1
|
Roy S, Ghosh MK. Ubiquitin proteasome system (UPS): a crucial determinant of the epigenetic landscape in cancer. Epigenomics 2025:1-20. [PMID: 40337853 DOI: 10.1080/17501911.2025.2501524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
The ubiquitin proteasome system (UPS), comprising of ubiquitinases, deubiquitinases and 26S proteasome plays a significant role in directly or indirectly regulating epigenetic players. DNA-templated processes like replication, repair and transcription require chromatin decondensation to allow access to specific DNA sequence. A thorough survey of literary articles in PubMed database revealed that the UPS functions as a key regulator, determining the precise state of open and closed chromatin by influencing histones and histone modifiers through proteolytic or non-proteolytic means. However, a comprehensive understanding of how specific UPS components affect particular epigenetic pathways in response to environmental cues remains underexplored. This axis holds substantial potential for deciphering mechanisms of tumorigenesis. Although our current knowledge is limited, it can still guide the development of novel therapeutic strategies that can potentially bridge the gap between cancer chemotherapeutics in bench and bedside.
Collapse
Affiliation(s)
- Srija Roy
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
2
|
Jang SH, Cho HD, Lee JH, Oh MH. Clinicopathological Significance of DUB3 Expression in Non-small Cell Lung Cancer and Relationship Between DUB3 Expression and LATS1 Expression. In Vivo 2023; 37:2296-2305. [PMID: 37652526 PMCID: PMC10500508 DOI: 10.21873/invivo.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Deubiquitinating enzyme 3 (DUB3) is a member of the ubiquitin-specific proteases family involved in regulating cell proliferation, invasion, and apoptosis. However, the biological role and clinicopathological significance of DUB3 expression have not been elucidated in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS We evaluated the expression of DUB3 by immunohistochemistry using tissue microarrays and assessed the clinicopathologic significance of DUB3 expression levels in 187 patients with NSCLC, including its two major subtypes (93 cases of adenocarcinoma and 72 cases of squamous cell carcinoma). RESULTS In adenocarcinoma, we observed that DUB3 expression had an effect on tumor size (p=0.030), vessel invasion (p=0.038), T stage (p=0.014), and tumor recurrence (p=0.002). Kaplan-Meier curves with log-rank test showed that high DUB3 expression was correlated with significantly more favorable clinical outcomes compared to those of the low expression group in adenocarcinoma (p=0.013). Multivariate analysis of disease-free survival also demonstrated that DUB3 expression is an independent prognostic factor in lung adenocarcinoma (p=0.017). Additionally, we identified the correlation between DUB3 and the expression of large tumor suppressor kinase 1 expression, a core protein of the Hippo pathway. CONCLUSION DUB3 could function as a tumor suppressor by regulating the Hippo pathway in lung adenocarcinoma and can be considered a powerful predictive factor and therapeutic target.
Collapse
Affiliation(s)
- Si-Hyong Jang
- Department of Pathology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyun Deuk Cho
- Department of Pathology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Mee-Hye Oh
- Department of Pathology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Yang GF, Zhang X, Su YG, Zhao R, Wang YY. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review. Cancer Cell Int 2021; 21:455. [PMID: 34454495 PMCID: PMC8400843 DOI: 10.1186/s12935-021-02160-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is critical for the degradation, transport, localization, and activity of proteins. Deubiquitinating enzymes (DUBs) greatly contribute to the balance of ubiquitination and deubiquitination, and they have been widely studied due to their fundamental role in cancer. DUB3/ubiquitin-specific protease 17 (USP17) is a type of DUB that has attracted much attention in cancer research. In this review, we summarize the biological functions and regulatory mechanisms of USP17 in central nervous system, head and neck, thoracic, breast, gastrointestinal, genitourinary, and gynecologic cancers as well as bone and soft tissue sarcomas, and we provide new insights into how USP17 can be used in the management of cancer.
Collapse
Affiliation(s)
- Guang-Fei Yang
- Dept. of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xin Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi-Ge Su
- Graduate School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ren Zhao
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Yang Wang
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China. .,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
4
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
5
|
USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle. Int J Biochem Cell Biol 2020; 130:105886. [PMID: 33227393 DOI: 10.1016/j.biocel.2020.105886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells perform a range of complex processes, some essential for life, others specific to cell type, all of which are governed by post-translational modifications of proteins. Among the repertoire of dynamic protein modifications, ubiquitination is arguably the most arcane and profound due to its complexity. Ubiquitin conjugation consists of three main steps, the last of which involves a multitude of target-specific ubiquitin ligases that conjugate a range of ubiquitination patterns to protein substrates with diverse outcomes. In contrast, ubiquitin removal is catalysed by a relatively small number of de-ubiquitinating enzymes (DUBs), which can also display target specificity and impact decisively on cell function. Here we review the current knowledge of the intriguing ubiquitin-specific protease 17 (USP17) family of DUBs, which are expressed from a highly copy number variable gene that has been implicated in multiple cancers, although available evidence points to conflicting roles in cell proliferation and survival. We show that key USP17 substrates populate two pathways that drive cell cycle progression and that USP17 activity serves to promote one pathway but inhibit the other. We propose that this arrangement enables USP17 to stimulate or inhibit proliferation depending on the mitogenic pathway that predominates in any given cell and may partially explain evidence pointing to both oncogenic and tumour suppressor properties of USP17.
