center, Taiyo Nippon Sanso Corporation, Tokyo 206-0001, Japan
| | - Yutaka Ito
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takanori Kigawa
- RIKEN
Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| |
Collapse
|
25
|
Chao FA, Chan AH, Dharmaiah S, Schwieters CD, Tran TH, Taylor T, Ramakrishnan N, Esposito D, Nissley DV, McCormick F, Simanshu DK, Cornilescu G. Reduced dynamic complexity allows structure elucidation of an excited state of KRAS G13D. Commun Biol 2023; 6:594. [PMID: 37268708 DOI: 10.1038/s42003-023-04960-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Localized dynamics of RAS, including regions distal to the nucleotide-binding site, is of high interest for elucidating the mechanisms by which RAS proteins interact with effectors and regulators and for designing inhibitors. Among several oncogenic mutants, methyl relaxation dispersion experiments reveal highly synchronized conformational dynamics in the active (GMPPNP-bound) KRASG13D, which suggests an exchange between two conformational states in solution. Methyl and 31P NMR spectra of active KRASG13D in solution confirm a two-state ensemble interconverting on the millisecond timescale, with a major Pγ atom peak corresponding to the dominant State 1 conformation and a secondary peak indicating an intermediate state different from the known State 2 conformation recognized by RAS effectors. High-resolution crystal structures of active KRASG13D and KRASG13D-RAF1 RBD complex provide snapshots of the State 1 and 2 conformations, respectively. We use residual dipolar couplings to solve and cross-validate the structure of the intermediate state of active KRASG13D, showing a conformation distinct from those of States 1 and 2 outside the known flexible switch regions. The dynamic coupling between the conformational exchange in the effector lobe and the breathing motion in the allosteric lobe is further validated by a secondary mutation in the allosteric lobe, which affects the conformational population equilibrium.
Collapse
Affiliation(s)
- Fa-An Chao
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| | - Albert H Chan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, 20892-5624, Bethesda, MD, USA
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Nitya Ramakrishnan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| |
Collapse
|
26
|
GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation. Comput Biol Chem 2023; 104:107835. [PMID: 36893567 DOI: 10.1016/j.compbiolchem.2023.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.
Collapse
|
27
|
Roet S, Hooft F, Bolhuis PG, Swenson DWH, Vreede J. Path Sampling Simulations Reveal How the Q61L Mutation Alters the Dynamics of KRas. J Phys Chem B 2022; 126:10034-10044. [PMID: 36427204 PMCID: PMC9743084 DOI: 10.1021/acs.jpcb.2c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Flexibility is essential for many proteins to function, but can be difficult to characterize. Experiments lack resolution in space and time, while the time scales involved are prohibitively long for straightforward molecular dynamics simulations. In this work, we present a multiple state transition path sampling simulation study of a protein that has been notoriously difficult to characterize in its active state. The GTPase enzyme KRas is a signal transduction protein in pathways for cell differentiation, growth, and division. When active, KRas tightly binds guanosine triphosphate (GTP) in a rigid state. The protein-GTP complex can also visit more flexible states, in which it is not active. KRas mutations can affect the conversion between these rigid and flexible states, thus prolonging the activation of signal transduction pathways, which may result in tumor formation. In this work, we apply path sampling simulations to investigate the dynamic behavior of KRas-4B (wild type, WT) and the oncogenic mutant Q61L (Q61L). Our results show that KRas visits several conformational states, which are the same for WT and Q61L. The multiple state transition path sampling (MSTPS) method samples transitions between the different states in a single calculation. Tracking which transitions occur shows large differences between WT and Q61L. The MSTPS results further reveal that for Q61L, a route to a more flexible state is inaccessible, thus shifting the equilibrium to more rigid states. The methodology presented here enables a detailed characterization of protein flexibility on time scales not accessible with brute-force molecular dynamics simulations.
Collapse
Affiliation(s)
- Sander Roet
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands,Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), NO-7491Trondheim, Norway
| | - Ferry Hooft
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands
| | - Peter G. Bolhuis
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands
| | - David W. H. Swenson
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands,Laboratoire
de Physique and Centre Blaise Pascal, CNRS, Univ Lyon, ENS de Lyon, Univ Claude Bernard, 69007Lyon, France
| | - Jocelyne Vreede
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands,
| |
Collapse
|
28
|
Volmar AY, Guterres H, Zhou H, Reid D, Pavlopoulos S, Makowski L, Mattos C. Mechanisms of isoform-specific residue influence on GTP-bound HRas, KRas, and NRas. Biophys J 2022; 121:3616-3629. [PMID: 35794829 PMCID: PMC9617160 DOI: 10.1016/j.bpj.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
HRas, KRas, and NRas are GTPases with a common set of effectors that control many cell-signaling pathways, including proliferation through Raf kinase. Their G-domains are nearly identical in sequence, with a few isoform-specific residues that have an effect on dynamics and biochemical properties. Here, we use accelerated molecular dynamics (aMD) simulations consistent with solution x-ray scattering experiments to elucidate mechanisms through which isoform-specific residues associated with each Ras isoform affects functionally important regions connected to the active site. HRas-specific residues cluster in loop 8 to stabilize the nucleotide-binding pocket, while NRas-specific residues on helix 3 directly affect the conformations of switch I and switch II. KRas, the most globally flexible of the isoforms, shows greatest fluctuations in the switch regions enhanced by a KRas-specific residue in loop 7 and a highly dynamic loop 8 region. The analysis of isoform-specific residue effects on Ras proteins is supported by NMR experiments and is consistent with previously published biochemical data.
