1
|
Hoeser F, Saura P, Harter C, Kaila VRI, Friedrich T. A leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I. Chem Sci 2025; 16:7374-7386. [PMID: 40151474 PMCID: PMC11938283 DOI: 10.1039/d4sc04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Respiratory complex I is a central enzyme of cellular energy metabolism that couples electron transfer with proton translocation across a biological membrane. In doing so, it powers oxidative phosphorylation that drives energy consuming processes. Mutations in complex I lead to severe neurodegenerative diseases in humans. However, the biochemical consequences of these mutations remain largely unknown. Here, we use the Escherichia coli complex I as a model to biochemically characterize the F124LMT-ND5 mutation found in patients suffering from Leigh syndrome. We show that the mutation drastically perturbs proton translocation and electron transfer activities to the same extent, despite the remarkable 140 Å distance between the mutated position and the electron transfer domain. Our molecular dynamics simulations suggest that the disease-causing mutation induces conformational changes that hamper the propagation of an electric wave through an ion-paired network essential for proton translocation. Our findings imply that malfunction of the proton translocation domain is entirely transmitted to the electron transfer domain underlining the action-at-a-distance coupling in the proton-coupled electron transfer of respiratory complex I.
Collapse
Affiliation(s)
- Franziska Hoeser
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University Sweden
| | - Caroline Harter
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University Sweden
| | | |
Collapse
|
2
|
Beghiah A, Saura P, Badolato S, Kim H, Zipf J, Auman D, Gamiz-Hernandez AP, Berg J, Kemp G, Kaila VRI. Dissected antiporter modules establish minimal proton-conduction elements of the respiratory complex I. Nat Commun 2024; 15:9098. [PMID: 39438463 PMCID: PMC11496545 DOI: 10.1038/s41467-024-53194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The respiratory Complex I is a highly intricate redox-driven proton pump that powers oxidative phosphorylation across all domains of life. Yet, despite major efforts in recent decades, its long-range energy transduction principles remain highly debated. We create here minimal proton-conducting membrane modules by engineering and dissecting the key elements of the bacterial Complex I. By combining biophysical, biochemical, and computational experiments, we show that the isolated antiporter-like modules of Complex I comprise all functional elements required for conducting protons across proteoliposome membranes. We find that the rate of proton conduction is controlled by conformational changes of buried ion-pairs that modulate the reaction barriers by electric field effects. The proton conduction is also modulated by bulky residues along the proton channels that are key for establishing a tightly coupled proton pumping machinery in Complex I. Our findings provide direct experimental evidence that the individual antiporter modules are responsible for the proton transport activity of Complex I. On a general level, our findings highlight electrostatic and conformational coupling mechanisms in the modular energy-transduction machinery of Complex I with distinct similarities to other enzymes.
Collapse
Affiliation(s)
- Adel Beghiah
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sofia Badolato
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Johanna Zipf
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Dirk Auman
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Johan Berg
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Grant Kemp
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
3
|
Valentin-Alvarado LE, Appler KE, De Anda V, Schoelmerich MC, West-Roberts J, Kivenson V, Crits-Christoph A, Ly L, Sachdeva R, Greening C, Savage DF, Baker BJ, Banfield JF. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat Commun 2024; 15:6384. [PMID: 39085194 PMCID: PMC11291895 DOI: 10.1038/s41467-024-49872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
The roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of genes for [NiFe]-hydrogenases, pyruvate oxidation and carbon fixation via the Wood-Ljungdahl pathway. Also expressed are genes encoding enzymes for amino acid metabolism, anaerobic aldehyde oxidation, hydrogen peroxide detoxification and carbohydrate breakdown to acetate and formate. Overall, soil-associated Asgard archaea are predicted to include non-methanogenic acetogens, highlighting their potential role in carbon cycling in terrestrial environments.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Kathryn E Appler
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Environmental Systems Sciences; ETH Zürich, Zürich, Switzerland
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Veronika Kivenson
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexander Crits-Christoph
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Cultivarium, Watertown, MA, USA
| | - Lynn Ly
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute; Monash University, Clayton, VIC, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Microbiology, Biomedicine Discovery Institute; Monash University, Clayton, VIC, Australia.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
| |
Collapse
|
4
|
Djurabekova A, Lasham J, Zdorevskyi O, Zickermann V, Sharma V. Long-range electron proton coupling in respiratory complex I - insights from molecular simulations of the quinone chamber and antiporter-like subunits. Biochem J 2024; 481:499-514. [PMID: 38572757 DOI: 10.1042/bcj20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Respiratory complex I is a redox-driven proton pump. Several high-resolution structures of complex I have been determined providing important information about the putative proton transfer paths and conformational transitions that may occur during catalysis. However, how redox energy is coupled to the pumping of protons remains unclear. In this article, we review biochemical, structural and molecular simulation data on complex I and discuss several coupling models, including the key unresolved mechanistic questions. Focusing both on the quinone-reductase domain as well as the proton-pumping membrane-bound domain of complex I, we discuss a molecular mechanism of proton pumping that satisfies most experimental and theoretical constraints. We suggest that protonation reactions play an important role not only in catalysis, but also in the physiologically-relevant active/deactive transition of complex I.
Collapse
Affiliation(s)
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Grba DN, Chung I, Bridges HR, Agip ANA, Hirst J. Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I. SCIENCE ADVANCES 2023; 9:eadi1359. [PMID: 37531432 PMCID: PMC10396290 DOI: 10.1126/sciadv.adi1359] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Respiratory complex I, a key enzyme in mammalian metabolism, captures the energy released by reduction of ubiquinone by NADH to drive protons across the inner mitochondrial membrane, generating the proton-motive force for ATP synthesis. Despite remarkable advances in structural knowledge of this complicated membrane-bound enzyme, its mechanism of catalysis remains controversial. In particular, how ubiquinone reduction is coupled to proton pumping and the pathways and mechanisms of proton translocation are contested. We present a 2.4-Å resolution cryo-EM structure of complex I from mouse heart mitochondria in the closed, active (ready-to-go) resting state, with 2945 water molecules modeled. By analyzing the networks of charged and polar residues and water molecules present, we evaluate candidate pathways for proton transfer through the enzyme, for the chemical protons for ubiquinone reduction, and for the protons transported across the membrane. Last, we compare our data to the predictions of extant mechanistic models, and identify key questions to answer in future work to test them.
Collapse
|
6
|
Zdorevskyi O, Djurabekova A, Lasham J, Sharma V. Horizontal proton transfer across the antiporter-like subunits in mitochondrial respiratory complex I. Chem Sci 2023; 14:6309-6318. [PMID: 37325138 PMCID: PMC10266447 DOI: 10.1039/d3sc01427d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Respiratory complex I is a redox-driven proton pump contributing to about 40% of total proton motive force required for mitochondrial ATP generation. Recent high-resolution cryo-EM structural data revealed the positions of several water molecules in the membrane domain of the large enzyme complex. However, it remains unclear how protons flow in the membrane-bound antiporter-like subunits of complex I. Here, we performed multiscale computer simulations on high-resolution structural data to model explicit proton transfer processes in the ND2 subunit of complex I. Our results show protons can travel the entire width of antiporter-like subunits, including at the subunit-subunit interface, parallel to the membrane. We identify a previously unrecognized role of conserved tyrosine residues in catalyzing horizontal proton transfer, and that long-range electrostatic effects assist in reducing energetic barriers of proton transfer dynamics. Results from our simulations warrant a revision in several prevailing proton pumping models of respiratory complex I.