Collapse
|
6
|
Intracellular hyaluronan: Importance for cellular functions. Semin Cancer Biol 2020; 62:20-30. [DOI: 10.1016/j.semcancer.2019.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
7
|
Woo B, Baek KH. Regulatory interplay between deubiquitinating enzymes and cytokines. Cytokine Growth Factor Rev 2019; 48:40-51. [PMID: 31208841 PMCID: PMC7108389 DOI: 10.1016/j.cytogfr.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
Deubiquitinating enzymes (DUBs) are cysteine protease proteins that reverse the ubiquitination by removing ubiquitins from the target protein. With over 100 DUBs identified and categorized into at least 7 families, many DUBs interact with one or more cytokines, influencing cellular processes, such as antiviral responses, inflammatory responses, apoptosis, etc. While some DUBs influence cytokine pathway or production, some DUBs are cytokine-inducible. In this article, we summarize a list of DUBs, their interaction with cytokines, target proteins and mechanisms of action.
Collapse
Affiliation(s)
- Bean Woo
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do, 13488, Republic of Korea; University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
8
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Lu CH, Yeh DW, Lai CY, Liu YL, Huang LR, Lee AYL, Jin SLC, Chuang TH. USP17 mediates macrophage-promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex formation. Oncogene 2018; 37:6327-6340. [PMID: 30038267 PMCID: PMC6283856 DOI: 10.1038/s41388-018-0411-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/27/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
Abstract
Macrophage accumulation and inflammation in the lung owing to stresses and diseases is a cause of lung cancer development. However, molecular mechanisms underlying the interaction between macrophages and cancer cells, which drive inflammation and stemness in cancers, are poorly understood. In this study, we investigated the expression of ubiquitin-specific peptidase 17 (USP17) in lung cancers, and role of elevated USP17 in the interaction between macrophages and lung cancer cells. USP17 expression in lung cancers was associated with poor prognosis, macrophage, and inflammatory marker expressions. Macrophages promoted USP17 expression in cancer cells. TNFR-associated factor (TRAF) 2-binding and TRAF3-binding motifs were identified in USP17, through which it interacted with and disrupted the TRAF2/TRAF3 complex. This stabilized its client proteins, enhanced inflammation and stemness in cancer cells, and promoted macrophage recruitment. In different animal studies, co-injection of macrophages with cancer cells promoted USP17 expression in tumors and tumor growth. Conversely, depletion of macrophages in host animals by clodronate liposomes reduced USP17 expression and tumor growth. In addition, overexpression of USP17 in cancer cells promoted tumor growth and inflammation-associated and stemness-associated gene expressions in tumors. These results suggested that USP17 drives a positive-feedback interaction between macrophages and cancer cells to enhance inflammation and stemness in cancer cells, and promotes lung cancer growth.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan.,Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, Taiwan
| | - Da-Wei Yeh
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ling Liu
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - S-L Catherine Jin
- Department of Life Sciences, National Central University, Zhongli District, Taoyuan City, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan. .,Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Farris TR, Zhu B, Wang JY, McBride JW. Ehrlichia chaffeensis TRP32 Nucleomodulin Function and Localization Is Regulated by NEDD4L-Mediated Ubiquitination. Front Cell Infect Microbiol 2018; 7:534. [PMID: 29376035 PMCID: PMC5768648 DOI: 10.3389/fcimb.2017.00534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that reprograms the mononuclear phagocyte through diverse effector-host interactions to modulate various host cell processes. In a previous study, we reported that the E. chaffeensis nucleomodulin TRP32 regulates transcription of host genes in several biologically relevant categories, including cell differentiation and proliferation. In this study, we investigate the effect of ubiquitination on TRP32 function and localization within the host cell. TRP32 is both mono- and polyubiquitinated on multiple lysine residues during infection and when ectopically expressed. Despite lacking a canonical PPxY motif, TRP32 interacted with, and was modified by the human HECT E3 ubiquitin (Ub) ligase NEDD4L. TRP32 ubiquitination was not by K48-linked polyUb chains, nor was it degraded by the proteasome; however, TRP32 was modified by K63-linked polyUb chains detected both in the cytosol and nucleus. HECT ligase inhibitor, heclin, altered the subnuclear localization of ectopically expressed TRP32 from a diffuse nuclear pattern to a lacy, punctate pattern with TRP32 distributed around the periphery of the nucleus and nucleoli. When a TRP32 lysine null (K-null) mutant was ectopically expressed, it exhibited a similar phenotype as single lysine mutants (K63R, K93R, and K123R). However, the K-null mutant showed increased amounts of cytoplasmic TRP32 compared to single lysine mutants or heclin-treated cells ectopically expressing TRP32. These alterations in localization corresponded to changes in TRP32 transcriptional repressor function with heclin-treated and single lysine mutants unable to repress transcription of a TRP32 target genes in a luciferase assay.
