1
|
Liang J, Yang X, Hu T, Gao Y, Yang Q, Yang H, Peng W, Zhou X, Guddat LW, Zhang B, Rao Z, Liu F. Structural insights into trehalose capture and translocation by mycobacterial LpqY-SugABC. Structure 2023; 31:1158-1165.e3. [PMID: 37619560 DOI: 10.1016/j.str.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/25/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
The human pathogen, Mycobacterium tuberculosis (Mtb) relies heavily on trehalose for both survival and pathogenicity. The type I ATP-binding cassette (ABC) transporter LpqY-SugABC is the only trehalose import pathway in Mtb. Conformational dynamics of ABC transporters is an important feature to explain how they operate, but experimental structures are determined in a static environment. Therefore, a detailed transport mechanism cannot be elucidated because there is a lack of intermediate structures. Here, we used single-particle cryo-electron microscopy (cryo-EM) to determine the structure of the Mycobacterium smegmatis (M. smegmatis) trehalose-specific importer LpqY-SugABC complex in five different conformations. These structures have been classified and reconstructed from a single cryo-EM dataset. This study allows a comprehensive understanding of the trehalose recycling mechanism in Mycobacteria and also demonstrates the potential of single-particle cryo-EM to explore the dynamic structures of other ABC transporters and molecular machines.
Collapse
Affiliation(s)
- Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qi Yang
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Peng
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Xiaoting Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, QLD, Australia
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China; Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing, China; Laboratory of Structural Biology, Tsinghua University, Beijing, China.
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
2
|
Lewinson O, Orelle C, Seeger MA. Structures of ABC transporters: handle with care. FEBS Lett 2020; 594:3799-3814. [PMID: 33098660 PMCID: PMC7756565 DOI: 10.1002/1873-3468.13966] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
In the past two decades, the ATP‐binding cassette (ABC) transporters' field has undergone a structural revolution. The importance of structural biology to the development of the field of ABC transporters cannot be overstated, as the ensemble of structures not only revealed the architecture of ABC transporters but also shaped our mechanistic view of these remarkable molecular machines. Nevertheless, we advocate that the mechanistic interpretation of the structures is not trivial and should be carried out with prudence. Herein, we bring several examples of structures of ABC transporters that merit re‐interpretation via careful comparison to experimental data. We propose that it is of the upmost importance to place new structures within the context of the available experimental data.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Cédric Orelle
- CNRS, Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), University of Lyon, Lyon, France
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Liu F, Liang J, Zhang B, Gao Y, Yang X, Hu T, Yang H, Xu W, Guddat LW, Rao Z. Structural basis of trehalose recycling by the ABC transporter LpqY-SugABC. SCIENCE ADVANCES 2020; 6:6/44/eabb9833. [PMID: 33127676 PMCID: PMC7608808 DOI: 10.1126/sciadv.abb9833] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
In bacteria, adenosine 5'-triphosphate (ATP)-binding cassette (ABC) importers are essential for the uptake of nutrients including the nonreducing disaccharide trehalose, a metabolite that is crucial for the survival and virulence of several human pathogens including Mycobacterium tuberculosis SugABC is an ABC transporter that translocates trehalose from the periplasmic lipoprotein LpqY into the cytoplasm of mycobacteria. Here, we report four high-resolution cryo-electron microscopy structures of the mycobacterial LpqY-SugABC complex to reveal how it binds and passes trehalose through the membrane to the cytoplasm. A unique feature observed in this system is the initial mode of capture of the trehalose at the LpqY interface. Uptake is achieved by a pivotal rotation of LpqY relative to SugABC, moving from an open and accessible conformation to a clamped conformation upon trehalose binding. These findings enrich our understanding as to how ABC transporters facilitate substrate transport across the membrane in Gram-positive bacteria.
