1
|
Robinson MJ, Newbury S, Singh K, Leonenko Z, Beazely MA. The Interplay Between Cholesterol and Amyloid-β on HT22 Cell Viability, Morphology, and Receptor Tyrosine Kinase Signaling. J Alzheimers Dis 2023; 96:1663-1683. [PMID: 38073391 DOI: 10.3233/jad-230753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-β (Aβ) pathology, but these therapeutics have generally failed in clinical trials. Aβ is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE This work elucidates some of the interplay between membrane cholesterol and Aβ42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS The effects of cholesterol depletion by methyl-β-cyclodextrin followed by treatment with Aβ and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS Cell viability studies show that cholesterol depletion was mildly protective against Aβ toxicity. Together cholesterol reduction and Aβ42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aβ42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS Cholesterol depletion impacted the effects of Aβ42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Morgan J Robinson
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Newbury
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Kartar Singh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Michael A Beazely
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
The formation of small aggregates contributes to the neurotoxic effects of tau 45-230. Neurochem Int 2022; 152:105252. [PMID: 34856321 PMCID: PMC8712401 DOI: 10.1016/j.neuint.2021.105252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023]
Abstract
Intracellular deposits of hyperphosphorylated tau are commonly detected in tauopathies. Furthermore, these aggregates seem to play an important role in the pathobiology of these diseases. In the present study, we determined whether the recently identified neurotoxic tau45-230 fragment also formed aggregates in neurodegenerative disorders. The presence of such aggregates was examined in brain samples obtained from Alzheimer's disease (AD) subjects by means of Western blot analysis performed under non-denaturing conditions. Our results showed that a mixture of tau45-230 oligomers of different sizes was easily detectable in brain samples obtained from AD subjects. Our data also suggested that tau45-230 oligomers could be internalized by cultured hippocampal neurons, mainly through a clathrin-mediated mechanism, triggering their degeneration. In addition, in vitro aggregation studies showed that tau45-230 modulated full-length tau aggregation thereby inducing the formation of smaller, and potentially more toxic, aggregates of this microtubule-associated protein. Together, these data identified alternative mechanisms underlying the toxic effects of tau45-230.
Collapse
|
3
|
Bok E, Leem E, Lee BR, Lee JM, Yoo CJ, Lee EM, Kim J. Role of the Lipid Membrane and Membrane Proteins in Tau Pathology. Front Cell Dev Biol 2021; 9:653815. [PMID: 33996814 PMCID: PMC8119898 DOI: 10.3389/fcell.2021.653815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal accumulation of misfolded tau aggregates is a pathological hallmark of various tauopathies including Alzheimer’s disease (AD). Although tau is a cytosolic microtubule-associated protein enriched in neurons, it is also found in extracellular milieu, such as interstitial fluid, cerebrospinal fluid, and blood. Accumulating evidence showed that pathological tau spreads along anatomically connected areas in the brain through intercellular transmission and templated misfolding, thereby inducing neurodegeneration and cognitive dysfunction. In line with this, the spatiotemporal spreading of tau pathology is closely correlated with cognitive decline in AD patients. Although the secretion and uptake of tau involve multiple different pathways depending on tau species and cell types, a growing body of evidence suggested that tau is largely secreted in a vesicle-free forms. In this regard, the interaction of vesicle-free tau with membrane is gaining growing attention due to its importance for both of tau secretion and uptake as well as aggregation. Here, we review the recent literature on the mechanisms of the tau-membrane interaction and highlights the roles of lipids and proteins at the membrane in the tau-membrane interaction as well as tau aggregation.