Collapse
Affiliation(s)
- Alicia Y Volmar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Hugo Guterres
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Hao Zhou
- Department of Electrical and Computing Engineering, Northeastern University, Boston, Massachusetts
| | - Derion Reid
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Spiro Pavlopoulos
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
29
|
Zhuang H, Fan J, Li M, Zhang H, Yang X, Lin L, Lu S, Wang Q, Liu Y. Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C. Front Oncol 2022; 12:915512. [PMID: 36033504 PMCID: PMC9399772 DOI: 10.3389/fonc.2022.915512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
Special oncogenic mutations in the RAS proteins lead to the aberrant activation of RAS and its downstream signaling pathways. AMG510, the first approval drug for KRAS, covalently binds to the mutated cysteine 12 of KRASG12C protein and has shown promising antitumor activity in clinical trials. Recent studies have reported that the clinically acquired Y96D mutation could severely affect the effectiveness of AMG510. However, the underlying mechanism of the drug-resistance remains unclear. To address this, we performed multiple microsecond molecular dynamics simulations on the KRASG12C−AMG510 and KRASG12C/Y96D−AMG510 complexes at the atomic level. The direct interaction between the residue 96 and AMG510 was impaired owing to the Y96D mutation. Moreover, the mutation yielded higher flexibility and more coupled motion of the switch II and α3-helix, which led to the departing motion of the switch II and α3-helix. The resulting departing motion impaired the interaction between the switch II and α3-helix and subsequently induced the opening and loosening of the AMG510 binding pocket, which further disrupted the interaction between the key residues in the pocket and AMG510 and induced an increased solvent exposure of AMG510. These findings reveal the resistance mechanism of AMG510 to KRASG12C/Y96D, which will help to offer guidance for the development of KRAS targeted drugs to overcome acquired resistance.
Collapse
Affiliation(s)
- Haiming Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Qing Wang
- Oncology Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- *Correspondence: Shaoyong Lu, ; Qing Wang, ; Yaqin Liu,
| |
Collapse
|
30
|
Zeng J, Chen J, Xia F, Cui Q, Deng X, Xu X. Identification of functional substates of KRas during GTP hydrolysis with enhanced sampling simulations. Phys Chem Chem Phys 2022; 24:7653-7665. [PMID: 35297922 PMCID: PMC8972078 DOI: 10.1039/d2cp00274d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the hub of major signaling pathways, Ras proteins are implicated in 19% of tumor-caused cancers due to perturbations in their conformational and/or catalytic properties. Despite numerous studies, the functions of the conformational substates for the most important isoform, KRas, remain elusive. In this work, we perform an extensive simulation analysis on the conformational landscape of KRas in its various chemical states during the GTP hydrolysis cycle: the reactant state KRasGTP·Mg2+, the intermediate state KRasGDP·Pi·Mg2+ and the product state KRasGDP·Mg2+. The results from enhanced sampling simulations reveal that State 1 of KRasGTP·Mg2+ has multiple stable substates in solution, one of which might account for interacting with GEFs. State 2 of KRasGTP·Mg2+ features two substates "Tyr32in" and "Tyr32out", which are poised to interact with effectors and GAPs, respectively. For the intermediate state KRasGDP·Pi·Mg2+, Gln61 and Pi are found to assume a broad set of conformations, which might account for the weak oncogenic effect of Gln61 mutations in KRas in contrast to the situation in HRas and NRas. Finally, the product state KRasGDP·Mg2+ has more than two stable substates in solution, pointing to a conformation-selection mechanism for complexation with GEFs. Based on these results, some specific inhibition strategies for targeting the binding sites of the high-energy substates of KRas during GTP hydrolysis are discussed.
Collapse
Affiliation(s)
- Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Jian Chen
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China.
| | - Fei Xia
- School of Chemistry and Molecular Engineering, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, East China Normal University, Shanghai 200062, China.
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361101, China.