Collapse
Affiliation(s)
- Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Mächtel R, Narducci A, Griffith DA, Cordes T, Orelle C. An integrated transport mechanism of the maltose ABC importer. Res Microbiol 2019; 170:321-337. [PMID: 31560984 PMCID: PMC6906923 DOI: 10.1016/j.resmic.2019.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
Abstract
ATP-binding cassette (ABC) transporters use the energy of ATP hydrolysis to transport a large diversity of molecules actively across biological membranes. A combination of biochemical, biophysical, and structural studies has established the maltose transporter MalFGK2 as one of the best characterized proteins of the ABC family. MalF and MalG are the transmembrane domains, and two MalKs form a homodimer of nucleotide-binding domains. A periplasmic maltose-binding protein (MalE) delivers maltose and other maltodextrins to the transporter, and triggers its ATPase activity. Substrate import occurs in a unidirectional manner by ATP-driven conformational changes in MalK2 that allow alternating access of the substrate-binding site in MalF to each side of the membrane. In this review, we present an integrated molecular mechanism of the transport process considering all currently available information. Furthermore, we summarize remaining inconsistencies and outline possible future routes to decipher the full mechanistic details of transport by MalEFGK2 complex and that of related importer systems.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Douglas A Griffith
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Cédric Orelle
- Université de Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 7 passage du Vercors, 69367 Lyon, France.
| |
Collapse
|
5
|
Bajaj R, Park MI, Stauffacher CV, Davidson AL. Conformational Dynamics in the Binding-Protein-Independent Mutant of the Escherichia coli Maltose Transporter, MalG511, and Its Interaction with Maltose Binding Protein. Biochemistry 2018; 57:3003-3015. [PMID: 29637782 DOI: 10.1021/acs.biochem.8b00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MalG511 is a genetically selected binding-protein-independent mutant of the Escherichia coli maltose transporter MalFGK2, which retains specificity for maltose and shows a high basal ATPase activity in the absence of maltose binding protein (MBP). It shows an intriguing biphasic behavior in maltose transport assays in the presence of MBP, with low levels of MBP stimulating the activity and higher levels (>50 μM) inhibiting the transport activity. Remarkably, the rescuing effect of the MBP suppressor mutant, MBPG13D, turns it into an attractive model for studying regulatory mechanisms in the ABC transporter superfamily. It is hypothesized that the special characteristics of MalG511 result from mutations that shift its equilibrium toward the transition state of MalFGK2. We tested this hypothesis by using site-directed spin labeling in combination with electron paramagnetic resonance spectroscopy, which showed conformational changes in MalG511 and its interaction with MBP and MBPG13D during its catalytic cycle. We found that MalG511 utilizes the same alternate access mechanism as MalFGK2, including all three open, semi-open, and closed states of the MalK dimer, to transport maltose across the membrane. However, the equilibrium of this mutant is shifted toward the semi-open state in its resting state and interacts with MBP with high affinity, providing an explanation for the inhibition of MalG511 by MBP at higher concentrations. In contrast, the mutant binding protein, MBPG13D, interacts with lower affinity and could restore MalG511 to a normal catalytic cycle.
Collapse
|
6
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
7
|
Teichmann L, Chen C, Hoffmann T, Smits SHJ, Schmitt L, Bremer E. From substrate specificity to promiscuity: hybrid ABC transporters for osmoprotectants. Mol Microbiol 2017; 104:761-780. [PMID: 28256787 DOI: 10.1111/mmi.13660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
The ABC-transporters OpuB and OpuC from Bacillus subtilis function as osmoprotectant import systems. Their structural genes have most likely evolved through a duplication event but the two transporters are remarkably different in their substrate profile. OpuB possesses narrow substrate specificity, while OpuC is promiscuous. We assessed the functionality of hybrids between these two ABC-transporters by reciprocally exchanging the coding regions for the OpuBC and OpuCC substrate-binding proteins between the corresponding opuB and opuC operons. Substantiating the critical role of the binding protein in setting the substrate specificity of ABC transporters, OpuB::OpuCC turned into a promiscuous system, while OpuC::OpuBC now exhibited narrow substrate specificity. Both hybrid transporters possessed a high affinity for their substrates but the transport capacity of the OpuB::OpuCC system was moderate due to the synthesis of only low amounts of the xenogenetic OpuCC protein. Suppressor mutations causing single amino acid substitutions in the GbsR repressor controlling the choline to glycine betaine biosynthesis pathway greatly improved OpuB::OpuCC-mediated compatible solute import through transcriptional up-regulation of the hybrid opuB::opuCC operon. Collectively, we demonstrate for the first time that one can synthetically switch the substrate specificity of a given ABC transporter by combining its core components with a xenogenetic ligand-binding protein.