Collapse
Affiliation(s)
| | | | - Jonathan Lasham
- Department of Physics, University of Helsinki Helsinki Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki Helsinki Finland
- HiLIFE Institute of Biotechnology, University of Helsinki Helsinki Finland
| |
Collapse
|
7
|
Abstract
We present a brief review of the mitochondrial respiratory chain with emphasis on complexes I, III and IV, which contribute to the generation of protonmotive force across the inner mitochondrial membrane, and drive the synthesis of ATP by the process called oxidative phosphorylation. The basic structural and functional details of these complexes are discussed. In addition, we briefly review the information on the so-called supercomplexes, aggregates of complexes I-IV, and summarize basic physiological aspects of cell respiration.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland.
| | - Cristina Pecorilla
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| | - Vivek Sharma
- HiLife Institute of Biotechnology, University of Helsinki, Biocenter, Viikinkaari, Helsinki, Finland; Department of Physics, University of Helsinki, Gustaf Hällströmin katu, Helsinki, Finland
| |
Collapse
|
8
|
Wikström M, Djurabekova A, Sharma V. On the role of ubiquinone in the proton translocation mechanism of respiratory complex I. FEBS Lett 2023; 597:224-236. [PMID: 36180980 DOI: 10.1002/1873-3468.14506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 01/26/2023]
Abstract
Complex I converts oxidoreduction energy into a proton electrochemical gradient across the inner mitochondrial or bacterial cell membrane. This gradient is the primary source of energy for aerobic synthesis of ATP. Oxidation of reduced nicotinamide adenine dinucleotide (NADH) by ubiquinone (Q) yields NAD+ and ubiquinol (QH2 ), which is tightly coupled to translocation of four protons from the negatively to the positively charged side of the membrane. Electrons from NADH oxidation reach the iron-sulfur centre N2 positioned near the bottom of a tunnel that extends circa 30 Å from the membrane domain into the hydrophilic domain of the complex. The tunnel is occupied by ubiquinone, which can take a distal position near the N2 centre or proximal positions closer to the membrane. Here, we review important structural, kinetic and thermodynamic properties of ubiquinone that define its role in complex I function. We suggest that this function exceeds that of a mere substrate or electron acceptor and propose that ubiquinone may be the redox element of complex I coupling electron transfer to proton translocation.
Collapse
Affiliation(s)
- Mårten Wikström
- HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| | | | - Vivek Sharma
- HiLIFE Institute of Biotechnology, University of Helsinki, Finland.,Department of Physics, University of Helsinki, Finland
| |
Collapse
|
9
|
Stuchebrukhov AA, Hayashi T. Single protonation of the reduced quinone in respiratory complex I drives four-proton pumping. FEBS Lett 2023; 597:237-245. [PMID: 36251339 PMCID: PMC9877130 DOI: 10.1002/1873-3468.14518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 01/29/2023]
Abstract
Complex I is a key proton-pumping enzyme in bacterial and mitochondrial respiratory electron transport chains. Using quantum chemistry and electrostatic calculations, we have examined the pKa of the reduced quinone QH-/QH2 in the catalytic cavity of complex I. We find that pKa (QH-/QH2) is very high, above 20. This means that the energy of a single protonation reaction of the doubly reduced quinone (i.e. the reduced semiquinone QH-) is sufficient to drive four protons across the membrane with a potential of 180 mV. Based on these calculations, we propose a possible scheme of redox-linked proton pumping by complex I. The model explains how the energy of the protonation reaction can be divided equally among four pumping units of the pump, and how a single proton can drive translocation of four additional protons in multiple pumping blocks.
Collapse
Affiliation(s)
| | - Tomoyuki Hayashi
- Department of Chemistry, University of California, Davis, CA 95616
| |
Collapse
|
10
|
Jarman OD, Hirst J. Membrane-domain mutations in respiratory complex I impede catalysis but do not uncouple proton pumping from ubiquinone reduction. PNAS NEXUS 2022; 1:pgac276. [PMID: 36712358 PMCID: PMC9802314 DOI: 10.1093/pnasnexus/pgac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Respiratory complex I [NADH:ubiquinone (UQ) oxidoreductase] captures the free energy released from NADH oxidation and UQ reduction to pump four protons across an energy-transducing membrane and power ATP synthesis. Mechanisms for long-range energy coupling in complex I have been proposed from structural data but not yet evaluated by robust biophysical and biochemical analyses. Here, we use the powerful bacterial model system Paracoccus denitrificans to investigate 14 mutations of key residues in the membrane-domain Nqo13/ND4 subunit, defining the rates and reversibility of catalysis and the number of protons pumped per NADH oxidized. We reveal new insights into the roles of highly conserved charged residues in lateral energy transduction, confirm the purely structural role of the Nqo12/ND5 transverse helix, and evaluate a proposed hydrated channel for proton uptake. Importantly, even when catalysis is compromised the enzyme remains strictly coupled (four protons are pumped per NADH oxidized), providing no evidence for escape cycles that circumvent blocked proton-pumping steps.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
11
|
Kampjut D, Sazanov LA. Structure of respiratory complex I – An emerging blueprint for the mechanism. Curr Opin Struct Biol 2022; 74:102350. [PMID: 35316665 PMCID: PMC7613608 DOI: 10.1016/j.sbi.2022.102350] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I.
Collapse
|
12
|
Cyclic Electron Flow-Coupled Proton Pumping in Synechocystis sp. PCC6803 Is Dependent upon NADPH Oxidation by the Soluble Isoform of Ferredoxin:NADP-Oxidoreductase. Microorganisms 2022; 10:microorganisms10050855. [PMID: 35630303 PMCID: PMC9144156 DOI: 10.3390/microorganisms10050855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Ferredoxin:NADP-oxidoreductase (FNR) catalyzes the reversible exchange of electrons between ferredoxin (Fd) and NADP(H). Reduction of NADP+ by Fd via FNR is essential in the terminal steps of photosynthetic electron transfer, as light-activated electron flow produces NADPH for CO2 assimilation. FNR also catalyzes the reverse reaction in photosynthetic organisms, transferring electrons from NADPH to Fd, which is important in cyanobacteria for respiration and cyclic electron flow (CEF). The cyanobacterium Synechocystis sp. PCC6803 possesses two isoforms of FNR, a large form attached to the phycobilisome (FNRL) and a small form that is soluble (FNRS). While both isoforms are capable of NADPH oxidation or NADP+ reduction, FNRL is most abundant during typical growth conditions, whereas FNRS accumulates under stressful conditions that require enhanced CEF. Because CEF-driven proton pumping in the light–dark transition is due to NDH-1 complex activity and they are powered by reduced Fd, CEF-driven proton pumping and the redox state of the PQ and NADP(H) pools were investigated in mutants possessing either FNRL or FNRS. We found that the FNRS isoform facilitates proton pumping in the dark–light transition, contributing more to CEF than FNRL. FNRL is capable of providing reducing power for CEF-driven proton pumping, but only after an adaptation period to illumination. The results support that FNRS is indeed associated with increased cyclic electron flow and proton pumping, which is consistent with the idea that stress conditions create a higher demand for ATP relative to NADPH.
Collapse
|
13
|
Cloning and Organelle Expression of Bamboo Mitochondrial Complex I Subunits Nad1, Nad2, Nad4, and Nad5 in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23074054. [PMID: 35409414 PMCID: PMC8999482 DOI: 10.3390/ijms23074054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial respiratory complex I catalyzes electron transfer from NADH to ubiquinone and pumps protons from the matrix into the intermembrane space. In particular, the complex I subunits Nad1, Nad2, Nad4, and Nad5, which are encoded by the nad1, nad2, nad4, and nad5 genes, reside at the mitochondrial inner membrane and possibly function as proton (H+) and ion translocators. To understand the individual functional roles of the Nad1, Nad2, Nad4, and Nad5 subunits in bamboo, each cDNA of these four genes was cloned into the pYES2 vector and expressed in the mitochondria of the yeast Saccharomyces cerevisiae. The mitochondrial targeting peptide mt gene (encoding MT) and the egfp marker gene (encoding enhanced green fluorescent protein, EGFP) were fused at the 5'-terminal and 3'-terminal ends, respectively. The constructed plasmids were then transformed into yeast. RNA transcripts and fusion protein expression were observed in the yeast transformants. Mitochondrial localizations of the MT-Nad1-EGFP, MT-Nad2-EGFP, MT-Nad4-EGFP, and MT-Nad5-EGFP fusion proteins were confirmed by fluorescence microscopy. The ectopically expressed bamboo subunits Nad1, Nad2, Nad4, and Nad5 may function in ion translocation, which was confirmed by growth phenotype assays with the addition of different concentrations of K+, Na+, or H+.