Collapse
Affiliation(s)
- Eugene Bok
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Eunju Leem
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Bo-Ram Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Ji Min Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Eun Mi Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
4
|
Mei N, Robinson M, Davis JH, Leonenko Z. Melatonin Alters Fluid Phase Coexistence in POPC/DPPC/Cholesterol Membranes. Biophys J 2020; 119:2391-2402. [PMID: 33157120 DOI: 10.1016/j.bpj.2020.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/30/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
The structure and biophysical properties of lipid membranes are important for cellular functions in health and disease. In Alzheimer's disease, the neuronal membrane is a target for toxic amyloid-β (Aβ). Melatonin is an important pineal gland hormone that has been shown to protect against Aβ toxicity in cellular and animal studies, but the molecular mechanism of this protection is not fully understood. Melatonin is a small membrane-active molecule that has been shown to interact with model lipid membranes and alter the membrane biophysical properties, such as membrane molecular order and dynamics. This effect of melatonin has been previously studied in simple model bilayers with one or two lipid components. To make it more relevant to neuronal membranes, we used a more complex ternary lipid mixture as our membrane model. In this study, we used 2H-NMR to investigate the effect of melatonin on the phase behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and cholesterol lipid membranes. We used deuterium-labeled POPC-d31 and DPPC-d62,separately to probe the changes in hydrocarbon chain order as a function of temperature and melatonin concentration. We find that POPC/DPPC/cholesterol at molar proportions of 3:3:2 is close to liquid-disordered/liquid-ordered phase separation and that melatonin can induce phase separation in these ternary mixtures by preferentially incorporating into the disordered phase and increasing its level of disorder. At 5 mol% melatonin, we observed phase separation in samples with POPC-d31, but not with DPPC-d62, whereas at 10 mol% melatonin, phase separation was observed in both samples with either POPC-d31 or DPPC-d62. These results indicate that melatonin can have a strong effect on membrane structure and physical properties, which may provide some clues to understanding how melatonin protects against Aβ, and that choice of chain perdeuteration is an important consideration from a technical point of view.
Collapse
Affiliation(s)
- Nanqin Mei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Morgan Robinson
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - James H Davis
- Department of Physics, University of Guelph, Guelph, Ontario, Canada.
| | - Zoya Leonenko
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
5
|
Dayeh MA, Livadiotis G, Aminian F, Cheng KH, Roberts JL, Viswasam N, Elaydi S. Effects of Cholesterol in Stress-Related Neuronal Death-A Statistical Analysis Perspective. Int J Mol Sci 2020; 21:ijms21082905. [PMID: 32326309 PMCID: PMC7215582 DOI: 10.3390/ijms21082905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
The association between plasma cholesterol levels and the development of dementia continues to be an important topic of discussion in the scientific community, while the results in the literature vary significantly. We study the effect of reducing oxidized neuronal cholesterol on the lipid raft structure of plasma membrane. The levels of plasma membrane cholesterol were reduced by treating the intact cells with methyl-ß-cyclodextrin (MßCD). The relationship between the cell viability with varying levels of MßCD was then examined. The viability curves are well described by a modified form of the empirical Gompertz law of mortality. A detailed statistical analysis is performed on the fitting results, showing that increasing MßCD concentration has a minor, rather than significant, effect on the cellular viability. In particular, the dependence of viability on MßCD concentration was found to be characterized by a ~25% increase per 1 μM of MßCD concentration.
Collapse
Affiliation(s)
- Maher A. Dayeh
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX 78238, USA;
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence:
| | - George Livadiotis
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX 78238, USA;
| | - Farzan Aminian
- Neuroscience Program, Departments of Biology, Mathematics, Engineering and Physics & Astronomy, Trinity University, San Antonio, TX 78212, USA; (F.A.); (K.H.C.); (J.L.R.); (N.V.); (S.E.)
| | - Kwan H. Cheng
- Neuroscience Program, Departments of Biology, Mathematics, Engineering and Physics & Astronomy, Trinity University, San Antonio, TX 78212, USA; (F.A.); (K.H.C.); (J.L.R.); (N.V.); (S.E.)
| | - James L. Roberts
- Neuroscience Program, Departments of Biology, Mathematics, Engineering and Physics & Astronomy, Trinity University, San Antonio, TX 78212, USA; (F.A.); (K.H.C.); (J.L.R.); (N.V.); (S.E.)
| | - Nikita Viswasam
- Neuroscience Program, Departments of Biology, Mathematics, Engineering and Physics & Astronomy, Trinity University, San Antonio, TX 78212, USA; (F.A.); (K.H.C.); (J.L.R.); (N.V.); (S.E.)
| | - Saber Elaydi
- Neuroscience Program, Departments of Biology, Mathematics, Engineering and Physics & Astronomy, Trinity University, San Antonio, TX 78212, USA; (F.A.); (K.H.C.); (J.L.R.); (N.V.); (S.E.)