Collapse
Affiliation(s)
- Laura Teichmann
- Laboratory for Molecular Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, Marburg, D-35043, Germany
| | - Chiliang Chen
- Laboratory for Molecular Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, Marburg, D-35043, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerweinstr. 6, Marburg, D-35043, Germany
| | - Tamara Hoffmann
- Laboratory for Molecular Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, Marburg, D-35043, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Erhard Bremer
- Laboratory for Molecular Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, Marburg, D-35043, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerweinstr. 6, Marburg, D-35043, Germany
| |
Collapse
|
8
|
Lv D, Li C, Tan J, Zhang X, Wang C, Su J. Identification of functionally key residues in maltose transporter with an elastic network model-based thermodynamic method. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1234077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dashuai Lv
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jianjun Tan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiaoyi Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Cunxin Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jiguo Su
- College of Science, Yanshan University, Qinhuangdao, China
| |
Collapse
|
9
|
Alvarez FJD, Orelle C, Huang Y, Bajaj R, Everly RM, Klug CS, Davidson AL. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol Microbiol 2015; 98:878-94. [PMID: 26268698 DOI: 10.1111/mmi.13165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 01/31/2023]
Abstract
MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP.
Collapse
Affiliation(s)
| | - Cédric Orelle
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruchika Bajaj
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - R Michael Everly
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Active transporters as enzymes: an energetic framework applied to major facilitator superfamily and ABC importer systems. Biochem J 2015; 467:193-9. [DOI: 10.1042/bj20140675] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Active membrane transporters are dynamic molecular machines that catalyse transport across a membrane by coupling solute movement to a source of energy such as ATP or a secondary ion gradient. A central question for many active transporters concerns the mechanism by which transport is coupled to a source of energy. The transport process and associated energetic coupling involve conformational changes in the transporter. For efficient transport, the conformational changes must be tightly regulated and they must link energy use to movement of the substrate across the membrane. The present review discusses active transport using the well-established energetic framework for enzyme-mediated catalysis. In particular, membrane transport systems can be viewed as ensembles consisting of low-energy and high-energy conformations. The transport process involves binding interactions that selectively stabilize the higher energy conformations, and in this way promote conformational changes in the system that are coupled to decreases in free energy and substrate translocation. The major facilitator superfamily of secondary active transporters is used to illustrate these ideas, which are then be expanded to primary active transport mediated by ABC (ATP-binding cassette) import systems, with a focus on the well-studied maltose transporter.
Collapse
|
11
|
Ahuja S, Rougé L, Swem DL, Sudhamsu J, Wu P, Russell SJ, Alexander MK, Tam C, Nishiyama M, Starovasnik MA, Koth CM. Structural analysis of bacterial ABC transporter inhibition by an antibody fragment. Structure 2015; 23:713-23. [PMID: 25752540 DOI: 10.1016/j.str.2015.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/23/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022]
Abstract
Bacterial ATP-binding cassette (ABC) importers play critical roles in nutrient acquisition and are potential antibacterial targets. However, structural bases for their inhibition are poorly defined. These pathways typically rely on substrate binding proteins (SBPs), which are essential for substrate recognition, delivery, and transporter function. We report the crystal structure of a Staphylococcus aureus SBP for Mn(II), termed MntC, in complex with FabC1, a potent antibody inhibitor of the MntABC pathway. This pathway is essential and highly expressed during S. aureus infection and facilitates the import of Mn(II), a critical cofactor for enzymes that detoxify reactive oxygen species (ROS). Structure-based functional studies indicate that FabC1 sterically blocks a structurally conserved surface of MntC, preventing its interaction with the MntB membrane importer and increasing wild-type S. aureus sensitivity to oxidative stress by more than 10-fold. The results define an SBP blocking mechanism as the basis for ABC importer inhibition by an engineered antibody fragment.