Collapse
|
14
|
Djurabekova A, Galemou Yoga E, Nyman A, Pirttikoski A, Zickermann V, Haapanen O, Sharma V. Docking and molecular simulations reveal a quinone binding site on the surface of respiratory complex I. FEBS Lett 2022; 596:1133-1146. [PMID: 35363885 DOI: 10.1002/1873-3468.14346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
The first component of the mitochondrial electron transport chain is respiratory complex I. Several high-resolution structures of complex I from different species have been resolved. However, despite these significant achievements, the mechanism of redox-coupled proton pumping remains elusive. Here, we combined atomistic docking, molecular dynamics simulations and site-directed mutagenesis on respiratory complex I from Yarrowia lipolytica to identify a quinone (Q) binding site on its surface near the horizontal amphipathic helices of ND1 and NDUFS7 subunits. The surface-bound Q makes stable interactions with conserved charged and polar residues, including the highly conserved Arg72 from the NDUFS7 subunit. The binding and dynamics of a Q molecule at the surface-binding site raises interesting possibilities about the mechanism of complex I, which are discussed.
Collapse
Affiliation(s)
| | - Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Aino Nyman
- Department of Physics, University of Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
15
|
Kaila VRI. Resolving Chemical Dynamics in Biological Energy Conversion: Long-Range Proton-Coupled Electron Transfer in Respiratory Complex I. Acc Chem Res 2021; 54:4462-4473. [PMID: 34894649 PMCID: PMC8697550 DOI: 10.1021/acs.accounts.1c00524] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Biological energy conversion is catalyzed by membrane-bound proteins
that transduce chemical or light energy into energy forms that power
endergonic processes in the cell. At a molecular level, these catalytic
processes involve elementary electron-, proton-, charge-, and energy-transfer
reactions that take place in the intricate molecular machineries of
cell respiration and photosynthesis. Recent developments in structural
biology, particularly cryo-electron microscopy (cryoEM), have resolved
the molecular architecture of several energy transducing proteins,
but detailed mechanistic principles of their charge transfer reactions
still remain poorly understood and a major challenge for modern biochemical
research. To this end, multiscale molecular simulations provide a
powerful approach to probe mechanistic principles on a broad range
of time scales (femtoseconds to milliseconds) and spatial resolutions
(101–106 atoms), although technical challenges
also require balancing between the computational accuracy, cost, and
approximations introduced within the model. Here we discuss how the
combination of atomistic (aMD) and hybrid quantum/classical molecular
dynamics (QM/MM MD) simulations with free energy (FE) sampling methods
can be used to probe mechanistic principles of enzymes responsible
for biological energy conversion. We present mechanistic explorations
of long-range proton-coupled electron transfer (PCET) dynamics in
the highly intricate respiratory chain enzyme Complex I, which functions
as a redox-driven proton pump in bacterial and mitochondrial respiratory
chains by catalyzing a 300 Å fully reversible PCET process. This
process is initiated by a hydride (H–) transfer
between NADH and FMN, followed by long-range (>100 Å) electron
transfer along a wire of 8 FeS centers leading to a quinone biding
site. The reduction of the quinone to quinol initiates dissociation
of the latter to a second membrane-bound binding site, and triggers
proton pumping across the membrane domain of complex I, in subunits
up to 200 Å away from the active site. Our simulations across
different size and time scales suggest that transient charge transfer
reactions lead to changes in the internal hydration state of key regions,
local electric fields, and the conformation of conserved ion pairs,
which in turn modulate the dynamics of functional steps along the
reaction cycle. Similar functional principles, which operate on much
shorter length scales, are also found in some unrelated proteins,
suggesting that enzymes may employ conserved principles in the catalysis
of biological energy transduction processes.
Collapse
Affiliation(s)
- Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
16
|
Biochemical consequences of two clinically relevant ND-gene mutations in Escherichia coli respiratory complex I. Sci Rep 2021; 11:12641. [PMID: 34135385 PMCID: PMC8209014 DOI: 10.1038/s41598-021-91631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
NADH:ubiquinone oxidoreductase (respiratory complex I) plays a major role in energy metabolism by coupling electron transfer from NADH to quinone with proton translocation across the membrane. Complex I deficiencies were found to be the most common source of human mitochondrial dysfunction that manifest in a wide variety of neurodegenerative diseases. Seven subunits of human complex I are encoded by mitochondrial DNA (mtDNA) that carry an unexpectedly large number of mutations discovered in mitochondria from patients’ tissues. However, whether or how these genetic aberrations affect complex I at a molecular level is unknown. Here, we used Escherichia coli as a model system to biochemically characterize two mutations that were found in mtDNA of patients. The V253AMT-ND5 mutation completely disturbed the assembly of complex I, while the mutation D199GMT-ND1 led to the assembly of a stable complex capable to catalyze redox-driven proton translocation. However, the latter mutation perturbs quinone reduction leading to a diminished activity. D199MT-ND1 is part of a cluster of charged amino acid residues that are suggested to be important for efficient coupling of quinone reduction and proton translocation. A mechanism considering the role of D199MT-ND1 for energy conservation in complex I is discussed.
Collapse
|
17
|
Wang P, Dhananjayan N, Hagras MA, Stuchebrukhov AA. Respiratory complex I: Bottleneck at the entrance of quinone site requires conformational change for its opening. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148326. [PMID: 33045211 DOI: 10.1016/j.bbabio.2020.148326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
The structure of the entire respiratory complex I is now known at reasonably high resolution for many species - bacteria, yeast, and several mammals, including human. The structure reveals an almost 30 angstrom tunnel-like chamber for ubiquinone binding in the core part of the enzyme, at the joint between the membrane and hydrophilic arms of the enzyme. Here we characterize the geometric bottleneck forming the entrance of the quinone reaction chamber. Computer simulations of quinone/quinol passage through the bottleneck suggest that in all structures available, from bacterial to human, this bottleneck is too narrow for the quinone or quinol to pass and that a conformational change is required to open the channel. Moreover, the bottleneck is too narrow even for isoprenoid tail free passage. The closed structure can be an artifact of the crystallization packing forces, low temperature, or other unnatural conditions occurring in the structural data acquisition procedure that affect this flexible part of the enzyme. Two of the helices forming the bottleneck are in direct contact with the subunit (ND3) that was recently demonstrated to be involved in conformational changes during the redox proton pumping cycle, which indicates flexibility of that part of the enzyme. We conclude that the published structures are all locked in the unfunctional states and do not represent correctly the functional enzyme; we discuss possible ways to open the structure in the context of possible mechanisms of the enzyme.
Collapse
Affiliation(s)
- Panyue Wang
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Nithin Dhananjayan
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Muhammad A Hagras
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Alexei A Stuchebrukhov
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, CA 95616, United States of America.
| |
Collapse
|
18
|
Zhang F, Vik SB. Analysis of the assembly pathway for membrane subunits of Complex I reveals that subunit L (ND5) can assemble last in E. coli. BBA ADVANCES 2021; 1. [DOI: 10.1016/j.bbadva.2021.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
19
|
Zhou X, Wang Z, Qin M, Zhong S. [Mitochondrial G12630A variation is associated with statin-induced myalgia in Chinese patients with coronary artery disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1747-1752. [PMID: 33380401 DOI: 10.12122/j.issn.1673-4254.2020.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To identify mitochondrial gene variants associated with statin-induced myalgia in Chinese patients with coronary artery disease (CHD). METHODS This study was conducted in a cohort of 403 patients with CHD receiving rosuvastatin therapy, among whom 341 patients had complete follow-up data concerning myalgia and 389 patients had documented measurements of plasma creatine kinase (CK) level. All these patients underwent genetic analysis using GSA chip for detecting mitochondria gene variants associated with myalgia. A logistic regression model was used to assess the association between 69 mitochondrial single-nucleotide polymorphisms (SNPs) and myopathy in 341 patients. The impact of these mutation sites on CK levels in 389 patients was evaluated by linear regression analysis. RESULTS G12630A variant was identified to correlate with an increased risk of myalgia in CHD patients (OR: 8.689, 95% CI: 1.586-47.6; P=0.01273), but CK levels did not differ significantly between patients with different genotypes of G12630A (P > 0.05). SNPs at T12285C and A13105G were found to significantly correlate with CK levels in these patients (P < 0.05). CONCLUSIONS Mitochondrial G12630A variation is associated with statin-induced myalgia in patients with CHD, indicating the necessity of different treatment strategies for patients who carry this risk allele.