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
31
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
32
|
Zhang J, Liu Z, Zhao W, Yin X, Zheng X, Liu C, Wang J, Wang E. Discovery of Small Molecule NSC290956 as a Therapeutic Agent for KRas Mutant Non-Small-Cell Lung Cancer. Front Pharmacol 2022; 12:797821. [PMID: 35069209 PMCID: PMC8766838 DOI: 10.3389/fphar.2021.797821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
HRas-GTP has a transient intermediate state with a “non-signaling open conformation” in GTP hydrolysis and nucleotide exchange. Due to the same hydrolysis process and the structural homology, it can be speculated that the active KRas adopts the same characteristics with the “open conformation.” This implies that agents locking this “open conformation” may theoretically block KRas-dependent signaling. Applying our specificity-affinity drug screening approach, NSC290956 was chosen by high affinity and specificity interaction with the “open conformation” structure HRasG60A-GppNp. In mutant KRas-driven non-small-cell lung cancer (NSCLC) model system, NSC290956 effectively suppresses the KRas-GTP state and gives pharmacological KRas inhibition with concomitant blockages of both the MAPK-ERK and AKT-mTOR pathways. The dual inhibitory effects lead to the metabolic phenotype switching from glycolysis to mitochondrial metabolism, which promotes the cancer cell death. In the xenograft model, NSC290956 significantly reduces H358 tumor growth in nude mice by mechanisms similar to those observed in the cells. Our work indicates that NSC290956 can be a promising agent for the mutant KRas-driven NSCLC therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenjing Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Chuanbo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York, Stony Brook, NY, United States
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Yin G, Lv G, Zhang J, Jiang H, Lai T, Yang Y, Ren Y, Wang J, Yi C, Chen H, Huang Y, Xiao C. Early-stage structure-based drug discovery for small GTPases by NMR spectroscopy. Pharmacol Ther 2022; 236:108110. [PMID: 35007659 DOI: 10.1016/j.pharmthera.2022.108110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Small GTPase or Ras superfamily, including Ras, Rho, Rab, Ran and Arf, are fundamental in regulating a wide range of cellular processes such as growth, differentiation, migration and apoptosis. They share structural and functional similarities for binding guanine nucleotides and hydrolyzing GTP. Dysregulations of Ras proteins are involved in the pathophysiology of multiple human diseases, however there is still a stringent need for effective treatments targeting these proteins. For decades, small GTPases were recognized as 'undruggable' targets due to their complex regulatory mechanisms and lack of deep pockets for ligand binding. NMR has been critical in deciphering the structural and dynamic properties of the switch regions that are underpinning molecular switch functions of small GTPases, which pave the way for developing new effective inhibitors. The recent progress of drug or lead molecule development made for small GTPases profoundly delineated how modern NMR techniques reshape the field of drug discovery. In this review, we will summarize the progress of structural and dynamic studies of small GTPases, the NMR techniques developed for structure-based drug screening and their applications in early-stage drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guohua Lv
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Jerry Zhang
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27516, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Lai
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou 511486, Guangdong, China
| | - Yushan Yang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Ren
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenju Yi
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, PR China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, Zhejiang Province 311215, PR China
| | - Yun Huang
- Howard Hughes Medical Institute, Chevy Chase 20815, MD, USA; Department of Physiology & Biophysics, Weill Cornell Medicine, New York 10065, NY, USA.
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
34
|
Girard E, Lopes P, Spoerner M, Dhaussy AC, Prangé T, Kalbitzer HR, Colloc'h N. Equilibria between conformational states of the Ras oncogene protein revealed by high pressure crystallography. Chem Sci 2022; 13:2001-2010. [PMID: 35308861 PMCID: PMC8848853 DOI: 10.1039/d1sc05488k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this work, we experimentally investigate the allosteric transitions between conformational states on the Ras oncogene protein using high pressure crystallography. Ras protein is a small GTPase involved in central regulatory processes occurring in multiple conformational states. Ras acts as a molecular switch between active GTP-bound, and inactive GDP-bound states, controlling essential signal transduction pathways. An allosteric network of interactions between the effector binding regions and the membrane interacting regions is involved in Ras cycling. The conformational states which coexist simultaneously in solution possess higher Gibbs free energy than the ground state. Equilibria between these states can be shifted by applying pressure favouring conformations with lower partial molar volume, and has been previously analyzed by high-pressure NMR spectroscopy. High-pressure macromolecular crystallography (HPMX) is a powerful tool perfectly complementary to high-pressure NMR, allowing characterization at the molecular level with a high resolution the different allosteric states involved in the Ras cycling. We observe a transition above 300 MPa in the crystal leading to more stable conformers. Thus, we compare the crystallographic structures of Ras(wt)·Mg2+·GppNHp and Ras(D33K)·Mg2+·GppNHp at various high hydrostatic pressures. This gives insight into per-residue descriptions of the structural plasticity involved in allosteric equilibria between conformers. We have mapped out at atomic resolution the different segments of Ras protein which remain in the ground-state conformation or undergo structural changes, adopting excited-energy conformations corresponding to transient intermediate states. Such in crystallo phase transitions induced by pressure open the possibility to finely explore the structural determinants related to switching between Ras allosteric sub-states without any mutations nor exogenous partners. The equilibria between structural states induced by pressure within the crystal structure of Ras are illustrated with different colors corresponding to different Ras substates.![]()
Collapse
Affiliation(s)
- Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Pedro Lopes
- Institute of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Regensburg, Germany
| | - Michael Spoerner
- Institute of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Regensburg, Germany
| | | | - Thierry Prangé
- CiTCoM UMR 8038, CNRS Université de Paris, Faculté de Pharmacie, Paris, France
| | - Hans Robert Kalbitzer
- Institute of Biophysics and Physical Biochemistry, Centre of Magnetic Resonance in Chemistry and Biomedicine, University of Regensburg, Regensburg, Germany
| | - Nathalie Colloc'h
- ISTCT UMR 6030, CNRS, Université de Caen Normandie, CERVOxy Group, Centre Cyceron, Caen, France
| |
Collapse
|
35
|
Adamopoulos PG, Tsiakanikas P, Boti MA, Scorilas A. Targeted Long-Read Sequencing Decodes the Transcriptional Atlas of the Founding RAS Gene Family Members. Int J Mol Sci 2021; 22:ijms222413298. [PMID: 34948093 PMCID: PMC8709048 DOI: 10.3390/ijms222413298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
The complicity of human RAS proteins in cancer is a well-documented fact, both due to the mutational hyperactivation of these GTPases and the overexpression of the genes encoding these proteins. Thus, it can be easily assumed that the study of RAS genes at the transcriptional and post-transcriptional level is of the utmost importance. Although previous research has shed some light on the basic mechanisms by which GTPases are involved in tumorigenesis, limited information is known regarding the transcriptional profile of the genes encoding these proteins. The present study highlights for the first time the wide spectrum of the mRNAs generated by the three most significant RAS genes (KRAS, NRAS and HRAS), providing an in-depth analysis of the splicing events and exon/intron boundaries. The implementation of a versatile, targeted nanopore-sequencing approach led to the identification of 39 novel RAS mRNA transcript variants and to the elucidation of their expression profiles in a broad panel of human cell lines. Although the present work unveiled multiple hidden aspects of the RAS gene family, further study is required to unravel the biological function of all the novel alternative transcript variants, as well as the putative protein isoforms.