Collapse
Affiliation(s)
- Tierra R Farris
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bing Zhu
- Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer Y Wang
- Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Cell Biology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Jiang L, Xiong J, Zhan J, Yuan F, Tang M, Zhang C, Cao Z, Chen Y, Lu X, Li Y, Wang H, Wang L, Wang J, Zhu WG, Wang H. Ubiquitin-specific peptidase 7 (USP7)-mediated deubiquitination of the histone deacetylase SIRT7 regulates gluconeogenesis. J Biol Chem 2017; 292:13296-13311. [PMID: 28655758 DOI: 10.1074/jbc.m117.780130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Sirtuin 7 (SIRT7), a member of the NAD+-dependent class III histone deacetylases, is involved in the regulation of various cellular processes and in resisting various stresses, such as hypoxia, low glucose levels, and DNA damage. Interestingly, SIRT7 is linked to the control of glycolysis, suggesting a role in glucose metabolism. Given the important roles of SIRT7, it is critical to clarify how SIRT7 activity is potentially regulated. It has been reported that some transcriptional and post-transcriptional regulatory mechanisms are involved. However, little is known how SIRT7 is regulated by the post-translational modifications. Here, we identified ubiquitin-specific peptidase 7 (USP7), a deubiquitinase, as a negative regulator of SIRT7. We showed that USP7 interacts with SIRT7 both in vitro and in vivo, and we further demonstrated that SIRT7 undergoes endogenous Lys-63-linked polyubiquitination, which is removed by USP7. Although the USP7-mediated deubiquitination of SIRT7 had no effect on its stability, the deubiquitination repressed its enzymatic activity. We also showed that USP7 coordinates with SIRT7 to regulate the expression of glucose-6-phosphatase catalytic subunit (G6PC), a gluconeogenic gene. USP7 depletion by RNA interference increased both G6PC expression and SIRT7 enzymatic activity. Moreover, SIRT7 targeted the G6PC promoter through the transcription factor ELK4 but not through forkhead box O1 (FoxO1). In summary, SIRT7 is a USP7 substrate and has a novel role as a regulator of gluconeogenesis. Our study may provide the basis for new clinical approaches to treat metabolic disorders related to glucose metabolism.
Collapse
Affiliation(s)
- Lu Jiang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Jiannan Xiong
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Junsi Zhan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Fengjie Yuan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Ming Tang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Chaohua Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Ziyang Cao
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Yongcan Chen
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Xiaopeng Lu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Yinglu Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Hui Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Lina Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191 and
| | - Wei-Guo Zhu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, .,Peking-Tsinghua University Center for Life Science, and.,the Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Haiying Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center,
| |
Collapse
|
12
|
Kim JO, Kim SR, Lim KH, Kim JH, Ajjappala B, Lee HJ, Choi JI, Baek KH. Deubiquitinating enzyme USP37 regulating oncogenic function of 14-3-3γ. Oncotarget 2017; 6:36551-76. [PMID: 26427597 PMCID: PMC4742195 DOI: 10.18632/oncotarget.5336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
14-3-3 is a family of highly conserved protein that is involved in a number of cellular processes. In this study, we identified that the high expression of 14-3-3γ in various cancer cell lines correlates with the invasiveness of the cancer cells. Overexpression of 14-3-3γ causes changes to the morphologic characteristics of cell transformation, and promotes cell migration and invasion. The cells overexpressed with 14-3-3γ have been shown to stimulate foci and tumor formation in SCID-NOD mice in concert with signaling components as reported with the 14-3-3β. In our previous study, we demonstrated that 14-3-3γ inhibits apoptotic cell death and mediates the promotion of cell proliferation in immune cell lines. Earlier, binding partners for 14-3-3γ were defined by screening. We found that USP37, one of deubiquitinating enzymes (DUBs), belongs to this binding partner group. Therefore, we investigated whether 14-3-3γ mediates proliferation in cancer cells, and 14-3-3γ by USP37 is responsible for promoting cell proliferation. Importantly, we found that USP37 regulates the stability of ubiquitin-conjugated 14-3-3γ through its catalytic activity. This result implies that the interactive behavior between USP37 and 14-3-3γ could be involved in the regulation of 14-3-3γ degradation. When all these findings are considered together, USP37 is shown to be a specific DUB that prevents 14-3-3γ degradation, which may contribute to malignant transformation via MAPK signaling pathway, possibly providing a new target for therapeutic objectives of cancer.