| |
Collapse
|
6
|
Mahaman YAR, Huang F, Kessete Afewerky H, Maibouge TMS, Ghose B, Wang X. Involvement of calpain in the neuropathogenesis of Alzheimer's disease. Med Res Rev 2018; 39:608-630. [PMID: 30260518 PMCID: PMC6585958 DOI: 10.1002/med.21534] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/11/2018] [Accepted: 07/29/2018] [Indexed: 01/02/2023]
Abstract
Alzheimer’s disease (AD) is the most common (60% to 80%) age‐related disease associated with dementia and is characterized by a deterioration of behavioral and cognitive capacities leading to death in few years after diagnosis, mainly due to complications from chronic illness. The characteristic hallmarks of the disease are extracellular senile plaques (SPs) and intracellular neurofibrillary tangles (NFTs) with neuropil threads, which are a direct result of amyloid precursor protein (APP) processing to Aβ, and τ hyperphosphorylation. However, many indirect underlying processes play a role in this event. One of these underlying mechanisms leading to these histological hallmarks is the uncontrolled hyperactivation of a family of cysteine proteases called calpains. Under normal physiological condition calpains participate in many processes of cells’ life and their activation is tightly controlled. However, with an increase in age, increased oxidative stress and other excitotoxicity assaults, this regulatory system becomes impaired and result in increased activation of these proteases involving them in the pathogenesis of various diseases including neurodegeneration like AD. Reviewed here is a pool of data on the implication of calpains in the pathogenesis of AD, the underlying molecular mechanism, and the potential of targeting these enzymes for AD therapeutics.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Henok Kessete Afewerky
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tanko Mahamane Salissou Maibouge
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bishwajit Ghose
- Department of Social Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Neurodegenerative Disorders, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
7
|
Florenzano F, Veronica C, Ciasca G, Ciotti MT, Pittaluga A, Olivero G, Feligioni M, Iannuzzi F, Latina V, Maria Sciacca MF, Sinopoli A, Milardi D, Pappalardo G, Marco DS, Papi M, Atlante A, Bobba A, Borreca A, Calissano P, Amadoro G. Extracellular truncated tau causes early presynaptic dysfunction associated with Alzheimer's disease and other tauopathies. Oncotarget 2017; 8:64745-64778. [PMID: 29029390 PMCID: PMC5630290 DOI: 10.18632/oncotarget.17371] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration.
Collapse
Affiliation(s)
| | | | - Gabriele Ciasca
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Gunedalina Olivero
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Marco Feligioni
- European Brain Research Institute, Rome, Italy
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | | | | | | | | | - Danilo Milardi
- Institute of Biostructures and Bioimaging, CNR, Catania, Italy
| | | | - De Spirito Marco
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Massimiliano Papi
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Bobba
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Borreca
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
8
|
Afreen S, Riherd Methner DN, Ferreira A. Tau 45-230 association with the cytoskeleton and membrane-bound organelles: Functional implications in neurodegeneration. Neuroscience 2017; 362:104-117. [PMID: 28844006 DOI: 10.1016/j.neuroscience.2017.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
Abstract
The dysregulation of posttranslational modifications of the microtubule-associated protein (MAP) tau plays a key role in Alzheimer's disease (AD) and related disorders. Thus, we have previously shown that beta amyloid (Aβ)-induced neurotoxicity was mediated, at least in part, by tau cleavage into the tau45-230 fragment. However, the mechanisms underlying the toxicity of tau45-230 remain unknown. To get insights into such mechanisms, we first determined the subcellular localization of this tau fragment in hippocampal neurons. Tau45-230 was easily detectable in cell bodies and processes extended by these neurons. In addition, cell extraction experiments performed using Triton X-100 and saponin showed that a pool of tau45-230 was associated with the cytoskeleton and the cytoskeleton plus membrane-bound organelles, respectively, in cultured hippocampal neurons. Furthermore, they suggested that these associations were independent of the presence of full-length tau. We also assessed whether this tau fragment could alter axonal transport. Our results indicated that tau45-230 significantly reduced the number of organelles transported along hippocampal axons. This altered axonal transport did not correlate with changes in the total number of organelles present in these cells or in motor protein levels. Together these results suggested that tau45-230 could exert its toxic effects by partially blocking axonal transport along microtubules thus contributing to the early pathology of AD.