Collapse
|
36
|
Wang X. Conformational Fluctuations in GTP-Bound K-Ras: A Metadynamics Perspective with Harmonic Linear Discriminant Analysis. J Chem Inf Model 2021; 61:5212-5222. [PMID: 34570515 DOI: 10.1021/acs.jcim.1c00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomacromolecules often undergo significant conformational rearrangements during function. In proteins, these motions typically consist in nontrivial, concerted rearrangement of multiple flexible regions. Mechanistic, thermodynamics, and kinetic predictions can be obtained via molecular dynamics simulations, provided that the simulation time is at least comparable to the relevant time scale of the process of interest. Because of the substantial computational cost, however, plain MD simulations often have difficulty in obtaining sufficient statistics for converged estimates, requiring the use of more-advanced techniques. Central in many enhanced sampling methods is the definition of a small set of relevant degrees of freedom (collective variables) that are able to describe the transitions between different metastable states of the system. The harmonic linear discriminant analysis (HLDA) has been shown to be useful for constructing low-dimensional collective variables in various complex systems. Here, we apply HLDA to study the free-energy landscape of a monomeric protein around its native state. More precisely, we study the K-Ras protein bound to GTP, focusing on two flexible loops and on the region associated with oncogenic mutations. We perform microsecond-long biased simulations on the wild type and on G12C, G12D, G12 V mutants, describe the resulting free-energy landscapes, and compare our predictions with previous experimental and computational studies. The fast interconversion between open and closed macroscopic states and their similar thermodynamic stabilities are observed. The mutation-induced effects include the alternations of the relative stabilities of different conformational states and the introduction of many microscopic metastable states. Together, our results demonstrate the applicability of the HLDA-based protocol for the conformational sampling of multiple flexible regions in folded proteins.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Zeng J, Weng J, Zhang Y, Xia F, Cui Q, Xu X. Conformational Features of Ras: Key Hydrogen-Bonding Interactions of Gln61 in the Intermediate State during GTP Hydrolysis. J Phys Chem B 2021; 125:8805-8813. [PMID: 34324329 DOI: 10.1021/acs.jpcb.1c04679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Ras protein is one of the most important drug targets for battling cancers. To effectively design novel drugs of Ras, we characterize here its conformational ensembles for the hydrolysis intermediate state RasGDP·Pi and the product state RasGDP by extensive replica-exchange molecular dynamics simulations. Several substates for RasGDP·Pi have been identified, while structural analyses have revealed an unrecognized hydrogen-bonding network that stabilizes the hydrolysis intermediate state. More interestingly, Gln61, which is involved in numerous oncogenic mutations, was found to be engaged in this hydrogen-bonding network, adopting a specific conformation that always points to Pi in contrast to that in the RasGTP state. The simulations also reveal that RasGDP has more than one substate, suggesting a conformational selection mechanism for the interaction between Ras and the guanine nucleotide exchange factors (GEFs). These findings offer new opportunities for the drug design of Ras by stabilizing the hydrolysis intermediate or disrupting its interaction with the GEFs.