Collapse
Affiliation(s)
- Shivani Ahuja
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Rougé
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Danielle L Swem
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Department of Biology, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stephen J Russell
- Analytical Operations, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mary Kate Alexander
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine Tam
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mireille Nishiyama
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melissa A Starovasnik
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christopher M Koth
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
12
|
Podkowa KJ, Briere LAK, Heinrichs DE, Shilton BH. Crystal and solution structure analysis of FhuD2 from Staphylococcus aureus in multiple unliganded conformations and bound to ferrioxamine-B. Biochemistry 2014; 53:2017-31. [PMID: 24606332 DOI: 10.1021/bi401349d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Iron acquisition is a central process for virtually all organisms. In Staphylococcus aureus, FhuD2 is a lipoprotein that is a high-affinity receptor for iron-bound hydroxamate siderophores. In this study, FhuD2 was crystallized bound to ferrioxamine-B (FXB), and also in its ligand-free state; the latter structures are the first for hydroxamate-binding receptors within this protein family. The structure of the FhuD2-FXB conformation shows that residues W197 and R199 from the C-terminal domain donate hydrogen bonds to the hydroxamate oxygens, and a ring of aromatic residues cradles the aliphatic arms connecting the hydroxamate moieties of the siderophore. The available ligand-bound structures of FhuD from Escherichia coli and YfiY from Bacillus cereus show that, despite a high degree of structural conservation, three protein families have evolved with critical siderophore binding residues on either the C-terminal domain (S. aureus), the N-terminal domain (E. coli), or both (B. cereus). Unliganded FhuD2 was crystallized in five conformations related by rigid body movements of the N- and C-terminal domains. Small-angle X-ray scattering (SAXS) indicates that the solution conformation of unliganded FhuD2 is more compact than the conformations observed in crystals. The ligand-induced conformational changes for FhuD2 in solution are relatively modest and depend on the identity of the siderophore. The crystallographic and SAXS results are used to discuss roles for the liganded and unliganded forms of FhuD2 in the siderophore transport mechanism.
Collapse
Affiliation(s)
- Krzysztof J Podkowa
- Department of Biochemistry and ‡Department of Microbiology and Immunology, The University of Western Ontario , London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
13
|
The Maltose ABC Transporter: Where Structure Meets Function. SPRINGER SERIES IN BIOPHYSICS 2014. [DOI: 10.1007/978-3-642-53839-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc Natl Acad Sci U S A 2013; 110:18132-7. [PMID: 24145421 DOI: 10.1073/pnas.1311407110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are molecular pumps that harness the chemical energy of ATP hydrolysis to translocate solutes across the membrane. The substrates transported by different ABC transporters are diverse, ranging from small ions to large proteins. Although crystal structures of several ABC transporters are available, a structural basis for substrate recognition is still lacking. For the Escherichia coli maltose transport system, the selectivity of sugar binding to maltose-binding protein (MBP), the periplasmic binding protein, does not fully account for the selectivity of sugar transport. To obtain a molecular understanding of this observation, we determined the crystal structures of the transporter complex MBP-MalFGK2 bound with large malto-oligosaccharide in two different conformational states. In the pretranslocation structure, we found that the transmembrane subunit MalG forms two hydrogen bonds with malto-oligosaccharide at the reducing end. In the outward-facing conformation, the transmembrane subunit MalF binds three glucosyl units from the nonreducing end of the sugar. These structural features explain why modified malto-oligosaccharides are not transported by MalFGK2 despite their high binding affinity to MBP. They also show that in the transport cycle, substrate is channeled from MBP into the transmembrane pathway with a polarity such that both MBP and MalFGK2 contribute to the overall substrate selectivity of the system.