Collapse
Affiliation(s)
- Xiaohong Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zixian Wang
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Min Qin
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shilong Zhong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
20
|
Miller NT, Vaughn MD, Burnap RL. Electron flow through NDH-1 complexes is the major driver of cyclic electron flow-dependent proton pumping in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148354. [PMID: 33338488 DOI: 10.1016/j.bbabio.2020.148354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023]
Abstract
Cyclic electron flow (CEF) around photosystem I is vital to balancing the photosynthetic energy budget of cyanobacteria and other photosynthetic organisms. The coupling of CEF to proton pumping has long been hypothesized to occur, providing proton motive force (PMF) for the synthesis of ATP with no net cost to [NADPH]. This is thought to occur largely through the activity of NDH-1 complexes, of which cyanobacteria have four with different activities. While a much work has been done to understand the steady-state PMF in both the light and dark, and fluorescent probes have been developed to observe these fluxes in vivo, little has been done to understand the kinetics of these fluxes, particularly with regard to NDH-1 complexes. To monitor the kinetics of proton pumping in Synechocystis sp. PCC 6803, the pH sensitive dye Acridine Orange was used alongside a suite of inhibitors in order to observe light-dependent proton pumping. The assay was demonstrated to measure photosynthetically driven proton pumping and used to measure the rates of proton pumping unimpeded by dark ΔpH. Here, the cyanobacterial NDH-1 complexes are shown to pump a sizable portion of proton flux when CEF-driven and LEF-driven proton pumping rates are observed and compared in mutants lacking some or all NDH-1 complexes. It is also demonstrated that PSII and LEF are responsible for the bulk of light induced proton pumping, though CEF and NDH-1 are capable of generating ~40% of the proton pumping rate when LEF is inactivated.
Collapse
Affiliation(s)
- Neil T Miller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael D Vaughn
- SpectroLogix LLC, 9050 Executive Park Drive, Knoxville, TN 37923, USA
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
21
|
Destiarani W, Mulyani R, Yusuf M, Maksum IP. Molecular Dynamics Simulation of T10609C and C10676G Mutations of Mitochondrial ND4L Gene Associated With Proton Translocation in Type 2 Diabetes Mellitus and Cataract Patients. Bioinform Biol Insights 2020; 14:1177932220978672. [PMID: 33402819 PMCID: PMC7747115 DOI: 10.1177/1177932220978672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
The mutation rate of mitochondrial DNA (mtDNA) is 17 times higher than nuclear DNA, and these mutations can cause mitochondrial disease in 1 of 10.000 people. The T10609C mutation was identified in type 2 diabetes mellitus (T2DM) patients and the C10676G mutation in cataract patients, with both mutations occurring in the ND4L gene of mtDNA that encodes ND4L protein. ND4L protein, a subunit of complex I in the respiratory complex, has been shown to play a role in the proton translocation process. The purpose of this study was to investigate the effect of both mutations on the proton translocation mechanism. Mutation mapping showed changes in amino acids M47T (T10609C) and C69W (C10676G). The 100 ns molecular dynamics (MD) simulations performed on native and mutants of ND4L-ND6 subunits. It is revealed that the native model had a similar proton translocation pathway to that of complex I from other organisms. Interestingly, the mutant M47T and C69W showed the interruption of the translocation pathway by a hydrogen bond formation between Glu34 and Tyr157. It is observed that the mutations were restricting the passage of water molecules through the transmembrane region. These results could help to develop the computational assay for the validation of a specific genetic biomarker for T2DM and cataracts.
Collapse
Affiliation(s)
- Wanda Destiarani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rahmaniar Mulyani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
22
|
Kampjut D, Sazanov LA. The coupling mechanism of mammalian respiratory complex I. Science 2020; 370:science.abc4209. [PMID: 32972993 DOI: 10.1126/science.abc4209] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an unknown mechanism. Here, we present cryo-electron microscopy structures of ovine complex I in five different conditions, including turnover, at resolutions up to 2.3 to 2.5 angstroms. Resolved water molecules allowed us to experimentally define the proton translocation pathways. Quinone binds at three positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction to proton translocation during open-to-closed state transitions of the enzyme. In the induced deactive state, the open conformation is arrested by the ND6 subunit. We propose a detailed molecular coupling mechanism of complex I, which is an unexpected combination of conformational changes and electrostatic interactions.
Collapse
Affiliation(s)
- Domen Kampjut
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | |
Collapse
|
23
|
Haapanen O, Reidelbach M, Sharma V. Coupling of quinone dynamics to proton pumping in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148287. [PMID: 32777307 DOI: 10.1016/j.bbabio.2020.148287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Respiratory complex I (NADH:quinone oxidoreductase) plays a central role in generating the proton electrochemical gradient in mitochondrial and bacterial membranes, which is needed to generate ATP. Several high-resolution structures of complex I have been determined, revealing its intricate architecture and complementing the biochemical and biophysical studies. However, the molecular mechanism of long-range coupling between ubiquinone (Q) reduction and proton pumping is not known. Computer simulations have been applied to decipher the dynamics of Q molecule in the ~30 Å long Q tunnel. In this short report, we discuss the binding and dynamics of Q at computationally predicted Q binding sites, many of which are supported by structural data on complex I. We suggest that the binding of Q at these sites is coupled to proton pumping by means of conformational rearrangements in the conserved loops of core subunits.
Collapse
Affiliation(s)
- Outi Haapanen
- Department of Physics, University of Helsinki, Finland
| | | | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland; HiLIFE Institute of Biotechnology, University of Helsinki, Finland.
| |
Collapse
|
24
|
Mühlbauer ME, Saura P, Nuber F, Di Luca A, Friedrich T, Kaila VRI. Water-Gated Proton Transfer Dynamics in Respiratory Complex I. J Am Chem Soc 2020; 142:13718-13728. [PMID: 32643371 PMCID: PMC7659035 DOI: 10.1021/jacs.0c02789] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The respiratory complex I transduces
redox energy into an electrochemical
proton gradient in aerobic respiratory chains, powering energy-requiring
processes in the cell. However, despite recently resolved molecular
structures, the mechanism of this gigantic enzyme remains poorly understood.
By combining large-scale quantum and classical simulations with site-directed
mutagenesis and biophysical experiments, we show here how the conformational
state of buried ion-pairs and water molecules control the protonation
dynamics in the membrane domain of complex I and establish evolutionary
conserved long-range coupling elements. We suggest that an electrostatic
wave propagates in forward and reverse directions across the 200 Å
long membrane domain during enzyme turnover, without significant dissipation
of energy. Our findings demonstrate molecular principles that enable
efficient long-range proton–electron coupling (PCET) and how
perturbation of this PCET machinery may lead to development of mitochondrial
disease.
Collapse
Affiliation(s)
- Max E Mühlbauer
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| | - Franziska Nuber
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Andrea Di Luca
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.,Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany
| |
Collapse
|
25
|
Djurabekova A, Haapanen O, Sharma V. Proton motive function of the terminal antiporter-like subunit in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148185. [PMID: 32171794 DOI: 10.1016/j.bbabio.2020.148185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
In the aerobic respiratory chains of many organisms, complex I functions as the first electron input. By reducing ubiquinone (Q) to ubiquinol, it catalyzes the translocation of protons across the membrane as far as ~200 Å from the site of redox reactions. Despite significant amount of structural and biochemical data, the details of redox coupled proton pumping in complex I are poorly understood. In particular, the proton transfer pathways are extremely difficult to characterize with the current structural and biochemical techniques. Here, we applied multiscale computational approaches to identify the proton transfer paths in the terminal antiporter-like subunit of complex I. Data from combined classical and quantum chemical simulations reveal for the first time structural elements that are exclusive to the subunit, and enables the enzyme to achieve coupling between the spatially separated Q redox reactions and proton pumping. By studying long time scale protonation and hydration dependent conformational dynamics of key amino acid residues, we provide novel insights into the proton pumping mechanism of complex I.