Collapse
Affiliation(s)
- Sana Afreen
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D Nicole Riherd Methner
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade MA, Al-Sarraj S, Troakes C, O’Neill MJ, Perez-Nievas BG, Hanger DP, Noble W. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun 2016; 4:34. [PMID: 27036949 PMCID: PMC4818436 DOI: 10.1186/s40478-016-0299-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/15/2016] [Indexed: 12/05/2022] Open
Abstract
Alterations in calcium homeostasis are widely reported to contribute to synaptic degeneration and neuronal loss in Alzheimer’s disease. Elevated cytosolic calcium concentrations lead to activation of the calcium-sensitive cysteine protease, calpain, which has a number of substrates known to be abnormally regulated in disease. Analysis of human brain has shown that calpain activity is elevated in AD compared to controls, and that calpain-mediated proteolysis regulates the activity of important disease-associated proteins including the tau kinases cyclin-dependent kinase 5 and glycogen kinase synthase-3. Here, we sought to investigate the likely temporal association between these changes during the development of sporadic AD using Braak staged post-mortem brain. Quantification of protein amounts in these tissues showed increased activity of calpain-1 from Braak stage III onwards in comparison to controls, extending previous findings that calpain-1 is upregulated at end-stage disease, and suggesting that activation of calcium-sensitive signalling pathways are sustained from early stages of disease development. Increases in calpain-1 activity were associated with elevated activity of the endogenous calpain inhibitor, calpastatin, itself a known calpain substrate. Activation of the tau kinases, glycogen-kinase synthase-3 and cyclin-dependent kinase 5 were also found to occur in Braak stage II-III brain, and these preceded global elevations in tau phosphorylation and the loss of post-synaptic markers. In addition, we identified transient increases in total amyloid precursor protein and pre-synaptic markers in Braak stage II-III brain, that were lost by end stage Alzheimer's disease, that may be indicative of endogenous compensatory responses to the initial stages of neurodegeneration. These findings provide insight into the molecular events that underpin the progression of Alzheimer's disease, and further highlight the rationale for investigating novel treatment strategies that are based on preventing abnormal calcium homeostasis or blocking increases in the activity of calpain or important calpain substrates.
Collapse
|
10
|
Yang T, Xu Z, Liu W, Xu B, Deng Y. Protective effects of Alpha-lipoic acid on MeHg-induced oxidative damage and intracellular Ca2+dyshomeostasis in primary cultured neurons. Free Radic Res 2016; 50:542-56. [DOI: 10.3109/10715762.2016.1152362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Atherton J, Kurbatskaya K, Bondulich M, Croft CL, Garwood CJ, Chhabra R, Wray S, Jeromin A, Hanger DP, Noble W. Calpain cleavage and inactivation of the sodium calcium exchanger-3 occur downstream of Aβ in Alzheimer's disease. Aging Cell 2014; 13:49-59. [PMID: 23919677 PMCID: PMC4326873 DOI: 10.1111/acel.12148] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2013] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by pathological deposits of β-amyloid (Aβ) in senile plaques, intracellular neurofibrillary tangles (NFTs) comprising hyperphosphorylated aggregated tau, synaptic dysfunction and neuronal death. Substantial evidence indicates that disrupted neuronal calcium homeostasis is an early event in AD that could mediate synaptic dysfunction and neuronal toxicity. Sodium calcium exchangers (NCXs) play important roles in regulating intracellular calcium, and accumulating data suggests that reduced NCX function, following aberrant proteolytic cleavage of these exchangers, may contribute to neurodegeneration. Here, we show that elevated calpain, but not caspase-3, activity is a prominent feature of AD brain. In addition, we observe increased calpain-mediated cleavage of NCX3, but not a related family member NCX1, in AD brain relative to unaffected tissue and that from other neurodegenerative conditions. Moreover, the extent of NCX3 proteolysis correlated significantly with amounts of Aβ1-42. We also show that exposure of primary cortical neurons to oligomeric Aβ1-42 results in calpain-dependent cleavage of NCX3, and we demonstrate that loss of NCX3 function is associated with Aβ toxicity. Our findings suggest that Aβ mediates calpain cleavage of NCX3 in AD brain and therefore that reduced NCX3 activity could contribute to the sustained increases in intraneuronal calcium concentrations that are associated with synaptic and neuronal dysfunction in AD.