Collapse
Affiliation(s)
- Jin-Ock Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - So-Ra Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Key-Hwan Lim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jun-Hyun Kim
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Brijesh Ajjappala
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Hey-Jin Lee
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jee-In Choi
- Department of Rehabilitation Medicine, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
13
|
The nonreceptor tyrosine kinase c-Src attenuates SCF(β-TrCP) E3-ligase activity abrogating Taz proteasomal degradation. Proc Natl Acad Sci U S A 2017; 114:1678-1683. [PMID: 28154141 DOI: 10.1073/pnas.1610223114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The polyomavirus middle T antigen (PyMT) oncogene activates the cellular nonreceptor tyrosine kinase c-Src and recruits the Hippo pathway effectors, Yap (yes-associated protein) and Taz (transcriptional coactivator with PDZ-binding motif), as key steps in oncogenesis. Yap and Taz are transcription coactivators shuttling from the cytoplasm to the nucleus. The Hippo pathway kinase Lats1/2 (large tumor suppressor homolog) reduces Yap/Taz nuclear localization and minimizes their cytoplasmic levels by facilitating their ubiquitination by the E3 ligase SCF(β-TrCP). In contrast, PyMT increases the cytoplasmic Taz level. Here we show that this unique PyMT behavior is mediated by Src. We demonstrate that PyMT-induced Src activation inhibits degradation of both wild-type and tyrosine-less Taz, ruling out Taz modification as a mechanism of escaping degradation. Instead, we found that Src attenuates the SCF(β-TrCP) E3-ligase activity in blunting Taz proteasomal degradation. The role of Src in rescuing Taz from TrCP-mediated degradation gives rise to higher cell proliferation under dense cell culture. Finally, IkB (NF-kappa-B inhibitor), a known substrate of β-TrCP, was rescued by Src, suggesting a wider effect of Src on β-TrCP substrates. These findings introduce the Src tyrosine kinase as a regulator of SCF(β-TrCP).
Collapse
|
14
|
Hjortland NM, Mesecar AD. Steady-state kinetic studies reveal that the anti-cancer target Ubiquitin-Specific Protease 17 (USP17) is a highly efficient deubiquitinating enzyme. Arch Biochem Biophys 2016; 612:35-45. [PMID: 27756680 DOI: 10.1016/j.abb.2016.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/26/2022]
Abstract
USP17 is a deubiquitinating enzyme that is upregulated in numerous cancers and therefore a drug target. We developed a robust expression, purification, and assay system for USP17 enabling its enzymatic and structural characterization. USP17 was expressed in E. coli as inclusion bodies and then solubilized, refolded, and purified using affinity and size-exclusion chromatography. Milligram quantities of pure USP17 can be produced that is catalytically more efficient (kcat/Km = 1500 (x103) M-1sec-1) than other human USPs studied to date. Analytical size-exclusion chromatography, analytical ultracentrifugation, and dynamic light scattering studies suggest that the quaternary structure of USP17 is a monomer. Steady-state kinetic studies show that USP17 efficiently hydrolyzes both ubiquitin-AMC (kcat = 1.5 sec-1 and Km = 1.0 μM) and ubiquitin-rhodamine110 (kcat = 1.8 sec-1 and Km = 2.0 μM) substrates. Ubiquitin chain cleavage assays reveal that USP17 efficiently cleaves di-ubiquitin chains with Lys11, Lys33, Lys48 and Lys63 linkages and tetra-ubiquitin chains with Lys11, Lys48 and Lys63 linkages but is inefficient in cleaving di-ubiquitin chains with Lys6, Lys27, or Lys29 linkages or linear ubiquitin chains. The substrate specificity of USP17 is most similar to that of USP1, where both USPs display higher specificity than other characterized members of the USP family.
Collapse
Affiliation(s)
- Nicole M Hjortland
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, United States
| | - Andrew D Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, United States; Department of Biochemistry, Purdue University, West Lafayette, IN 47906, United States; Department of Chemistry, Purdue University, West Lafayette, IN 47906, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47906, United States.
| |
Collapse
|
15
|
Borbely G, Haldosen LA, Dahlman-Wright K, Zhao C. Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells. Oncotarget 2016; 6:33623-35. [PMID: 26378038 PMCID: PMC4741790 DOI: 10.18632/oncotarget.5601] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
Members of the bromodomain and extra-C terminal (BET) domain protein family and the histone deacetylase (HDAC) enzyme family regulate the expression of important oncogenes and tumor suppressor genes. Here we show that the BET inhibitor JQ1 inhibits proliferation and induces apoptosis of both triple negative and estrogen receptor positive breast cancer cells. Consistent with the critical role of histone acetylation in the regulation of gene expression, treatment with JQ1 or the HDAC inhibitor mocetinostat was associated with global changes in gene expression resulting in suppression of genes involved in cell-cycle regulation. Combining JQ1 with mocetinostat, further decreased cell viability. This synergistic effect was associated with increased suppression of genes essential for cell-cycle progression. Furthermore, we detected dramatic increase in the expression of several members of the ubiquitin–specific protease 17 (USP17) family of deubiquitinating enzymes in response to the combination treatment. Increased expression of USP17 enzymes were able to attenuate the Ras/MAPK pathway causing decrease in cell viability, while, siRNA mediated depletion of USP17 significantly decreased cytotoxicity after the combination treatment. In conclusion, our study demonstrates that co-treatment with BET inhibitors and HDAC inhibitors reduces breast cancer cell viability through induction of USP17.