Collapse
Affiliation(s)
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Zhang XC, Li B. Towards understanding the mechanisms of proton pumps in Complex-I of the respiratory chain. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-00094-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
27
|
Kaila VRI. Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I. J R Soc Interface 2019; 15:rsif.2017.0916. [PMID: 29643224 PMCID: PMC5938582 DOI: 10.1098/rsif.2017.0916] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Biological energy conversion is driven by efficient enzymes that capture, store and transfer protons and electrons across large distances. Recent advances in structural biology have provided atomic-scale blueprints of these types of remarkable molecular machinery, which together with biochemical, biophysical and computational experiments allow us to derive detailed energy transduction mechanisms for the first time. Here, I present one of the most intricate and least understood types of biological energy conversion machinery, the respiratory complex I, and how its redox-driven proton-pump catalyses charge transfer across approximately 300 Å distances. After discussing the functional elements of complex I, a putative mechanistic model for its action-at-a-distance effect is presented, and functional parallels are drawn to other redox- and light-driven ion pumps.
Collapse
Affiliation(s)
- Ville R I Kaila
- Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, Garching, Germany
| |
Collapse
|
28
|
Haapanen O, Djurabekova A, Sharma V. Role of Second Quinone Binding Site in Proton Pumping by Respiratory Complex I. Front Chem 2019; 7:221. [PMID: 31024903 PMCID: PMC6465577 DOI: 10.3389/fchem.2019.00221] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Respiratory complex I performs the reduction of quinone (Q) to quinol (QH2) and pumps protons across the membrane. Structural data on complex I have provided spectacular insights into the electron and proton transfer paths, as well as into the long (~30 Å) and unique substrate binding channel. However, due to missing structural information on Q binding modes, it remains unclear how Q reduction drives long range (~20 nm) redox-coupled proton pumping in complex I. Here we applied multiscale computational approaches to study the dynamics and redox chemistry of Q and QH2. Based on tens of microseconds of atomistic molecular dynamics (MD) simulations of bacterial and mitochondrial complex I, we find that the dynamics of Q is remarkably rapid and it diffuses from the N2 binding site to another stable site near the entrance of the Q channel in microseconds. Analysis of simulation trajectories also reveal the presence of yet another Q binding site 25–30 Å from the N2 center, which is in remarkable agreement with the electron density observed in recent cryo electron microscopy structure of complex I from Yarrowia lipolytica. Quantum chemical computations on the two Q binding sites closer to the entrance of the Q tunnel reveal redox-coupled protonation reactions that may be important in driving the proton pump of complex I.
Collapse
Affiliation(s)
- Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Muras V, Toulouse C, Fritz G, Steuber J. Respiratory Membrane Protein Complexes Convert Chemical Energy. Subcell Biochem 2019; 92:301-335. [PMID: 31214991 DOI: 10.1007/978-3-030-18768-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The invention of a biological membrane which is used as energy storage system to drive the metabolism of a primordial, unicellular organism represents a key event in the evolution of life. The innovative, underlying principle of this key event is respiration. In respiration, a lipid bilayer with insulating properties is chosen as the site for catalysis of an exergonic redox reaction converting substrates offered from the environment, using the liberated Gibbs free energy (ΔG) for the build-up of an electrochemical H+ (proton motive force, PMF) or Na+ gradient (sodium motive force, SMF) across the lipid bilayer. Very frequently , several redox reactions are performed in a consecutive manner, with the first reaction delivering a product which is used as substrate for the second redox reaction, resulting in a respiratory chain. From today's perspective, the (mostly) unicellular bacteria and archaea seem to be much simpler and less evolved when compared to multicellular eukaryotes. However, they are overwhelmingly complex with regard to the various respiratory chains which permit survival in very different habitats of our planet, utilizing a plethora of substances to drive metabolism. This includes nitrogen, sulfur and carbon compounds which are oxidized or reduced by specialized, respiratory enzymes of bacteria and archaea which lie at the heart of the geochemical N, S and C-cycles. This chapter gives an overview of general principles of microbial respiration considering thermodynamic aspects, chemical reactions and kinetic restraints. The respiratory chains of Escherichia coli and Vibrio cholerae are discussed as models for PMF- versus SMF-generating processes, respectively. We introduce main redox cofactors of microbial respiratory enzymes, and the concept of intra-and interelectron transfer. Since oxygen is an electron acceptor used by many respiratory chains, the formation and removal of toxic oxygen radicals is described. Promising directions of future research are respiratory enzymes as novel bacterial targets, and biotechnological applications relying on respiratory complexes.
Collapse
Affiliation(s)
- Valentin Muras
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Charlotte Toulouse
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
30
|
Abstract
Complex I couples the free energy released from quinone (Q) reduction to pump protons across the biological membrane in the respiratory chains of mitochondria and many bacteria. The Q reduction site is separated by a large distance from the proton-pumping membrane domain. To address the molecular mechanism of this long-range proton-electron coupling, we perform here full atomistic molecular dynamics simulations, free energy calculations, and continuum electrostatics calculations on complex I from Thermus thermophilus We show that the dynamics of Q is redox-state-dependent, and that quinol, QH2, moves out of its reduction site and into a site in the Q tunnel that is occupied by a Q analog in a crystal structure of Yarrowia lipolytica We also identify a second Q-binding site near the opening of the Q tunnel in the membrane domain, where the Q headgroup forms strong interactions with a cluster of aromatic and charged residues, while the Q tail resides in the lipid membrane. We estimate the effective diffusion coefficient of Q in the tunnel, and in turn the characteristic time for Q to reach the active site and for QH2 to escape to the membrane. Our simulations show that Q moves along the Q tunnel in a redox-state-dependent manner, with distinct binding sites formed by conserved residue clusters. The motion of Q to these binding sites is proposed to be coupled to the proton-pumping machinery in complex I.
Collapse
|
31
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
32
|
Di Luca A, Mühlbauer ME, Saura P, Kaila VRI. How inter-subunit contacts in the membrane domain of complex I affect proton transfer energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:734-741. [PMID: 29883589 DOI: 10.1016/j.bbabio.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
The respiratory complex I is a redox-driven proton pump that employs the free energy released from quinone reduction to pump protons across its complete ca. 200 Å wide membrane domain. Despite recently resolved structures and molecular simulations, the exact mechanism for the proton transport process remains unclear. Here we combine large-scale molecular simulations with quantum chemical density functional theory (DFT) models to study how contacts between neighboring antiporter-like subunits in the membrane domain of complex I affect the proton transfer energetics. Our combined results suggest that opening of conserved Lys/Glu ion pairs within each antiporter-like subunit modulates the barrier for the lateral proton transfer reactions. Our work provides a mechanistic suggestion for key coupling effects in the long-range force propagation process of complex I.