Collapse
Affiliation(s)
- Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Jingwei Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
| | - Yuwei Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
38
|
Chen J, Wang L, Wang W, Sun H, Pang L, Bao H. Conformational transformation of switch domains in GDP/K-Ras induced by G13 mutants: An investigation through Gaussian accelerated molecular dynamics simulations and principal component analysis. Comput Biol Med 2021; 135:104639. [PMID: 34247129 DOI: 10.1016/j.compbiomed.2021.104639] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Mutations in K-Ras are involved in a large number of all human cancers, thus, K-Ras is regarded as a promising target for anticancer drug design. Understanding the target roles of K-Ras is important for providing insights on the molecular mechanism underlying the conformational transformation of the switch domains in K-Ras due to mutations. In this study, multiple replica Gaussian accelerated molecular (MR-GaMD) simulations and principal component analysis (PCA) were applied to probe the effect of G13A, G13D and G13I mutations on conformational transformations of the switch domains in GDP-associated K-Ras. The results suggest that G13A, G13D and G13I enhance the structural flexibility of the switch domains, change the correlated motion modes of the switch domains and strengthen the total motion strength of K-Ras compared with the wild-type (WT) K-Ras. Free energy landscape analyses not only show that the switch domains of the GDP-bound inactive K-Ras mainly exist as a closed state but also indicate that mutations evidently alter the free energy profile of K-Ras and affect the conformational transformation of the switch domains between the closed and open states. Analyses of hydrophobic interaction contacts and hydrogen bonding interactions show that the mutations scarcely change the interaction network of GDP with K-Ras and only disturb the interaction of GDP with the switch (SW1). In summary, two newly introduced mutations, G13A and G13I, play similar adjustment roles in the conformational transformations of two switch domains to G13D and are possibly utilized to tune the activity of K-Ras and the binding of guanine nucleotide exchange factors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
39
|
Oncogenic mutations Q61L and Q61H confer active form-like structural features to the inactive state (state 1) conformation of H-Ras protein. Biochem Biophys Res Commun 2021; 565:85-90. [PMID: 34102474 DOI: 10.1016/j.bbrc.2021.05.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/24/2022]
Abstract
GTP-bound forms of Ras proteins (Ras•GTP) assume two interconverting conformations, "inactive" state 1 and "active" state 2. Our previous study on the crystal structure of the state 1 conformation of H-Ras in complex with guanosine 5'-(β, γ-imido)triphosphate (GppNHp) indicated that state 1 is stabilized by intramolecular hydrogen-bonding interactions formed by Gln61. Since Ras are constitutively activated by substitution mutations of Gln61, here we determine crystal structures of the state 1 conformation of H-Ras•GppNHp carrying representative mutations Q61L and Q61H to observe the effect of the mutations. The results show that these mutations alter the mode of hydrogen-bonding interactions of the residue 61 with Switch II residues and induce conformational destabilization of the neighboring regions. In particular, Q61L mutation results in acquirement of state 2-like structural features. Moreover, the mutations are likely to impair an intramolecular structural communication between Switch I and Switch II. Molecular dynamics simulations starting from these structures support the above observations. These findings may give a new insight into the molecular mechanism underlying the aberrant activation of the Gln61 mutants.
Collapse
|
40
|
Chen J, Zhang S, Wang W, Pang L, Zhang Q, Liu X. Mutation-Induced Impacts on the Switch Transformations of the GDP- and GTP-Bound K-Ras: Insights from Multiple Replica Gaussian Accelerated Molecular Dynamics and Free Energy Analysis. J Chem Inf Model 2021; 61:1954-1969. [PMID: 33739090 DOI: 10.1021/acs.jcim.0c01470] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations yield significant effect on the structural flexibility of two switch domains, SW1 and SW2, in K-Ras, which is considered as an important target of anticancer drug design. To unveil a molecular mechanism with regard to mutation-mediated tuning on the activity of K-Ras, multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations followed by analysis of free energy landscapes (FELs) are performed on the GDP- and GTP-bound wild-type (WT), G12V, and D33E K-Ras. The results suggest that G12V and D33E not only evidently change the flexibility of SW1 and SW2 but also greatly affect correlated motions of SW1 and SW2 separately relative to the P-loop and SW1, which exerts a certain tuning on the activity of K-Ras. The information stemming from the analyses of FELs reveals that the conformations of SW1 and SW2 are in high disorders in the GDP- and GTP-associated WT and mutated K-Ras, possibly producing significant effect on binding of guanine nucleotide exchange factors or effectors to K-Ras. The interaction networks of GDP and GTP with K-Ras are identified and the results uncover that the instability in hydrogen-bonding interactions of SW1 with GDP and GTP is mostly responsible for conformational disorder of SW1 and SW2 as well as tunes the activity of oncogenic K-Ras.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| |
Collapse
|
41
|