Collapse
Affiliation(s)
- Gabor Borbely
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, Huddinge, Sweden.,Current address: Swetox & Karolinska Institutet, Unit for Toxicology Sciences, Södertälje, Sweden
| | - Lars-Arne Haldosen
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, Huddinge, Sweden
| | - Karin Dahlman-Wright
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, Huddinge, Sweden.,SciLifeLab, Karolinska Institutet, Solna, Sweden
| | - Chunyan Zhao
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, Huddinge, Sweden
| |
Collapse
|
16
|
Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016; 7:133. [PMID: 27516771 PMCID: PMC4963401 DOI: 10.3389/fgene.2016.00133] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Collapse
Affiliation(s)
- Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| |
Collapse
|
17
|
Ni Y, Tao L, Chen C, Song H, Li Z, Gao Y, Nie J, Piccioni M, Shi G, Li B. The Deubiquitinase USP17 Regulates the Stability and Nuclear Function of IL-33. Int J Mol Sci 2015; 16:27956-66. [PMID: 26610488 PMCID: PMC4661921 DOI: 10.3390/ijms161126063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/30/2015] [Accepted: 11/13/2015] [Indexed: 11/16/2022] Open
Abstract
IL-33 is a new member of the IL-1 family cytokines, which is expressed by different types of immune cells and non-immune cells. IL-33 is constitutively expressed in the nucleus, where it can act as a transcriptional regulator. So far, no direct target for nuclear IL-33 has been identified, and the regulation of IL-33 nuclear function remains largely unclear. Here, we report that the transcription of type 2 inflammatory cytokine IL-13 is positively regulated by nuclear IL-33. IL-33 can directly bind to the conserved non-coding sequence (CNS) before the translation initiation site in the IL13 gene locus. Moreover, IL-33 nuclear function and stability are regulated by the enzyme ubiquitin-specific protease 17 (USP17) through deubiquitination of IL-33 both at the K48 and at the K63 sites. Our data suggest that IL13 gene transcription can be directly activated by nuclear IL-33, which is negatively regulated by the deubiquitinase USP17.
Collapse
Affiliation(s)
- Yingmeng Ni
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Lianqin Tao
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Chen Chen
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Huihui Song
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhiyuan Li
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yayi Gao
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jia Nie
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Miranda Piccioni
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Guochao Shi
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
18
|
Lim KH, Park JJ, Gu BH, Kim JO, Park SG, Baek KH. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response. Sci Rep 2015; 5:12793. [PMID: 26238070 PMCID: PMC4523935 DOI: 10.1038/srep12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/09/2015] [Indexed: 11/08/2022] Open
Abstract
HAUSP (herpes virus-associated ubiquitin specific protease, known as ubiquitin specific protease 7), one of DUBs, regulates the dynamics of the p53 and Mdm2 network in response to DNA damage by deubiquitinating both p53 and its E3 ubiquitin ligase, Mdm2. Its concerted action increases the level of functional p53 by preventing proteasome-dependent degradation of p53. However, the protein substrates that are targeted by HAUSP to mediate DNA damage responses in the context of the HAUSP-p53-Mdm2 complex are not fully identified. Here, we identified nucleolin as a new substrate for HAUSP by proteomic analysis. Nucleolin has two HAUSP binding sites in its N- and C-terminal regions, and the mutation of HAUSP interacting peptides on nucleolin disrupts their interaction and it leads to the increased level of nucleolin ubiquitination. In addition, HAUSP regulates the stability of nucleolin by removing ubiquitin from nucleolin. Nucleolin exists as a component of the HAUSP-p53-Mdm2 complex, and both Mdm2 and p53 are required for the interaction between HAUSP and nucleolin. Importantly, the irradiation increases the HAUSP-nucleolin interaction, leading to nucleolin stabilization significantly. Taken together, this study reveals a new component of the HAUSP-p53-Mdm2 complex that governs dynamic cellular responses to DNA damage.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jang-Joon Park
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Bon-Hee Gu
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jin-Ock Kim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-Do 443-749, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
19
|
Kim SR, Kim JO, Lim KH, Yun JH, Han I, Baek KH. Regulation of pyruvate kinase isozyme M2 is mediated by the ubiquitin-specific protease 20. Int J Oncol 2015; 46:2116-24. [PMID: 25708858 DOI: 10.3892/ijo.2015.2901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/16/2015] [Indexed: 11/06/2022] Open
Abstract
USP20, one of deubiquitinating enzymes (DUBs) belonging to the subfamily of ubiquitin-specific protease (USP), regulates ubiquitin-mediated protein degradation. So far, USP20 has been identified as a binding protein and a regulator of hypoxia-inducible factor (HIF)-1α, β-adrenergic receptor, and tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). In order to investigate other biological functions of USP20 with its novel substrates, we searched for putative substrates through two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. We found several putative substrates, some of which are related to cancer metabolism or neural disorders. Among these, the pyruvate kinase isoenzyme M2 (PKM2) had a high identity score. Most cancer cells contain a specific metabolic pathway, referred to as the Warburg effect. One well-known function of PKM2 is a main regulator in cancer metabolic pathways, and PKM2 promotes the Warburg effect and tumor growth. In addition, both PKM2 and HIF-1α upregulate the expression of target genes. From this evidence, it is expected that USP20 would be associated with the metabolic pathway through the regulation of PKM2 ubiquitination. Despite various roles of DUBs, the biological functions of USP20 in cellular mechanisms are poorly understood. Herein, we investigated the inter-action between PKM2 and USP20. Our results suggest a new molecular pathway in cancer metabolism through the regulation of PKM2.