Collapse
Affiliation(s)
- Andrea Di Luca
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Max E Mühlbauer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Patricia Saura
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Ville R I Kaila
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany.
| |
Collapse
|
33
|
The Lysine 299 Residue Endows the Multisubunit Mrp1 Antiporter with Dominant Roles in Na + Resistance and pH Homeostasis in Corynebacterium glutamicum. Appl Environ Microbiol 2018. [PMID: 29523552 DOI: 10.1128/aem.00110-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Corynebacterium glutamicum is generally regarded as a moderately salt- and alkali-tolerant industrial organism. However, relatively little is known about the molecular mechanisms underlying these specific adaptations. Here, we found that the Mrp1 antiporter played crucial roles in conferring both environmental Na+ resistance and alkali tolerance whereas the Mrp2 antiporter was necessary in coping with high-KCl stress at alkaline pH. Furthermore, the Δmrp1 Δmrp2 double mutant showed the most-severe growth retardation and failed to grow under high-salt or alkaline conditions. Consistent with growth properties, the Na+/H+ antiporters of C. glutamicum were differentially expressed in response to specific salt or alkaline stress, and an alkaline stimulus particularly induced transcript levels of the Mrp-type antiporters. When the major Mrp1 antiporter was overwhelmed, C. glutamicum might employ alternative coordinate strategies to regulate antiport activities. Site-directed mutagenesis demonstrated that several conserved residues were required for optimal Na+ resistance, such as Mrp1A K299, Mrp1C I76, Mrp1A H230, and Mrp1D E136 Moreover, the chromosomal replacement of lysine 299 in the Mrp1A subunit resulted in a higher intracellular Na+ level and a more alkaline intracellular pH value, thereby causing a remarkable growth attenuation. Homology modeling of the Mrp1 subcomplex suggested two possible ion translocation pathways, and lysine 299 might exert its effect by affecting the stability and flexibility of the cytoplasm-facing channel in the Mrp1A subunit. Overall, these findings will provide new clues to the understanding of salt-alkali adaptation during C. glutamicum stress acclimatization.IMPORTANCE The capacity to adapt to harsh environments is crucial for bacterial survival and product yields, including industrially useful Corynebacterium glutamicum Although C. glutamicum exhibits a marked resistance to salt-alkaline stress, the possible mechanism for these adaptations is still unclear. Here, we present the physiological functions and expression patterns of C. glutamicum putative Na+/H+ antiporters and conserved residues of Mrp1 subunits, which respond to different salt and alkaline stresses. We found that the Mrp-type antiporters, particularly the Mrp1 antiporter, played a predominant role in maintaining intracellular nontoxic Na+ levels and alkaline pH homeostasis. Loss of the major Mrp1 antiporter had a profound effect on gene expression of other antiporters under salt or alkaline conditions. The lysine 299 residue may play its essential roles in conferring salt and alkaline tolerance by affecting the ion translocation channel of the Mrp1A subunit. These findings will contribute to a better understanding of Na+/H+ antiporters in sodium antiport and pH regulation.
Collapse
|
34
|
Ito M, Morino M, Krulwich TA. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea. Front Microbiol 2017; 8:2325. [PMID: 29218041 PMCID: PMC5703873 DOI: 10.3389/fmicb.2017.02325] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Abstract
Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic Bacillus halodurans C-125 in 1990. At that time, there was no example of a multi-subunit type Na+/H+ antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles. Generally, all Mrp subunits, mrpA–G, are required for enzymatic activity. Two exceptions are Mrp from the archaea Methanosarcina acetivorans and the eubacteria Natranaerobius thermophilus, which are reported to sustain Na+/H+ antiport activity with the MrpA subunit alone. Two large subunits of the Mrp antiporter, MrpA and MrpD, are homologous to membrane-embedded subunits of the respiratory chain complex I, NuoL, NuoM, and NuoN, and the small subunit MrpC has homology with NuoK. The functions of the Mrp antiporter include sodium tolerance and pH homeostasis in an alkaline environment, nitrogen fixation in Schizolobium meliloti, bile salt tolerance in Bacillus subtilis and Vibrio cholerae, arsenic oxidation in Agrobacterium tumefaciens, pathogenesis in Pseudomonas aeruginosa and Staphylococcus aureus, and the conversion of energy involved in metabolism and hydrogen production in archaea. In addition, some Mrp antiporters transport K+ and Ca2+ instead of Na+, depending on the environmental conditions. Recently, the molecular structure of the respiratory chain complex I has been elucidated by others, and details of the mechanism by which it transports protons are being clarified. Based on this, several hypotheses concerning the substrate transport mechanism in the Mrp antiporter have been proposed. The MrpA and MrpD subunits, which are homologous to the proton transport subunit of complex I, are involved in the transport of protons and their coupling cations. Herein, we outline other recent findings on the Mrp antiporter.
Collapse
Affiliation(s)
- Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Japan
| | - Masato Morino
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry A Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
35
|
Haapanen O, Sharma V. Role of water and protein dynamics in proton pumping by respiratory complex I. Sci Rep 2017; 7:7747. [PMID: 28798393 PMCID: PMC5552823 DOI: 10.1038/s41598-017-07930-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
Membrane bound respiratory complex I is the key enzyme in the respiratory chains of bacteria and mitochondria, and couples the reduction of quinone to the pumping of protons across the membrane. Recently solved crystal or electron microscopy structures of bacterial and mitochondrial complexes have provided significant insights into the electron and proton transfer pathways. However, due to large spatial separation between the electron and proton transfer routes, the molecular mechanism of coupling remains unclear. Here, based on atomistic molecular dynamics simulations performed on the entire structure of complex I from Thermus thermophilus, we studied the hydration of the quinone-binding site and the membrane-bound subunits. The data from simulations show rapid diffusion of water molecules in the protein interior, and formation of hydrated regions in the three antiporter-type subunits. An unexpected water-protein based connectivity between the middle of the Q-tunnel and the fourth proton channel is also observed. The protonation-state dependent dynamics of key acidic residues in the Nqo8 subunit suggest that the latter may be linked to redox-coupled proton pumping in complex I. We propose that in complex I the proton and electron transfer paths are not entirely separate, instead the nature of coupling may in part be ‘direct’.
Collapse
Affiliation(s)
- Outi Haapanen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland.,Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101, Tampere, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland. .,Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101, Tampere, Finland. .,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
Abstract
Complex I functions as the initial electron acceptor in aerobic respiratory chains of most organisms. This gigantic redox-driven enzyme employs the energy from quinone reduction to pump protons across its complete approximately 200-Å membrane domain, thermodynamically driving synthesis of ATP. Despite recently resolved structures from several species, the molecular mechanism by which complex I catalyzes this long-range proton-coupled electron transfer process, however, still remains unclear. We perform here large-scale classical and quantum molecular simulations to study the function of the proton pump in complex I from Thermus thermophilus The simulations suggest that proton channels are established at symmetry-related locations in four subunits of the membrane domain. The channels open up by formation of quasi one-dimensional water chains that are sensitive to the protonation states of buried residues at structurally conserved broken helix elements. Our combined data provide mechanistic insight into long-range coupling effects and predictions for site-directed mutagenesis experiments.
Collapse
|
37
|
Functional Role of MrpA in the MrpABCDEFG Na+/H+ Antiporter Complex from the Archaeon Methanosarcina acetivorans. J Bacteriol 2016; 199:JB.00662-16. [PMID: 27799324 DOI: 10.1128/jb.00662-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
The multisubunit cation/proton antiporter 3 family, also called Mrp, is widely distributed in all three phylogenetic domains (Eukarya, Bacteria, and Archaea). Investigations have focused on Mrp complexes from the domain Bacteria to the exclusion of Archaea, with a consensus emerging that all seven subunits are required for Na+/H+ antiport activity. The MrpA subunit from the MrpABCDEFG Na+/H+ antiporter complex of the archaeon Methanosarcina acetivorans was produced in antiporter-deficient Escherichia coli strains EP432 and KNabc and biochemically characterized to determine the role of MrpA in the complex. Both strains containing MrpA grew in the presence of up to 500 mM NaCl and pH values up to 11.0 with no added NaCl. Everted vesicles from the strains containing MrpA were able to generate a NADH-dependent pH gradient (ΔpH), which was abated by the addition of monovalent cations. The apparent Km values for Na+ and Li+ were similar and ranged from 31 to 63 mM, whereas activity was too low to determine the apparent Km for K+ Optimum activity was obtained between pH 7.0 and 8.0. Homology molecular modeling identified two half-closed symmetry-related ion translocation channels that are linked, forming a continuous path from the cytoplasm to the periplasm, analogous to the NuoL subunit of complex I. Bioinformatics analyses revealed genes encoding homologs of MrpABCDEFG in metabolically diverse methane-producing species. Overall, the results advance the biochemical, evolutionary, and physiological understanding of Mrp complexes that extends to the domain Archaea IMPORTANCE: The work is the first reported characterization of an Mrp complex from the domain Archaea, specifically methanogens, for which Mrp is important for acetotrophic growth. The results show that the MrpA subunit is essential for antiport activity and, importantly, that not all seven subunits are required, which challenges current dogma for Mrp complexes from the domain Bacteria A mechanism is proposed in which an MrpAD subcomplex catalyzes Na+/H+ antiport independent of an MrpBCEFG subcomplex, although the activity of the former is modulated by the latter. Properties of MrpA strengthen proposals that the Mrp complex is of ancient origin and that subunits were recruited to evolve the ancestral complex I. Finally, bioinformatics analyses indicate that Mrp complexes function in diverse methanogenic pathways.