Collapse
|
15
|
Weidlich D, Wiesemann N, Heuveling J, Wardelmann K, Landmesser H, Sani KB, Worth CL, Preissner R, Schneider E. Residues of a proposed gate region in type I ATP-binding cassette import systems are crucial for function as revealed by mutational analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2164-72. [PMID: 23747295 DOI: 10.1016/j.bbamem.2013.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 01/23/2023]
Abstract
The type I ATP-binding cassette (ABC) importer for positively charged amino acids of the thermophilic bacterium Geobacillus stearothermophilus consists of the extracellular solute binding protein, ArtJ, and a homodimer each of the transmembrane subunit, ArtM, and the nucleotide-binding and -hydrolyzing subunit, ArtP. We have investigated the functional consequences of mutations affecting conserved residues from two peptide regions in ArtM, recently proposed to form a 'gate' by which access of a substrate to the translocation path is controlled (Hollenstein et al., 2007 [14]). Transporter variants were reconstituted into proteoliposomes and assayed for ArtJ/arginine-stimulated ATPase activity. Replacement of residues from region 1 (Arg-63, Pro-66) caused no or only moderate reduction in ATPase activity. In contrast, mutating residues from gate region 2 (Lys-159, Leu-163) resulted in a substantial increase in ATPase activity which, however, as demonstrated for variants ArtM(K159I) and ArtM(K159E), is not coupled to transport. Replacing homologous residues in the closely related histidine transporter of Salmonella enterica serovar Typhimurium (HisJ-QMP2) caused different phenotypes. Mutation to isoleucine of HisQ(K163) or HisM(H172), both homologous to ArtM(K159), abolished ATPase activity. The mutations most likely caused a structural change as revealed by limited proteolysis. In contrast, substantial, albeit reduced, enzymatic activity was observed with variants of HisQ(L167→G) or HisM(L176→G), both homologous to ArtM(L163). Our study provides the first experimental evidence in favor of a crucial role of residues from the proposed gate region in type I ABC importer function.
Collapse
Affiliation(s)
- Daniela Weidlich
- Institut für Biologie/Bakterienphysiologie, Humboldt Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tseng CW, Kanci A, Citti C, Rosengarten R, Chiu CJ, Chen ZH, Geary SJ, Browning GF, Markham PF. MalF is essential for persistence of Mycoplasma gallisepticum in vivo. MICROBIOLOGY-SGM 2013; 159:1459-1470. [PMID: 23657682 DOI: 10.1099/mic.0.067553-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There is limited understanding of the molecular basis of virulence in the important avian pathogen Mycoplasma gallisepticum. To define genes that may be involved in colonization of chickens, a collection of mutants of the virulent Ap3AS strain of M. gallisepticum were generated by signature-tagged transposon mutagenesis. The collection included mutants with single insertions in the genes encoding the adhesin GapA and the cytadherence-related protein CrmA, and Western blotting confirmed that these mutants did not express these proteins. In two separate in vivo screenings, two GapA-deficient mutants (ST mutants 02-1 and 06-1) were occasionally recovered from birds, suggesting that GapA expression may not always be essential for persistence of strain Ap3AS. CrmA-deficient ST mutant 33-1 colonized birds poorly and had reduced virulence, indicating that CrmA was a significant virulence factor, but was not absolutely essential for colonization. ST mutant 04-1 contained a single transposon insertion in malF, a predicted ABC sugar transport permease, and could not be reisolated even when inoculated by itself into a group of birds, suggesting that expression of MalF was essential for persistence of M. galliseptium strain Ap3AS in infected birds.