Chen J, Wang W, Pang L, Zhu W. Unveiling conformational dynamics changes of H-Ras induced by mutations based on accelerated molecular dynamics. Phys Chem Chem Phys 2021; 22:21238-21250. [PMID: 32930679 DOI: 10.1039/d0cp03766d] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uncovering molecular basis with regard to the conformational change of two switches I and II in the GppNHp (GNP)-bound H-Ras is highly significant for the understanding of Ras signaling. For this purpose, accelerated molecular dynamics (aMD) simulations and principal component (PC) analysis are integrated to probe the effect of mutations G12V, T35S and Q61K on conformational transformation between two switches of the GNP-bound H-Ras. The RMSF and cross-correlation analyses suggest that three mutations exert a vital effect on the flexibility and internal dynamics of two switches in the GNP-bound H-Ras. The results stemming from PC analysis indicate that two switches in the GNP-bound WT H-Ras tend to form a closed state in most conformations, while those in the GNP-bound mutated H-Ras display transformation between different states. This conclusion is further supported by free energy landscapes constructed by using the distances of residues 12 away from 35 and 35 away from 61 as reaction coordinates and different experimental studies. Interaction scanning is performed on aMD trajectories and the information shows that conformational transformations of two switches I and II induced by mutations extremely affect the GNP-residue interactions. Meanwhile, the scanning results also signify that residues G15, A18, F28, K117, A146 and K147 form stable contacts with GNP, while residues D30, E31, Y32, D33, P34 and E62 in two switches I and II produce unstable contacts with GNP. This study not only reveals dynamic behavior changes of two switches in H-Ras induced by mutations, but also unveils general principles and mechanisms with regard to functional conformational changes of H-Ras.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
42
|
Pálfy G, Menyhárd DK, Perczel A. Dynamically encoded reactivity of Ras enzymes: opening new frontiers for drug discovery. Cancer Metastasis Rev 2020; 39:1075-1089. [PMID: 32815102 PMCID: PMC7680338 DOI: 10.1007/s10555-020-09917-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Decoding molecular flexibility in order to understand and predict biological processes-applying the principles of dynamic-structure-activity relationships (DSAR)-becomes a necessity when attempting to design selective and specific inhibitors of a protein that has overlapping interaction surfaces with its upstream and downstream partners along its signaling cascade. Ras proteins are molecular switches that meet this definition perfectly. The close-lying P-loop and the highly flexible switch I and switch II regions are the site of nucleotide-, assisting-, and effector-protein binding. Oncogenic mutations that also appear in this region do not cause easily characterized overall structural changes, due partly to the inherent conformational heterogeneity and pliability of these segments. In this review, we present an overview of the results obtained using approaches targeting Ras dynamics, such as nuclear magnetic resonance (NMR) measurements and experiment-based modeling calculations (mostly molecular dynamics (MD) simulations). These methodologies were successfully used to decipher the mutant- and isoform-specific nature of certain transient states, far-lying allosteric sites, and the internal interaction networks, as well as the interconnectivity of the catalytic and membrane-binding regions. This opens new therapeutic potential: the discovered interaction hotspots present hitherto not targeted, selective sites for drug design efforts in diverse locations of the protein matrix.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
- Protein Modeling Group HAS-ELTE, Institute of Chemistry, Eötvös Loránd University, P.O.B. 32, Budapest, 1538, Hungary.
| |
Collapse
|
43
|
Chen X, Gao H, Long D. Millisecond Allosteric Dynamics of Activated Ras Reproduced with a Slowly Hydrolyzable GTP Analogue. Chembiochem 2020; 22:1079-1083. [PMID: 33140496 DOI: 10.1002/cbic.202000698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Indexed: 12/29/2022]
Abstract
The millisecond timescale dynamics of activated Ras transiently sample a low-populated conformational state that has distinct surface property from the major state and represents a promising target for binding of small-molecule compounds. To avoid the complications of hydrolysis, dynamics and other properties of active Ras have so far been routinely investigated by using non-hydrolyzable GTP analogues, which, however, were previously reported to alter both the kinetics and distribution of the conformational exchange. In this study, we quantitatively measured and validated the internal dynamics of Ras complexed with a slowly hydrolyzable GTP analogue, GTPγS, which increases the lifetime of active Ras by 23 times relative to that of native GTP. It was found that GTPγS, in addition to its better mimicking of the exchange kinetics than the commonly used non-hydrolyzable analogues GppNHp and GppCH2 p, can rigorously reproduce the natural dynamics network in active Ras, thus indicating its fitness for use in the development of allosteric inhibitors.
Collapse
Affiliation(s)
- Xiaomin Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China
| | - Hexuan Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China
| | - Dong Long
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, and School of Life Sciences, University of Science and Technology of China, 443 Huangshan Street, Hefei, Anhui, 230027, P. R. China.,Department of Chemistry, University of Science and Technology of China Hefei, Anhui 230026, P. R. China
| |
Collapse
|
44
|
Huang Y, Wang X, Lv G, Razavi AM, Huysmans GHM, Weinstein H, Bracken C, Eliezer D, Boudker O. Use of paramagnetic 19F NMR to monitor domain movement in a glutamate transporter homolog. Nat Chem Biol 2020; 16:1006-1012. [PMID: 32514183 PMCID: PMC7442671 DOI: 10.1038/s41589-020-0561-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
Abstract
In proteins where conformational changes are functionally important, the number of accessible states and their dynamics are often difficult to establish. Here we describe a novel 19F-NMR spectroscopy approach to probe dynamics of large membrane proteins. We labeled a glutamate transporter homolog with a 19F probe via cysteine chemistry and with a Ni2+ ion via chelation by a di-histidine motif. We used distance-dependent enhancement of the longitudinal relaxation of 19F nuclei by the paramagnetic metal to assign the observed resonances. We identified one inward- and two outward-facing states of the transporter, in which the substrate-binding site is near the extracellular and intracellular solutions, respectively. We then resolved the structure of the unanticipated second outward-facing state by cryo-EM. Finally, we showed that the rates of the conformational exchange are accessible from measurements of the metal-enhanced longitudinal relaxation of 19F nuclei.