Collapse
|
38
|
Morino M, Ogoda S, Krulwich TA, Ito M. Differences in the phenotypic effects of mutations in homologous MrpA and MrpD subunits of the multi-subunit Mrp-type Na +/H + antiporter. Extremophiles 2016; 21:51-64. [PMID: 27709304 DOI: 10.1007/s00792-016-0877-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Mrp antiporters are the sole antiporters in the Cation/Proton Antiporter 3 family of transporter databases because of their unusual structural complexity, 6-7 hydrophobic proteins that function as a hetero-oligomeric complex. The two largest and homologous subunits, MrpA and MrpD, are essential for antiport activity and have direct roles in ion transport. They also show striking homology with proton-conducting, membrane-embedded Nuo subunits of respiratory chain complex I of bacteria, e.g., Escherichia coli. MrpA has the closest homology to the complex I NuoL subunit and MrpD has the closest homology to the complex I NuoM and N subunits. Here, introduction of mutations in MrpD, in residues that are also present in MrpA, led to defects in antiport function and/or complex formation. No significant phenotypes were detected in strains with mutations in corresponding residues of MrpA, but site-directed changes in the C-terminal region of MrpA had profound effects, showing that the MrpA C-terminal region has indispensable roles in antiport function. The results are consistent with a divergence in adaptations that support the roles of MrpA and MrpD in secondary antiport, as compared to later adaptations supporting homologs in primary proton pumping by the respiratory chain complex I.
Collapse
Affiliation(s)
- Masato Morino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,, 573-13 Kamitanui, Tarnaki-cho, Watarai-gun, Mie, 519-0417, Japan
| | - Shinichiro Ogoda
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan
| | - Terry Ann Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Masahiro Ito
- Faculty of Life Sciences, Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan. .,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-0815, Japan.
| |
Collapse
|
39
|
Siebels I, Dröse S. Charge translocation by mitochondrial NADH:ubiquinone oxidoreductase (complex I) from Yarrowia lipolytica measured on solid-supported membranes. Biochem Biophys Res Commun 2016; 479:277-282. [PMID: 27639643 DOI: 10.1016/j.bbrc.2016.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
The charge translocation by purified reconstituted mitochondrial complex I from the obligate aerobic yeast Yarrowia lipolytica was investigated after adsorption of proteoliposomes to solid-supported membranes. In presence of n-decylubiquinone (DBQ), pulses of NADH provided by rapid solution exchange induced charge transfer reflecting steady-state pumping activity of the reconstituted enzyme. The signal amplitude increased with time, indicating 'deactive→active' transition of the Yarrowia complex I. Furthermore, an increase of the membrane-conductivity after addition of 5-(N-ethyl-N-isopropyl)amiloride (EIPA) was detected which questiones the use of EIPA as an inhibitor of the Na+/H+-antiporter-like subunits of complex I. This investigation shows that electrical measurements on solid-supported membranes are a suitable method to analyze transport events and 'active/deactive' transition of mitochondrial complex I.
Collapse
Affiliation(s)
- Ilka Siebels
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-University, 60590, Frankfurt am Main, Germany; Goethe University Frankfurt, Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Protein Reaction Control Group, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Stefan Dröse
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-University, 60590, Frankfurt am Main, Germany; Department of Anesthesiology, Intensive-Care Medicine and Pain Therapy, University Hospital Frankfurt, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Tursun A, Zhu S, Vik SB. Probing the proton channels in subunit N of Complex I from Escherichia coli through intra-subunit cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1840-1848. [PMID: 27632419 DOI: 10.1016/j.bbabio.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Respiratory Complex I appears to have 4 sites for proton translocation, which are coupled to the oxidation of NADH and reduction of coenzyme Q. The proton pathways are thought to be made of offset half-channels that connect to the membrane surfaces, and are connected by a horizontal path through the center of the membrane. In this study of the enzyme from Escherichia coli, subunit N, containing one of the sites, was targeted. Pairs of cysteine residues were introduced into neighboring α-helices along the proposed proton pathways. In an effort to constrain conformational changes that might occur during proton translocation, we attempted to form disulfide bonds or methanethiosulfonate bridges between two engineered cysteine residues. Cysteine modification was inferred by the inability of PEG-maleimide to shift the electrophoretic mobility of subunit N, which will occur upon reaction with free sulfhydryl groups. After the cross-linking treatment, NADH oxidase and NADH-driven proton translocation were measured. Ten different pairs of cysteine residues showed evidence of cross-linking. The most significant loss of enzyme activity was seen for residues near the essential Lys 395. This residue is positioned between the proposed proton half-channel to the periplasm and the horizontal connection through subunit N, and is also near the essential Glu 144 of subunit M. The results suggest important conformational changes in this region for the delivery of protons to the periplasm, or for coupling the actions of subunit N to subunit M.
Collapse
Affiliation(s)
- Ablat Tursun
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Shaotong Zhu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
41
|
Holt PJ, Efremov RG, Nakamaru-Ogiso E, Sazanov LA. Reversible FMN dissociation from Escherichia coli respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1777-1785. [PMID: 27555334 DOI: 10.1016/j.bbabio.2016.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/04/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
Respiratory complex I transfers electrons from NADH to quinone, utilizing the reaction energy to translocate protons across the membrane. It is a key enzyme of the respiratory chain of many prokaryotic and most eukaryotic organisms. The reversible NADH oxidation reaction is facilitated in complex I by non-covalently bound flavin mononucleotide (FMN). Here we report that the catalytic activity of E. coli complex I with artificial electron acceptors potassium ferricyanide (FeCy) and hexaamineruthenium (HAR) is significantly inhibited in the enzyme pre-reduced by NADH. Further, we demonstrate that the inhibition is caused by reversible dissociation of FMN. The binding constant (Kd) for FMN increases from the femto- or picomolar range in oxidized complex I to the nanomolar range in the NADH reduced enzyme, with an FMN dissociation time constant of ~5s. The oxidation state of complex I, rather than that of FMN, proved critical to the dissociation. Such dissociation is not observed with the T. thermophilus enzyme and our analysis suggests that the difference may be due to the unusually high redox potential of Fe-S cluster N1a in E. coli. It is possible that the enzyme attenuates ROS production in vivo by releasing FMN under highly reducing conditions.
Collapse
Affiliation(s)
- Peter J Holt
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Rouslan G Efremov
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, United States
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
42
|
Sperling E, Górecki K, Drakenberg T, Hägerhäll C. Functional Differentiation of Antiporter-Like Polypeptides in Complex I; a Site-Directed Mutagenesis Study of Residues Conserved in MrpA and NuoL but Not in MrpD, NuoM, and NuoN. PLoS One 2016; 11:e0158972. [PMID: 27391676 PMCID: PMC4938563 DOI: 10.1371/journal.pone.0158972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/29/2023] Open
Abstract
It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na+/H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits.) and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and 23Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I) showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research.