Collapse
Affiliation(s)
- Joe Atherton
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| | - Ksenia Kurbatskaya
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| | - Marie Bondulich
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| | - Cara L. Croft
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| | - Claire J. Garwood
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| | - Resham Chhabra
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| | - Selina Wray
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| | - Andreas Jeromin
- NextGenSciences Dx; 155 Federal Street Suite 700 Boston MA 02110 USA
| | - Diane P. Hanger
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| | - Wendy Noble
- Institute of Psychiatry; Department of Neuroscience; King's College London; London SE5 8AF UK
| |
Collapse
|
12
|
Ferreira A. Calpain dysregulation in Alzheimer's disease. ISRN BIOCHEMISTRY 2012; 2012:728571. [PMID: 25969760 PMCID: PMC4393001 DOI: 10.5402/2012/728571] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/12/2012] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of senile plaques and neurofibrillary tangles in the neocortex and hippocampus of AD patients. In addition, a marked decrease in synaptic contacts has been detected in these affected brain areas. Due to its prevalence in the aging population, this disease has been the focus of numerous studies. The data obtained from those studies suggest that the mechanisms leading to the formation of the hallmark lesions of AD might be linked. One of such mechanisms seems to be the dysregulation of calcium homeostasis that results in the abnormal activation of calpains. Calpains are a family of Ca(2+)-dependent cysteine proteases that play a key role in multiple cell functions including cell development, differentiation and proliferation, axonal guidance, growth cone motility, and cell death, among others. In this paper, we briefly reviewed data on the structure of these proteases and their regulation under normal conditions. We also summarized data underscoring the participation of calpains in the neurodegenerative mechanisms associated with AD.
Collapse
Affiliation(s)
- Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 8-140, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Reinecke JB, DeVos SL, McGrath JP, Shepard AM, Goncharoff DK, Tait DN, Fleming SR, Vincent MP, Steinhilb ML. Implicating calpain in tau-mediated toxicity in vivo. PLoS One 2011; 6:e23865. [PMID: 21858230 PMCID: PMC3157467 DOI: 10.1371/journal.pone.0023865] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/26/2011] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease and other related neurodegenerative disorders known as tauopathies are characterized by the accumulation of abnormally phosphorylated and aggregated forms of the microtubule-associated protein tau. Several laboratories have identified a 17 kD proteolytic fragment of tau in degenerating neurons and in numerous cell culture models that is generated by calpain cleavage and speculated to contribute to tau toxicity. In the current study, we employed a Drosophila tauopathy model to investigate the importance of calpain-mediated tau proteolysis in contributing to tau neurotoxicity in an animal model of human neurodegenerative disease. We found that mutations that disrupted endogenous calpainA or calpainB activity in transgenic flies suppressed tau toxicity. Expression of a calpain-resistant form of tau in Drosophila revealed that mutating the putative calpain cleavage sites that produce the 17 kD fragment was sufficient to abrogate tau toxicity in vivo. Furthermore, we found significant toxicity in the fly retina associated with expression of only the 17 kD tau fragment. Collectively, our data implicate calpain-mediated proteolysis of tau as an important pathway mediating tau neurotoxicity in vivo.
Collapse
Affiliation(s)
- James B. Reinecke
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Sarah L. DeVos
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - James P. McGrath
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Amanda M. Shepard
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Dustin K. Goncharoff
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Don N. Tait
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Samantha R. Fleming
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Michael P. Vincent
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ferreira A, Bigio EH. Calpain-mediated tau cleavage: a mechanism leading to neurodegeneration shared by multiple tauopathies. Mol Med 2011; 17:676-85. [PMID: 21442128 DOI: 10.2119/molmed.2010.00220] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 03/18/2011] [Indexed: 12/14/2022] Open
Abstract
Tau dysfunction has been associated with a host of neurodegenerative diseases called tauopathies. These diseases share, as a common pathological hallmark, the presence of intracellular aggregates of hyperphosphorylated tau in affected brain areas. Aside from tau hyperphosphorylation, little is known about the role of other posttranslational modifications in tauopathies. Recently, we obtained data suggesting that calpain-mediated tau cleavage leading to the generation of a neurotoxic tau fragment might play an important role in Alzheimer's disease. In the current study, we assessed the presence of this tau fragment in several tauopathies. Our results show high levels of the 17-kDa tau fragment and enhanced calpain activity in the temporal cortex of AD patients and in brain samples obtained from patients with other tauopathies. In addition, our data suggest that this fragment could partially inhibit tau aggregation. Conversely, tau aggregation might prevent calpain-mediated cleavage, establishing a feedback circuit that might lead to the accumulation of this toxic tau fragment. Collectively, these data suggest that the mechanism underlying the generation of the 17-kDa neurotoxic tau fragment might be part of a conserved pathologic process shared by multiple tauopathies.
Collapse
Affiliation(s)
- Adriana Ferreira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | |
Collapse
|