Collapse
Affiliation(s)
- So-Ra Kim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Jin-Ock Kim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Key-Hwan Lim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Ji-Hyun Yun
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
20
|
Ramakrishna S, Suresh B, Baek KH. Biological functions of hyaluronan and cytokine-inducible deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer 2014; 1855:83-91. [PMID: 25481051 DOI: 10.1016/j.bbcan.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 11/26/2022]
Abstract
The modification of proteins through post-translation and degradation by the ubiquitin-proteasome system plays a pivotal role in a broad array of biological processes. Reversal of this process by deubiquitination is a central step in the maintenance and regulation of cellular homeostasis. It now appears that the regulation of ubiquitin pathways by deubiquitinating enzymes (DUBs) could be used as targets for anticancer therapy. Recent success in inducing apoptosis in cancerous cells by USP17, a cytokine-inducible DUB encoding two hyaluronan binding motifs (HABMs) showing direct interaction with hyaluronan (HA), could prove a promising step in the development of DUBs containing HABMs as agents in anticancer therapeutics. In this review, we summarize the importance of hyaluronan (HA) in cancer, the role played by DUBs in apoptosis, and a possible relationship between DUBs and HA in cancerous cells, suggesting new strategies for applying DUB enzymes as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Suresh Ramakrishna
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea.
| |
Collapse
|
21
|
Jaworski J, de la Vega M, Fletcher SJ, McFarlane C, Greene MK, Smyth AW, Van Schaeybroeck S, Johnston JA, Scott CJ, Rappoport JZ, Burrows JF. USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor. Oncotarget 2014; 5:6964-75. [PMID: 25026282 PMCID: PMC4196176 DOI: 10.18632/oncotarget.2165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 01/06/2023] Open
Abstract
Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of 'CaaX' motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis.
Collapse
Affiliation(s)
- Jakub Jaworski
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Michelle de la Vega
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, Belfast, UK
| | - Sarah J. Fletcher
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Cheryl McFarlane
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, Belfast, UK
| | | | | | - Sandra Van Schaeybroeck
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - James A. Johnston
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, Belfast, UK
- Current address, Inflammation Research, Amgen Inc., Thousand Oaks, CA
| | | | | | | |
Collapse
|
22
|
Lee H, Choi AJ, Kang GY, Park HS, Kim HC, Lim HJ, Chung H. Increased 26S proteasome non-ATPase regulatory subunit 1 in the aqueous humor of patients with age-related macular degeneration. BMB Rep 2014; 47:292-7. [PMID: 24286321 PMCID: PMC4163863 DOI: 10.5483/bmbrep.2014.47.5.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the world. Evidence indicates that the suppression of the ubiquitin-proteasome system (UPS) contributes to the accumulation of toxic proteins and inflammation in retinal pigment epithelium (RPE), the functional abnormalities and/or the degeneration of which are believed to be the initiators and major pathologies of AMD. To identify new protein associations with the altered UPS in AMD, we used LC-ESI-MS/MS to perform a proteomic analysis of the aqueous humor (AH) of AMD patients and matched control subjects. Six UPS-related proteins were present in the AH of the patients and control subjects. Four of the proteins, including 26S proteasome non-ATPase regulatory subunit 1 (Rpn2), were increased in patients, according to semi-quantitative proteomic profiling. An LC-MRM assay revealed a significant increase of Rpn2 in 15 AMD patients compared to the control subjects, suggesting that this protein could be a biomarker for AMD. [BMB Reports 2014; 47(5): 292-297]
Collapse
Affiliation(s)
- Hyungwoo Lee
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 143-729, Korea
| | - Ae Jin Choi
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 143-729, Korea
| | | | | | - Hyung Chan Kim
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 143-729, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Konkuk University, Seoul 143-729, Korea
| | - Hyewon Chung
- Department of Ophthalmology, Konkuk University School of Medicine, Seoul 143-729, Korea
| |
Collapse
|
23
|
A novel RCE1 isoform is required for H-Ras plasma membrane localization and is regulated by USP17. Biochem J 2014; 457:289-300. [PMID: 24134311 DOI: 10.1042/bj20131213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Processing of the 'CaaX' motif found on the C-termini of many proteins, including the proto-oncogene Ras, requires the ER (endoplasmic reticulum)-resident protease RCE1 (Ras-converting enzyme 1) and is necessary for the proper localization and function of many of these 'CaaX' proteins. In the present paper, we report that several mammalian species have a novel isoform (isoform 2) of RCE1 resulting from an alternate splice site and producing an N-terminally truncated protein. We demonstrate that both RCE1 isoform 1 and the newly identified isoform 2 are required to reinstate proper H-Ras processing and thus plasma membrane localization in RCE1-null cells. In addition, we show that the deubiquitinating enzyme USP17 (ubiquitin-specific protease 17), previously shown to modulate RCE1 activity, can regulate the abundance and localization of isoform 2. Furthermore, we show that isoform 2 is ubiquitinated on Lys43 and deubiquitinated by USP17. Collectively, the findings of the present study indicate that RCE1 isoform 2 is required for proper 'CaaX' processing and that USP17 can regulate this via its modulation of RCE1 isoform 2 ubiquitination.