Collapse
Affiliation(s)
- Yun Huang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xiaoyu Wang
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Guohua Lv
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
- Division of Histology & Embryology, Medical College, Jinan University, Guangzhou, China
| | - Asghar M Razavi
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Gerard H M Huysmans
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Harel Weinstein
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Clay Bracken
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| | - Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
45
|
Johnson CW, Lin YJ, Reid D, Parker J, Pavlopoulos S, Dischinger P, Graveel C, Aguirre AJ, Steensma M, Haigis KM, Mattos C. Isoform-Specific Destabilization of the Active Site Reveals a Molecular Mechanism of Intrinsic Activation of KRas G13D. Cell Rep 2020; 28:1538-1550.e7. [PMID: 31390567 PMCID: PMC6709685 DOI: 10.1016/j.celrep.2019.07.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/28/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Ras GTPases are mutated at codons 12, 13, and 61, with different frequencies in KRas, HRas, and NRas and in a cancer-specific manner. The G13D mutant appears in 25% of KRas-driven colorectal cancers, while observed only rarely in HRas or NRas. Structures of Ras G13D in the three isoforms show an open active site, with adjustments to the D13 backbone torsion angles and with disconnected switch regions. KRas G13D has unique features that destabilize the nucleotide-binding pocket. In KRas G13D bound to GDP, A59 is placed in the Mg2+ binding site, as in the HRas-SOS complex. Structure and biochemistry are consistent with an intermediate level of KRas G13D bound to GTP, relative to wild-type and KRas G12D, observed in genetically engineered mouse models. The results explain in part the elevated frequency of the G13D mutant in KRas over the other isoforms of Ras.
Collapse
Affiliation(s)
- Christian W Johnson
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Yi-Jang Lin
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Derion Reid
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jillian Parker
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Carrie Graveel
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Andrew J Aguirre
- Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kevin M Haigis
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Harvard Digestive Disease Center, Boston, MA 02215, USA.
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Menyhárd DK, Pálfy G, Orgován Z, Vida I, Keserű GM, Perczel A. Structural impact of GTP binding on downstream KRAS signaling. Chem Sci 2020; 11:9272-9289. [PMID: 34094198 PMCID: PMC8161693 DOI: 10.1039/d0sc03441j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oncogenic RAS proteins, involved in ∼30% of human tumors, are molecular switches of various signal transduction pathways. Here we apply a new protocol for the NMR study of KRAS in its (inactive) GDP- and (activated) GTP-bound form, allowing a comprehensive analysis of the backbone dynamics of its WT-, G12C- and G12D variants. We found that Tyr32 shows opposite mobility with respect to the backbone of its surroundings: it is more flexible in the GDP-bound form while more rigid in GTP-complexes (especially in WT- and G12D-GTP). Using the G12C/Y32F double mutant, we showed that the presence of the hydroxyl group of Tyr32 has a marked effect on the G12C-KRAS-GTP system as well. Molecular dynamics simulations indicate that Tyr32 is linked to the γ-phosphate of GTP in the activated states – an arrangement shown, using QM/MM calculations, to support catalysis. Anchoring Tyr32 to the γ-phosphate contributes to the capture of the catalytic waters participating in the intrinsic hydrolysis of GTP and supports a simultaneous triple proton transfer step (catalytic water → assisting water → Tyr32 → O1G of the γ-phosphate) leading to straightforward product formation. The coupled flip of negatively charged residues of switch I toward the inside of the effector binding pocket potentiates ligand recognition, while positioning of Thr35 to enter the coordination sphere of the Mg2+ widens the pocket. Position 12 mutations do not disturb the capture of Tyr32 by the γ-phosphate, but (partially) displace Gln61, which opens up the catalytic pocket and destabilizes catalytic water molecules thus impairing intrinsic hydrolysis. Nucleotide exchange to the physiological, activated, GTP-bound form of KRAS results in the anchoring of Tyr32 within the active site.![]()
Collapse
Affiliation(s)
- Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - István Vida
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| |
Collapse
|
47
|
Dudas B, Merzel F, Jang H, Nussinov R, Perahia D, Balog E. Nucleotide-Specific Autoinhibition of Full-Length K-Ras4B Identified by Extensive Conformational Sampling. Front Mol Biosci 2020; 7:145. [PMID: 32754617 PMCID: PMC7366858 DOI: 10.3389/fmolb.2020.00145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
K-Ras is one of the most frequently mutated oncogenes in human tumor cells. It consists of a well-conserved globular catalytic domain and a flexible tail-like hypervariable region (HVR) at its C-terminal end. It plays a key role in signaling networks in proliferation, differentiation, and survival, undergoing a conformational switch between the active and inactive states. It is regulated through the GDP-GTP cycle of the inactive GDP-bound and active GTP-bound states. Here, without imposing any prior constraints, we mapped the interaction pattern between the catalytic domain and the HVR using Molecular Dynamics with excited Normal Modes (MDeNM) starting from an initially extended HVR conformation for both states. Our sampling captured similar interaction patterns in both GDP- and GTP-bound states with shifted populations depending on the bound nucleotide. In the GDP-bound state, the conformations where the HVR interacts with the effector lobe are more populated than in the GTP-bound state, forming a buried thus autoinhibited catalytic site; in the GTP-bound state conformations where the HVR interacts with the allosteric lobe are more populated, overlapping the α3/α4 dimerization interface. The interaction of the GTP with Switch I and Switch II is stronger than that of the GDP in line with a decrease in the fluctuation upon GTP binding.