Collapse
Affiliation(s)
- Chi-Wen Tseng
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anna Kanci
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine Citti
- Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine, Vienna, A-1210 Vienna, Austria.,INRA, ENVT, UMR 1225, 31076 Toulouse, France
| | - Renate Rosengarten
- Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine, Vienna, A-1210 Vienna, Austria
| | - Chien-Ju Chiu
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zheng-Hong Chen
- Microbiology Department, Basic Medical College, Guiyang Medical University, Guiyang, Guizhou 550004, PR China
| | - Steven J Geary
- Center of Excellence for Vaccine Research, Department of Pathobiology and Veterinary Science, The University of Connecticut, Storrs, Connecticut 06269, USA
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Molecular mechanism of the Escherichia coli maltose transporter. Curr Opin Struct Biol 2013; 23:492-8. [PMID: 23628288 DOI: 10.1016/j.sbi.2013.03.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/19/2013] [Accepted: 03/30/2013] [Indexed: 01/20/2023]
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins that import and export a large variety of materials across the lipid bilayer. A key question that drives ABC transporter research is how ATP hydrolysis is coupled to substrate translocation. This review uses the maltose transporter of Escherichia coli as a model system to understand the molecular mechanism of ABC importers. X-ray crystallography was used to capture the structures of the maltose transporter in multiple conformations. These structures, interpreted in the light of functional data, are discussed to address the following questions: first, what is the nature of conformational changes in a transport cycle? Second, how does substrate activate ATPase activity? Third, how does ATP hydrolysis enable substrate transport?
Collapse
|
18
|
Jacso T, Schneider E, Rupp B, Reif B. Substrate transport activation is mediated through second periplasmic loop of transmembrane protein MalF in maltose transport complex of Escherichia coli. J Biol Chem 2012; 287:17040-17049. [PMID: 22451670 DOI: 10.1074/jbc.m112.340679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a recent study we described the second periplasmic loop P2 of the transmembrane protein MalF (MalF-P2) of the maltose ATP-binding cassette transporter (MalFGK(2)-E) as an important element in the recognition of substrate by the maltose-binding protein MalE. In this study, we focus on MalE and find that MalE undergoes a structural rearrangement after addition of MalF-P2. Analysis of residual dipolar couplings (RDCs) shows that binding of MalF-P2 induces a semiopen state of MalE in the presence and absence of maltose, whereas maltose is retained in the binding pocket. These data are in agreement with paramagnetic relaxation enhancement experiments. After addition of MalF-P2, an increased solvent accessibility for residues in the vicinity of the maltose-binding site of MalE is observed. MalF-P2 is thus not only responsible for substrate recognition, but also directly involved in activation of substrate transport. The observation that substrate-bound and substrate-free MalE in the presence of MalF-P2 adopts a similar semiopen state hints at the origin of the futile ATP hydrolysis of MalFGK(2)-E.
Collapse
Affiliation(s)
- Tomas Jacso
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany; Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Erwin Schneider
- Institut für Biologie, AG Bakterienphysiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | - Bernd Rupp
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Bernd Reif
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany; Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
19
|
Oh MH, Clouse SD, Huber SC. Tyrosine Phosphorylation of the BRI1 Receptor Kinase Occurs via a Post-Translational Modification and is Activated by the Juxtamembrane Domain. FRONTIERS IN PLANT SCIENCE 2012; 3:175. [PMID: 22891071 PMCID: PMC3413876 DOI: 10.3389/fpls.2012.00175] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/15/2012] [Indexed: 05/05/2023]
Abstract
In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct and thus while most animal receptor kinases are tyrosine kinases the plant receptor kinases are classified as serine/threonine kinases. One of the best studied plant receptor kinases is Brassinosteroid Insensitive 1 (BRI1), which functions in brassinosteroid signaling. Consistent with its classification, BRI1 was shown in early studies to autophosphorylate in vitro exclusively on serine and threonine residues and subsequently numerous specific phosphoserine and phosphothreonine sites were identified. However, several sites of tyrosine autophosphorylation have recently been identified establishing that BRI1 is a dual-specificity kinase. This raises the paradox that BRI1 contains phosphotyrosine but was only observed to autophosphorylate on serine and threonine sites. In the present study, we demonstrate that autophosphorylation on threonine and tyrosine (and presumably serine) residues is a post-translational modification, ruling out a co-translational mechanism that could explain the paradox. Moreover, we show that in general, autophosphorylation of the recombinant protein appears to be hierarchical and proceeds in the order: phosphoserine > phosphothreonine > phosphotyrosine. This may explain why tyrosine autophosphorylation was not observed in some studies. Finally, we also show that the juxtamembrane domain of BRI1 is an activator of the kinase domain, and that kinase specificity (serine/threonine versus tyrosine) can be affected by residues outside of the kinase domain. This may have implications for identification of signature motifs that distinguish serine/threonine kinases from dual-specificity kinases.