Collapse
|
24
|
Park JJ, Yun JH, Baek KH. Polyclonal and monoclonal antibodies specific for ubiquitin-specific protease 20. Monoclon Antib Immunodiagn Immunother 2014; 32:193-9. [PMID: 23750477 DOI: 10.1089/mab.2012.0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination and deubiquitination are important processes for numerous intracellular mechanisms, and the imbalance of these two processes can cause severe diseases including cancer. Accordingly, deubiquitinating enzymes (DUBs) responsible for deubiquitination from their protein substrates become attractive targets for many studies. USP20, also known as VDU2, belongs to ubiquitin-specific protease (USP) subfamily of DUBs and has several important roles in cells as shown with other DUBs. USP20 stabilizes HIF-1α by abolishing von Hippel-Lindau protein (pVHL)-E3 ligase complex-mediated HIF-1α degradation. USP20 is also associated with β2 adrenergic receptor recycling. In addition, a previous study demonstrated that USP20 regulates Tax-induced NF-κB activation through its deubiquitinating activity. These studies provide a line of evidence that USP20 has critical roles in cellular functions. In this study, we generated and characterized a polyclonal and two monoclonal antibodies against USP20. It is feasible that USP20 antibodies can be useful to investigate USP20-related cellular mechanisms and to find novel substrates of USP20.
Collapse
Affiliation(s)
- Jang-Joon Park
- Department of Biomedical Science, CHA University, CHA General Hospital, Seongnam, Republic of Korea
| | | | | |
Collapse
|
25
|
van der Laan S, Tsanov N, Crozet C, Maiorano D. High Dub3 Expression in Mouse ESCs Couples the G1/S Checkpoint to Pluripotency. Mol Cell 2013; 52:366-79. [DOI: 10.1016/j.molcel.2013.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/01/2013] [Accepted: 09/18/2013] [Indexed: 01/25/2023]
|
26
|
Lim KH, Ramakrishna S, Baek KH. Molecular mechanisms and functions of cytokine-inducible deubiquitinating enzymes. Cytokine Growth Factor Rev 2013; 24:427-31. [PMID: 23773437 DOI: 10.1016/j.cytogfr.2013.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
Deubiquitinating enzymes (DUBs), a class of cysteine proteases which counteract the action of protein ubiquitination, hydrolyze ubiquitin from its specific targeted proteins. Approximately, 100 DUBs have been found from yeast to human, and they can be classified into at least 5 families based on their structures and functions. Most DUBs are involved in regulation of intracellular processes including cell cycle progression, apoptosis, immunity, reproduction, and target gene transcription. Recently, much progress has been made in understanding the physiological functions of cytokine-inducible DUBs such as DUB-1, DUB-2, and DUB-3/USP17, in regulation of cell proliferation and apoptosis in lymphocytes. Here, we have summarized the structure and functions of cytokine-inducible DUBs and their biological functions in regulating several interleukin-associated signaling pathways. Finally, we emphasize the importance of small molecules for cytokine-inducible DUBs for developing promising drug therapeutics for immune-related disorders.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, Bundang CHA General Hospital, Gyeonggi-Do 463-840, Republic of Korea
| | | | | |
Collapse
|
27
|
Baek KH, Lee H, Yang S, Lim SB, Lee W, Lee JE, Lim JJ, Jun K, Lee DR, Chung Y. Embryonic demise caused by targeted disruption of a cysteine protease Dub-2. PLoS One 2012; 7:e44223. [PMID: 22984479 PMCID: PMC3440420 DOI: 10.1371/journal.pone.0044223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/03/2012] [Indexed: 11/29/2022] Open
Abstract
Background A plethora of biological metabolisms are regulated by the mechanisms of ubiquitination, wherein this process is balanced with the action of deubiquitination system. Dub-2 is an IL-2-inducible, immediate-early gene that encodes a deubiquitinating enzyme with growth regulatory activity. DUB-2 presumably removes ubiquitin from ubiquitin-conjugated target proteins regulating ubiquitin-mediated proteolysis, but its specific target proteins are unknown yet. Methodology/Principal Findings To elucidate the functional role of Dub-2, we generated genetically modified mice by introducing neo cassette into the second exon of Dub-2 and then homologous recombination was done to completely abrogate the activity of DUB-2 proteins. We generated Dub-2+/− heterozygous mice showing a normal phenotype and are fertile, whereas new born mouse of Dub-2−/− homozygous alleles could not survive. In addition, Dub-2−/− embryo could not be seen between E6.5 and E12.5 stages. Furthermore, the number of embryos showing normal embryonic development for further stages is decreased in heterozygotes. Even embryonic stem cells from inner cell mass of Dub-2−/− embryos could not be established. Conclusions Our study suggests that the targeted disruption of Dub-2 may cause embryonic lethality during early gestation, possibly due to the failure of cell proliferation during hatching process.