Collapse
Affiliation(s)
- Eva Sperling
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
- * E-mail:
| | - Kamil Górecki
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Torbjörn Drakenberg
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Cecilia Hägerhäll
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| |
Collapse
|
43
|
Narayanan M, Sakyiama JA, Elguindy MM, Nakamaru-Ogiso E. Roles of subunit NuoL in the proton pumping coupling mechanism of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. J Biochem 2016; 160:205-215. [PMID: 27118783 DOI: 10.1093/jb/mvw027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/09/2016] [Indexed: 01/13/2023] Open
Abstract
Respiratory complex I has an L-shaped structure formed by the hydrophilic arm responsible for electron transfer and the membrane arm that contains protons pumping machinery. Here, to gain mechanistic insights into the role of subunit NuoL, we investigated the effects of Mg2+, Zn2+ and the Na+/H+ antiporter inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on proton pumping activities of various isolated NuoL mutant complex I after reconstitution into Escherichia coli double knockout (DKO) membrane vesicles lacking complex I and the NADH dehydrogenase type 2. We found that Mg2+ was critical for proton pumping activity of complex I. At 2 µM Zn2+, proton pumping of the wild-type was selectively inhibited without affecting electron transfer; no inhibition in proton pumping of D178N and D400A was observed, suggesting the involvement of these residues in Zn2+ binding. Fifteen micromolar of EIPA caused up to ∼40% decrease in the proton pumping activity of the wild-type, D303A and D400A/E, whereas no significant change was detected in D178N, indicating its possible involvement in the EIPA binding. Furthermore, when menaquinone-rich DKO membranes were used, the proton pumping efficiency in the wild-type was decreased significantly (∼50%) compared with NuoL mutants strongly suggesting that NuoL is involved in the high efficiency pumping mechanism in complex I.
Collapse
Affiliation(s)
- Madhavan Narayanan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Joseph A Sakyiama
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Mahmoud M Elguindy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Zhu S, Canales A, Bedair M, Vik SB. Loss of Complex I activity in the Escherichia coli enzyme results from truncating the C-terminus of subunit K, but not from cross-linking it to subunits N or L. J Bioenerg Biomembr 2016; 48:325-33. [PMID: 26931547 DOI: 10.1007/s10863-016-9655-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 12/16/2022]
Abstract
Complex I is a multi-subunit enzyme of the respiratory chain with seven core subunits in its membrane arm (A, H, J, K, L, M, and N). In the enzyme from Escherichia coli the C-terminal ten amino acids of subunit K lie along the lateral helix of subunit L, and contribute to a junction of subunits K, L and N on the cytoplasmic surface. Using double cysteine mutagenesis, the cross-linking of subunit K (R99C) to either subunit L (K581C) or subunit N (T292C) was attempted. A partial yield of cross-linked product had no effect on the activity of the enzyme, or on proton translocation, suggesting that the C-terminus of subunit K has no dynamic role in function. To further elucidate the role of subunit K genetic deletions were constructed at the C-terminus. Upon the serial deletion of the last 4 residues of the C-terminus of subunit K, various results were obtained. Deletion of one amino acid had little effect on the activity of Complex I, but deletions of 2 or more amino acids led to total loss of enzyme activity and diminished levels of subunits L, M, and N in preparations of membrane vesicles. Together these results suggest that while the C-terminus of subunit K has no dynamic role in energy transduction by Complex I, it is vital for the correct assembly of the enzyme.
Collapse
Affiliation(s)
- Shaotong Zhu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, 75275-0376, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alejandra Canales
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, 75275-0376, USA.,Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Mai Bedair
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, 75275-0376, USA.,University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, 75275-0376, USA.
| |
Collapse
|
45
|
Molecular simulation and modeling of complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:915-21. [PMID: 26780586 DOI: 10.1016/j.bbabio.2016.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/23/2022]
Abstract
Molecular modeling and molecular dynamics simulations play an important role in the functional characterization of complex I. With its large size and complicated function, linking quinone reduction to proton pumping across a membrane, complex I poses unique modeling challenges. Nonetheless, simulations have already helped in the identification of possible proton transfer pathways. Simulations have also shed light on the coupling between electron and proton transfer, thus pointing the way in the search for the mechanistic principles underlying the proton pump. In addition to reviewing what has already been achieved in complex I modeling, we aim here to identify pressing issues and to provide guidance for future research to harness the power of modeling in the functional characterization of complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
|
46
|
Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions. PLoS One 2015; 10:e0135405. [PMID: 26285039 PMCID: PMC4540416 DOI: 10.1371/journal.pone.0135405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/21/2015] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I.
Collapse
|
47
|
Zhu S, Vik SB. Constraining the Lateral Helix of Respiratory Complex I by Cross-linking Does Not Impair Enzyme Activity or Proton Translocation. J Biol Chem 2015; 290:20761-20773. [PMID: 26134569 DOI: 10.1074/jbc.m115.660381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/19/2022] Open
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441-445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu(2+) ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50-90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10-20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus.
Collapse
Affiliation(s)
- Shaotong Zhu
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376.
| |
Collapse
|
48
|
Sazanov LA. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 2015; 16:375-88. [PMID: 25991374 DOI: 10.1038/nrm3997] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mitochondrial respiratory chain, also known as the electron transport chain (ETC), is crucial to life, and energy production in the form of ATP is the main mitochondrial function. Three proton-translocating enzymes of the ETC, namely complexes I, III and IV, generate proton motive force, which in turn drives ATP synthase (complex V). The atomic structures and basic mechanisms of most respiratory complexes have previously been established, with the exception of complex I, the largest complex in the ETC. Recently, the crystal structure of the entire complex I was solved using a bacterial enzyme. The structure provided novel insights into the core architecture of the complex, the electron transfer and proton translocation pathways, as well as the mechanism that couples these two processes.
Collapse
Affiliation(s)
- Leonid A Sazanov
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
49
|
Narayanan M, Leung SA, Inaba Y, Elguindy MM, Nakamaru-Ogiso E. Semiquinone intermediates are involved in the energy coupling mechanism of E. coli complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:681-9. [PMID: 25868873 DOI: 10.1016/j.bbabio.2015.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/14/2015] [Accepted: 04/05/2015] [Indexed: 11/28/2022]
Abstract
Complex I (NADH:quinone oxidoreductase) is central to cellular aerobic energy metabolism, and its deficiency is involved in many human mitochondrial diseases. Complex I translocates protons across the membrane using electron transfer energy. Semiquinone (SQ) intermediates appearing during catalysis are suggested to be key for the coupling mechanism in complex I. However, the existence of SQ has remained controversial due to the extreme difficulty in detecting unstable and low intensity SQ signals. Here, for the first time with Escherichia coli complex I reconstituted in proteoliposomes, we successfully resolved and characterized three distinct SQ species by EPR. These species include: fast-relaxing SQ (SQNf) with P1/2 (half-saturation power level)>50mW and a wider linewidth (12.8 G); slow-relaxing SQ (SQNs) with P1/2=2-3mW and a 10G linewidth; and very slow-relaxing SQ (SQNvs) with P1/2= ~0.1mW and a 7.5G linewidth. The SQNf signals completely disappeared in the presence of the uncoupler gramicidin D or squamotacin, a potent E. coli complex I inhibitor. The pH dependency of the SQNf signals correlated with the proton-pumping activities of complex I. The SQNs signals were insensitive to gramicidin D, but sensitive to squamotacin. The SQNvs signals were insensitive to both gramicidin D and squamotacin. Our deuterium exchange experiments suggested that SQNf is neutral, while SQNs and SQNvs are anion radicals. The SQNs signals were lost in the ΔNuoL mutant missing transporter module subunits NuoL and NuoM. The roles and relationships of the SQ intermediates in the coupling mechanism are discussed.
Collapse
Affiliation(s)
- Madhavan Narayanan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Steven A Leung
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yuta Inaba
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Mahmoud M Elguindy
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
50
|
Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G. New Perspectives on Proton Pumping in Cellular Respiration. Chem Rev 2015; 115:2196-221. [DOI: 10.1021/cr500448t] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten Wikström
- Institute
of Biotechnology, University of Helsinki, Biocenter 3 (Viikinkaari 1), PB
65, Helsinki 00014, Finland
| | - Vivek Sharma
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Jonathan P. Hosler
- Department
of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| |
Collapse
|