Collapse
Affiliation(s)
- Man-Ho Oh
- United States Department of Agriculture, Agricultural Research Service, University of IllinoisUrbana, IL, USA
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
| | - Steven D. Clouse
- Department of Horticultural Science, North Carolina State UniversityRaleigh, NC, USA
| | - Steven C. Huber
- United States Department of Agriculture, Agricultural Research Service, University of IllinoisUrbana, IL, USA
- Department of Plant Biology, University of IllinoisUrbana, IL, USA
- *Correspondence: Steven C. Huber, Department of Plant Biology, University of Illinois, 1201 West Gregory Drive, 197 ERML, Urbana, IL 61801, USA; United States Department of Agriculture, Agricultural Research Service, University of Illinois, 1201 West Gregory Drive, 197 ERML, Urbana, IL 61801, USA. e-mail:
| |
Collapse
|
20
|
Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins. Proc Natl Acad Sci U S A 2011; 108:E1285-92. [PMID: 22084072 DOI: 10.1073/pnas.1112534108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Numerous membrane importers rely on accessory water-soluble proteins to capture their substrates. These substrate-binding proteins (SBP) have a strong affinity for their ligands; yet, substrate release onto the low-affinity membrane transporter must occur for uptake to proceed. It is generally accepted that release is facilitated by the association of SBP and transporter, upon which the SBP adopts a conformation similar to the unliganded state, whose affinity is sufficiently reduced. Despite the appeal of this mechanism, however, direct supporting evidence is lacking. Here, we use experimental and theoretical methods to demonstrate that an allosteric mechanism of enhanced substrate release is indeed plausible. First, we report the atomic-resolution structure of apo TeaA, the SBP of the Na(+)-coupled ectoine TRAP transporter TeaBC from Halomonas elongata DSM2581(T), and compare it with the substrate-bound structure previously reported. Conformational free-energy landscape calculations based upon molecular dynamics simulations are then used to dissect the mechanism that couples ectoine binding to structural change in TeaA. These insights allow us to design a triple mutation that biases TeaA toward apo-like conformations without directly perturbing the binding cleft, thus mimicking the influence of the membrane transporter. Calorimetric measurements demonstrate that the ectoine affinity of the conformationally biased triple mutant is 100-fold weaker than that of the wild type. By contrast, a control mutant predicted to be conformationally unbiased displays wild-type affinity. This work thus demonstrates that substrate release from SBPs onto their membrane transporters can be facilitated by the latter through a mechanism of allosteric modulation of the former.