Collapse
Affiliation(s)
- Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, CHA General Hospital, Gyeonggi-Do, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ramakrishna S, Suresh B, Bae SM, Ahn WS, Lim KH, Baek KH. Hyaluronan binding motifs of USP17 and SDS3 exhibit anti-tumor activity. PLoS One 2012; 7:e37772. [PMID: 22662218 PMCID: PMC3360616 DOI: 10.1371/journal.pone.0037772] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 04/23/2012] [Indexed: 01/08/2023] Open
Abstract
Background We previously reported that the USP17 deubiquitinating enzyme having hyaluronan binding motifs (HABMs) interacts with human SDS3 (suppressor of defective silencing 3) and specifically deubiquitinates Lys-63 branched polyubiquitination of SDS3 resulting in negative regulation of histone deacetylase (HDAC) activity in cancer cells. Furthermore, USP17 and SDS3 mutually interact with each other to block cell proliferation in HeLa cells but the mechanism for this inhibition in cell proliferation is not known. We wished to investigate whether the HABMs of USP17 were responsible for tumor suppression activity. Methodology/Principal Findings Similarly to USP17, we have identified that SDS3 also has three consecutive HABMs and shows direct binding with hyaluronan (HA) using cetylpyridinium chloride (CPC) assay. Additionally, HA oligosaccharides (6-18 sugar units) competitively block binding of endogenous HA polymer to HA binding proteins. Thus, administration of HA oligosaccharides antagonizes the interaction between HA and USP17 or SDS3. Interestingly, HABMs deleted USP17 showed lesser interaction with SDS3 but retain its deubiquitinating activity towards SDS3. The deletion of HABMs of USP17 could not alter its functional regulation on SDS3-associated HDAC activity. Furthermore, to explore whether HABMs in USP17 and SDS3 are responsible for the inhibition of cell proliferation, we investigated the effect of USP17 and SDS3-lacking HABMs on cell proliferation by soft agar, apoptosis, cell migration and cell proliferation assays. Conclusions Our results have demonstrated that these HABMs in USP17 and its substrate SDS3 are mainly involved in the inhibition of anchorage-independent tumor growth.
Collapse
Affiliation(s)
- Suresh Ramakrishna
- Department of Biomedical Science, CHA University, CHA General Hospital, Gyeonggi-Do, Republic of Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA University, CHA General Hospital, Gyeonggi-Do, Republic of Korea
| | - Su-Mi Bae
- Catholic Research Institute of Medical Science, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Woong-Shick Ahn
- Catholic Research Institute of Medical Science, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Key-Hwan Lim
- Department of Biomedical Science, CHA University, CHA General Hospital, Gyeonggi-Do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, CHA General Hospital, Gyeonggi-Do, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Abstract
Regulation of gene transcription is vitally important for the maintenance of normal cellular homeostasis. Failure to correctly regulate gene expression, or to deal with problems that arise during the transcription process, can lead to cellular catastrophe and disease. One of the ways cells cope with the challenges of transcription is by making extensive use of the proteolytic and nonproteolytic activities of the ubiquitin-proteasome system (UPS). Here, we review recent evidence showing deep mechanistic connections between the transcription and ubiquitin-proteasome systems. Our goal is to leave the reader with a sense that just about every step in transcription-from transcription initiation through to export of mRNA from the nucleus-is influenced by the UPS and that all major arms of the system--from the first step in ubiquitin (Ub) conjugation through to the proteasome-are recruited into transcriptional processes to provide regulation, directionality, and deconstructive power.
Collapse
Affiliation(s)
- Fuqiang Geng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240, USA.
| | | | | |
Collapse
|
30
|
König HG, Fenner BJ, Byrne JC, Schwamborn RF, Bernas T, Jefferies CA, Prehn JHM. Fibroblast growth factor homologous factor 1 interacts with NEMO to regulate NF-κB signaling in neurons. J Cell Sci 2012; 125:6058-70. [DOI: 10.1242/jcs.111880] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuronal survival and plasticity critically depend on constitutive activity of the transcription factor nuclear factor-κB (NF-κB). We here describe a role for a small intracellular fibroblast growth factor homologue, the fibroblast growth factor homologous factor 1 (FHF1/FGF12) in the regulation of NF-κB activity in mature neurons. FHF's have previously been described to control neuronal excitability, and mutations in FHF isoforms give rise to a form of progressive spinocerebellar ataxia. Using a protein-array approach, we identified FHF1b as a novel interactor of the canonical NF–κB modulator IKKγ/NEMO. Co-immunoprecipitation, pull-down and GAL4-reporter experiments, as well as proximity ligation assays confirmed the interaction of FHF1 and NEMO, and demonstrated that a major site of interaction occurred within the axon initial segment. Fhf1 gene silencing strongly activated neuronal NF-κB activity and increased neurite lengths, branching patterns and spine counts in mature cortical neurons. The effects of FHF1 on neuronal NF-κB activity and morphology required the presence of NEMO. Our results imply that FHF1 negatively regulates the constitutive NF-κB activity in neurons.
Collapse
|
31
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|