Collapse
Affiliation(s)
- Balint Dudas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franci Merzel
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hyunbum Jang
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
48
|
Abstract
RAS was identified as a human oncogene in the early 1980s and subsequently found to be mutated in nearly 30% of all human cancers. More importantly, RAS plays a central role in driving tumor development and maintenance. Despite decades of effort, there remain no FDA approved drugs that directly inhibit RAS. The prevalence of RAS mutations in cancer and the lack of effective anti-RAS therapies stem from RAS' core role in growth factor signaling, unique structural features, and biochemistry. However, recent advances have brought promising new drugs to clinical trials and shone a ray of hope in the field. Here, we will exposit the details of RAS biology that illustrate its key role in cell signaling and shed light on the difficulties in therapeutically targeting RAS. Furthermore, past and current efforts to develop RAS inhibitors will be discussed in depth.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
49
|
Zhou ZW, Ambrogio C, Bera AK, Li Q, Li XX, Li L, Son J, Gondi S, Li J, Campbell E, Jin H, Okoro JJ, Xu CX, Janne PA, Westover KD. KRAS Q61H Preferentially Signals through MAPK in a RAF Dimer-Dependent Manner in Non-Small Cell Lung Cancer. Cancer Res 2020; 80:3719-3731. [PMID: 32605999 DOI: 10.1158/0008-5472.can-20-0448] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
Assembly of RAS molecules into complexes at the cell membrane is critical for RAS signaling. We previously showed that oncogenic KRAS codon 61 mutations increase its affinity for RAF, raising the possibility that KRASQ61H, the most common KRAS mutation at codon 61, upregulates RAS signaling through mechanisms at the level of RAS assemblies. We show here that KRASQ61H exhibits preferential binding to RAF relative to PI3K in cells, leading to enhanced MAPK signaling in in vitro models and human NSCLC tumors. X-ray crystallography of KRASQ61H:GTP revealed that a hyperdynamic switch 2 allows for a more stable interaction with switch 1, suggesting that enhanced RAF activity arises from a combination of absent intrinsic GTP hydrolysis activity and increased affinity for RAF. Disruption of KRASQ61H assemblies by the RAS oligomer-disrupting D154Q mutation impaired RAF dimerization and altered MAPK signaling but had little effect on PI3K signaling. However, KRASQ61H oligomers but not KRASG12D oligomers were disrupted by RAF mutations that disrupt RAF-RAF interactions. KRASQ61H cells show enhanced sensitivity to RAF and MEK inhibitors individually, whereas combined treatment elicited synergistic growth inhibition. Furthermore, KRASQ61H tumors in mice exhibited high vulnerability to MEK inhibitor, consistent with cooperativity between KRASQ61H and RAF oligomerization and dependence on MAPK signaling. These findings support the notion that KRASQ61H and functionally similar mutations may serve as predictive biomarkers for targeted therapies against the MAPK pathway. SIGNIFICANCE: These findings show that oncogenic KRASQ61H forms a cooperative RAS-RAF ternary complex, which renders RAS-driven tumors vulnerable to MEKi and RAFi, thus establishing a framework for evaluating RAS biomarker-driven targeted therapies.
Collapse
Affiliation(s)
- Zhi-Wei Zhou
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Chiara Ambrogio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Asim K Bera
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Xing-Xiao Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jieun Son
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jiaqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emily Campbell
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Jeffrey J Okoro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, China.
| | - Pasi A Janne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.
| |
Collapse
|
50
|
Liebau J, Tersa M, Trastoy B, Patrick J, Rodrigo-Unzueta A, Corzana F, Sparrman T, Guerin ME, Mäler L. Unveiling the activation dynamics of a fold-switch bacterial glycosyltransferase by 19F NMR. J Biol Chem 2020; 295:9868-9878. [PMID: 32434931 PMCID: PMC7380196 DOI: 10.1074/jbc.ra120.014162] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/19/2020] [Indexed: 11/06/2022] Open
Abstract
Fold-switch pathways remodel the secondary structure topology of proteins in response to the cellular environment. It is a major challenge to understand the dynamics of these folding processes. Here, we conducted an in-depth analysis of the α-helix–to–β-strand and β-strand–to–α-helix transitions and domain motions displayed by the essential mannosyltransferase PimA from mycobacteria. Using 19F NMR, we identified four functionally relevant states of PimA that coexist in dynamic equilibria on millisecond-to-second timescales in solution. We discovered that fold-switching is a slow process, on the order of seconds, whereas domain motions occur simultaneously but are substantially faster, on the order of milliseconds. Strikingly, the addition of substrate accelerated the fold-switching dynamics of PimA. We propose a model in which the fold-switching dynamics constitute a mechanism for PimA activation.
Collapse
Affiliation(s)
- Jobst Liebau
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Montse Tersa
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Beatriz Trastoy
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Joan Patrick
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ane Rodrigo-Unzueta
- Departamento de Bioquímica and Instituto Biofisika, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Bizkaia, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, Logroño, Spain
| | | | - Marcelo E Guerin
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain .,Departamento de Bioquímica and Instituto Biofisika, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Lena Mäler
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden .,Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|