Collapse
|
21
|
Tschapek B, Pittelkow M, Sohn-Bösser L, Holtmann G, Smits SHJ, Gohlke H, Bremer E, Schmitt L. Arg149 is involved in switching the low affinity, open state of the binding protein AfProX into its high affinity, closed state. J Mol Biol 2011; 411:36-52. [PMID: 21664363 DOI: 10.1016/j.jmb.2011.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/21/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
The substrate binding protein AfProX from the Archaeoglobus fulgidus ProU ATP binding cassette transporter is highly selective for the compatible solutes glycine betaine (GB) and proline betaine, which confer thermoprotection to this hyperthermophilic archaeon. A detailed mutational analysis of the substrate binding site revealed the contribution of individual amino acids for ligand binding. Replacement of Arg149 by an Ala residue displayed the largest impact on substrate binding. The structure of a mutant AfProX protein (substitution of Tyr111 with Ala) in complex with GB was solved in the open liganded conformation to gain further insight into ligand binding. In this crystal structure, GB is bound differently compared to the GB closed liganded structure of the wild-type AfProX protein. We found that a network of amino acid side chains communicates the presence of GB toward Arg149, which increases ligand affinity and induces domain closure of AfProX. These results were corroborated by molecular dynamics studies and support the view that Arg149 finalizes the high-affinity state of the AfProX substrate binding protein.
Collapse
Affiliation(s)
- Britta Tschapek
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pittelkow M, Tschapek B, Smits SHJ, Schmitt L, Bremer E. The crystal structure of the substrate-binding protein OpuBC from Bacillus subtilis in complex with choline. J Mol Biol 2011; 411:53-67. [PMID: 21658392 DOI: 10.1016/j.jmb.2011.05.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis can synthesize the compatible solute glycine betaine as an osmoprotectant from an exogenous supply of the precursor choline. Import of choline is mediated by two osmotically inducible ABC transport systems: OpuB and OpuC. OpuC catalyzes the import of various osmoprotectants, whereas OpuB is highly specific for choline. OpuBC is the substrate-binding protein of the OpuB transporter, and we have analyzed the affinity of the OpuBC/choline complex by intrinsic tryptophan fluorescence and determined a K(d) value of about 30 μM. The X-ray crystal structure of the OpuBC/choline complex was solved at a resolution of 1.6 Å and revealed a fold typical of class II substrate-binding proteins. The positively charged trimethylammonium head group of choline is wedged into an aromatic cage formed by four tyrosine residues and is bound via cation-pi interactions. The hydroxyl group of choline protrudes out of this aromatic cage and makes a single interaction with residue Gln19. The substitution of this residue by Ala decreases choline binding affinity by approximately 15-fold. A water network stabilizes choline within its substrate-binding site and promotes indirect interactions between the two lobes of the OpuBC protein. Disruption of this intricate water network by site-directed mutagenesis of selected residues in OpuBC either strongly reduces choline binding affinity (between 18-fold and 25-fold) or abrogates ligand binding. The crystal structure of the OpuBC/choline complex provides a rational for the observed choline specificity of the OpuB ABC importer in vivo and explains its inability to catalyze the import of glycine betaine into osmotically stressed B. subtilis cells.
Collapse
Affiliation(s)
- Marco Pittelkow
- Laboratory for Microbiology, Department of Biology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Schneider E, Eckey V, Weidlich D, Wiesemann N, Vahedi-Faridi A, Thaben P, Saenger W. Receptor-transporter interactions of canonical ATP-binding cassette import systems in prokaryotes. Eur J Cell Biol 2011; 91:311-7. [PMID: 21561685 DOI: 10.1016/j.ejcb.2011.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transport systems mediate the translocation of solutes across biological membranes at the expense of ATP. They share a common modular architecture comprising two pore-forming transmembrane domains and two nucleotide binding domains. In prokaryotes, ABC transporters are involved in the uptake of a large variety of chemicals, including nutrients, osmoprotectants and signal molecules. In pathogenic bacteria, some ABC importers are virulence factors. Canonical ABC import systems require an additional component, a substrate-specific receptor or binding protein for function. Interaction of the liganded receptor with extracytoplasmic loop regions of the transmembrane domains initiate the transport cycle. In this review we summarize the current knowledge on receptor-transporter interplay provided by crystal structures as well as by biochemical and biophysical means. In particular, we focus on the maltose/maltodextrin transporter of enterobacteria and the transporters for positively charged amino acids from the thermophile Geobacillus stearothermophilus and Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Erwin Schneider
- Institut für Biologie, AG Bakterienphysiologie, Humboldt Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|